Properties

Label 2890.2.o
Level $2890$
Weight $2$
Character orbit 2890.o
Rep. character $\chi_{2890}(513,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $1080$
Sturm bound $918$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2890 = 2 \cdot 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2890.o (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 85 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(918\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2890, [\chi])\).

Total New Old
Modular forms 3960 1080 2880
Cusp forms 3384 1080 2304
Eisenstein series 576 0 576

Trace form

\( 1080 q - 16 q^{10} + 48 q^{15} + 8 q^{20} + 16 q^{25} + 48 q^{27} - 16 q^{28} + 32 q^{31} + 64 q^{33} - 32 q^{37} - 64 q^{39} + 40 q^{41} + 48 q^{42} + 160 q^{47} - 64 q^{50} + 64 q^{52} + 40 q^{53} - 16 q^{55}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2890, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2890, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2890, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1445, [\chi])\)\(^{\oplus 2}\)