Properties

Label 289.3.e.h
Level $289$
Weight $3$
Character orbit 289.e
Analytic conductor $7.875$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,3,Mod(40,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([15])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.40"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 289.e (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,8,-8,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.87467964001\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{16}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{16}^{7} + \cdots + \zeta_{16}^{2}) q^{2} + ( - \zeta_{16}^{7} + 2 \zeta_{16}^{6} + \cdots + 1) q^{3} + (\zeta_{16}^{6} + \zeta_{16}^{4} + \cdots - 1) q^{4} + (\zeta_{16}^{7} - \zeta_{16}^{6} + \cdots + 1) q^{5}+ \cdots + (15 \zeta_{16}^{7} + 18 \zeta_{16}^{6} + \cdots - 32) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} - 8 q^{4} + 8 q^{5} - 24 q^{6} - 8 q^{7} - 16 q^{8} - 8 q^{9} + 8 q^{10} - 32 q^{12} + 24 q^{14} - 32 q^{15} - 136 q^{18} + 32 q^{19} - 64 q^{21} + 8 q^{22} - 32 q^{23} - 48 q^{24} - 16 q^{25}+ \cdots - 256 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(\zeta_{16}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
40.1
0.923880 0.382683i
−0.923880 0.382683i
−0.382683 0.923880i
0.382683 0.923880i
−0.382683 + 0.923880i
0.382683 + 0.923880i
0.923880 + 0.382683i
−0.923880 + 0.382683i
−0.216773 0.0897902i 1.37529 0.273561i −2.78950 2.78950i −0.191514 + 0.286621i −0.322688 0.0641865i −3.98841 5.96908i 0.713379 + 1.72225i −6.49834 + 2.69170i 0.0672509 0.0449356i
65.1 1.63099 0.675577i −0.789499 + 3.96908i −0.624715 + 0.624715i 6.43416 4.29916i 1.39376 + 7.00688i 3.40262 + 2.27356i −3.29916 + 7.96489i −6.81537 2.82302i 7.58960 11.3586i
75.1 −0.324423 + 0.783227i −0.906019 + 1.35595i 2.32023 + 2.32023i 1.33329 + 6.70292i −0.768086 1.14952i −0.176373 + 0.886687i −5.70292 + 2.36223i 2.42641 + 5.85788i −5.68246 1.13031i
131.1 −1.08979 2.63099i 4.32023 2.88669i −2.90602 + 2.90602i −3.57593 0.711297i −12.3030 8.22059i −3.23784 + 0.644047i 0.288703 + 0.119585i 6.88730 16.6274i 2.02560 + 10.1834i
158.1 −0.324423 0.783227i −0.906019 1.35595i 2.32023 2.32023i 1.33329 6.70292i −0.768086 + 1.14952i −0.176373 0.886687i −5.70292 2.36223i 2.42641 5.85788i −5.68246 + 1.13031i
214.1 −1.08979 + 2.63099i 4.32023 + 2.88669i −2.90602 2.90602i −3.57593 + 0.711297i −12.3030 + 8.22059i −3.23784 0.644047i 0.288703 0.119585i 6.88730 + 16.6274i 2.02560 10.1834i
224.1 −0.216773 + 0.0897902i 1.37529 + 0.273561i −2.78950 + 2.78950i −0.191514 0.286621i −0.322688 + 0.0641865i −3.98841 + 5.96908i 0.713379 1.72225i −6.49834 2.69170i 0.0672509 + 0.0449356i
249.1 1.63099 + 0.675577i −0.789499 3.96908i −0.624715 0.624715i 6.43416 + 4.29916i 1.39376 7.00688i 3.40262 2.27356i −3.29916 7.96489i −6.81537 + 2.82302i 7.58960 + 11.3586i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 40.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.e odd 16 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 289.3.e.h 8
17.b even 2 1 289.3.e.f 8
17.c even 4 1 17.3.e.b 8
17.c even 4 1 289.3.e.g 8
17.d even 8 1 289.3.e.a 8
17.d even 8 1 289.3.e.e 8
17.d even 8 1 289.3.e.j 8
17.d even 8 1 289.3.e.n 8
17.e odd 16 1 17.3.e.b 8
