Properties

Label 2888.2.a.x.1.8
Level $2888$
Weight $2$
Character 2888.1
Self dual yes
Analytic conductor $23.061$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2888,2,Mod(1,2888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,0,-3,0,3,0,9,0,6,0,3,0,6,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0607961037\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 3x^{8} - 12x^{7} + 35x^{6} + 45x^{5} - 117x^{4} - 55x^{3} + 96x^{2} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-1.95251\) of defining polynomial
Character \(\chi\) \(=\) 2888.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.95251 q^{3} +1.73942 q^{5} +1.92522 q^{7} +0.812302 q^{9} +4.55495 q^{11} +2.74488 q^{13} +3.39623 q^{15} +5.01391 q^{17} +3.75901 q^{21} +1.14055 q^{23} -1.97443 q^{25} -4.27151 q^{27} -5.00912 q^{29} -1.99987 q^{31} +8.89359 q^{33} +3.34876 q^{35} +7.06608 q^{37} +5.35941 q^{39} -11.0249 q^{41} +6.10421 q^{43} +1.41293 q^{45} -8.77261 q^{47} -3.29353 q^{49} +9.78972 q^{51} -0.0537475 q^{53} +7.92296 q^{55} -3.70019 q^{59} -14.9905 q^{61} +1.56386 q^{63} +4.77449 q^{65} -12.6944 q^{67} +2.22694 q^{69} +2.06940 q^{71} -0.713001 q^{73} -3.85509 q^{75} +8.76928 q^{77} +11.2592 q^{79} -10.7771 q^{81} +9.98525 q^{83} +8.72129 q^{85} -9.78037 q^{87} +16.1999 q^{89} +5.28449 q^{91} -3.90477 q^{93} -0.372404 q^{97} +3.69999 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 3 q^{3} + 3 q^{5} + 9 q^{7} + 6 q^{9} + 3 q^{11} + 6 q^{13} - 3 q^{17} - 15 q^{21} + 24 q^{23} + 30 q^{25} - 12 q^{27} + 15 q^{29} - 6 q^{31} + 18 q^{33} + 15 q^{35} - 24 q^{37} + 6 q^{39} + 12 q^{41}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.95251 1.12728 0.563642 0.826019i \(-0.309400\pi\)
0.563642 + 0.826019i \(0.309400\pi\)
\(4\) 0 0
\(5\) 1.73942 0.777891 0.388945 0.921261i \(-0.372839\pi\)
0.388945 + 0.921261i \(0.372839\pi\)
\(6\) 0 0
\(7\) 1.92522 0.727664 0.363832 0.931465i \(-0.381468\pi\)
0.363832 + 0.931465i \(0.381468\pi\)
\(8\) 0 0
\(9\) 0.812302 0.270767
\(10\) 0 0
\(11\) 4.55495 1.37337 0.686685 0.726956i \(-0.259065\pi\)
0.686685 + 0.726956i \(0.259065\pi\)
\(12\) 0 0
\(13\) 2.74488 0.761292 0.380646 0.924721i \(-0.375702\pi\)
0.380646 + 0.924721i \(0.375702\pi\)
\(14\) 0 0
\(15\) 3.39623 0.876903
\(16\) 0 0
\(17\) 5.01391 1.21605 0.608026 0.793917i \(-0.291962\pi\)
0.608026 + 0.793917i \(0.291962\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 3.75901 0.820284
\(22\) 0 0
\(23\) 1.14055 0.237821 0.118911 0.992905i \(-0.462060\pi\)
0.118911 + 0.992905i \(0.462060\pi\)
\(24\) 0 0
\(25\) −1.97443 −0.394886
\(26\) 0 0
\(27\) −4.27151 −0.822052
\(28\) 0 0
\(29\) −5.00912 −0.930170 −0.465085 0.885266i \(-0.653976\pi\)
−0.465085 + 0.885266i \(0.653976\pi\)
\(30\) 0 0
\(31\) −1.99987 −0.359188 −0.179594 0.983741i \(-0.557478\pi\)
−0.179594 + 0.983741i \(0.557478\pi\)
\(32\) 0 0
\(33\) 8.89359 1.54818
\(34\) 0 0
\(35\) 3.34876 0.566043
\(36\) 0 0
\(37\) 7.06608 1.16166 0.580828 0.814026i \(-0.302729\pi\)
0.580828 + 0.814026i \(0.302729\pi\)
\(38\) 0 0
\(39\) 5.35941 0.858192
\(40\) 0 0
\(41\) −11.0249 −1.72180 −0.860902 0.508770i \(-0.830100\pi\)
−0.860902 + 0.508770i \(0.830100\pi\)
\(42\) 0 0
\(43\) 6.10421 0.930883 0.465442 0.885079i \(-0.345896\pi\)
0.465442 + 0.885079i \(0.345896\pi\)
\(44\) 0 0
\(45\) 1.41293 0.210627
\(46\) 0 0
\(47\) −8.77261 −1.27962 −0.639808 0.768535i \(-0.720986\pi\)
−0.639808 + 0.768535i \(0.720986\pi\)
\(48\) 0 0
\(49\) −3.29353 −0.470505
\(50\) 0 0
\(51\) 9.78972 1.37084
\(52\) 0 0
\(53\) −0.0537475 −0.00738278 −0.00369139 0.999993i \(-0.501175\pi\)
−0.00369139 + 0.999993i \(0.501175\pi\)
\(54\) 0 0
\(55\) 7.92296 1.06833
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.70019 −0.481724 −0.240862 0.970559i \(-0.577430\pi\)
−0.240862 + 0.970559i \(0.577430\pi\)
\(60\) 0 0
\(61\) −14.9905 −1.91933 −0.959665 0.281145i \(-0.909286\pi\)
−0.959665 + 0.281145i \(0.909286\pi\)
\(62\) 0 0
\(63\) 1.56386 0.197028
\(64\) 0 0
\(65\) 4.77449 0.592202
\(66\) 0 0
\(67\) −12.6944 −1.55087 −0.775435 0.631427i \(-0.782469\pi\)
−0.775435 + 0.631427i \(0.782469\pi\)
\(68\) 0 0
\(69\) 2.22694 0.268092
\(70\) 0 0
\(71\) 2.06940 0.245592 0.122796 0.992432i \(-0.460814\pi\)
0.122796 + 0.992432i \(0.460814\pi\)
\(72\) 0 0
\(73\) −0.713001 −0.0834505 −0.0417253 0.999129i \(-0.513285\pi\)
−0.0417253 + 0.999129i \(0.513285\pi\)
\(74\) 0 0
\(75\) −3.85509 −0.445148
\(76\) 0 0
\(77\) 8.76928 0.999352
\(78\) 0 0
\(79\) 11.2592 1.26676 0.633378 0.773843i \(-0.281668\pi\)
0.633378 + 0.773843i \(0.281668\pi\)
\(80\) 0 0
\(81\) −10.7771 −1.19745
\(82\) 0 0
\(83\) 9.98525 1.09602 0.548012 0.836471i \(-0.315385\