17.e odd 16 1 289.3.e.a 8
17.e odd 16 1 289.3.e.e 8
17.e odd 16 1 289.3.e.f 8
17.e odd 16 1 289.3.e.g 8
17.e odd 16 1 inner 289.3.e.h 8
17.e odd 16 1 289.3.e.j 8
17.e odd 16 1 289.3.e.n 8
51.f odd 4 1 153.3.p.a 8
51.i even 16 1 153.3.p.a 8
68.f odd 4 1 272.3.bh.b 8
68.i even 16 1 272.3.bh.b 8
85.f odd 4 1 425.3.t.b 8
85.i odd 4 1 425.3.t.d 8
85.j even 4 1 425.3.u.a 8
85.o even 16 1 425.3.t.d 8
85.p odd 16 1 425.3.u.a 8
85.r even 16 1 425.3.t.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
17.3.e.b 8 17.c even 4 1
17.3.e.b 8 17.e odd 16 1
153.3.p.a 8 51.f odd 4 1
153.3.p.a 8 51.i even 16 1
272.3.bh.b 8 68.f odd 4 1
272.3.bh.b 8 68.i even 16 1
289.3.e.a 8 17.d even 8 1
289.3.e.a 8 17.e odd 16 1
289.3.e.e 8 17.d even 8 1
289.3.e.e 8 17.e odd 16 1
289.3.e.f 8 17.b even 2 1
289.3.e.f 8 17.e odd 16 1
289.3.e.g 8 17.c even 4 1
289.3.e.g 8 17.e odd 16 1
289.3.e.h 8 1.a even 1 1 trivial
289.3.e.h 8 17.e odd 16 1 inner
289.3.e.j 8 17.d even 8 1
289.3.e.j 8 17.e odd 16 1
289.3.e.n 8 17.d even 8 1
289.3.e.n 8 17.e odd 16 1
425.3.t.b 8 85.f odd 4 1
425.3.t.b 8 85.r even 16 1
425.3.t.d 8 85.i odd 4 1
425.3.t.d 8 85.o even 16 1
425.3.u.a 8 85.j even 4 1
425.3.u.a 8 85.p odd 16 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(289, [\chi])\):

\( T_{2}^{8} + 4T_{2}^{6} - 16T_{2}^{5} + 8T_{2}^{4} + 8T_{2}^{3} + 20T_{2}^{2} + 8T_{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{8} - 8T_{3}^{7} + 36T_{3}^{6} - 128T_{3}^{5} + 556T_{3}^{4} - 528T_{3}^{3} + 368T_{3}^{2} - 2176T_{3} + 2312 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{8} - 8 T^{7} + \cdots + 2312 \) Copy content Toggle raw display
$5$ \( T^{8} - 8 T^{7} + \cdots + 4418 \) Copy content Toggle raw display
$7$ \( T^{8} + 8 T^{7} + \cdots + 7688 \) Copy content Toggle raw display
$11$ \( T^{8} + 100 T^{6} + \cdots + 2221832 \) Copy content Toggle raw display
$13$ \( T^{8} + 784 T^{5} + \cdots + 16273156 \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots + 34090452496 \) Copy content Toggle raw display
$23$ \( T^{8} + 32 T^{7} + \cdots + 564614408 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 55846825218 \) Copy content Toggle raw display
$31$ \( T^{8} + \cdots + 182700453128 \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots + 368317129538 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 126445152962 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 6626611216 \) Copy content Toggle raw display
$47$ \( T^{8} + 80 T^{7} + \cdots + 298321984 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 41458660996 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 2347596304 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 22880163635522 \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots + 883915868224 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 53847249369608 \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 18825456624578 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots + 376288804594952 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 22\!\cdots\!16 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots + 128947789048324 \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 18\!\cdots\!42 \) Copy content Toggle raw display
show more
show less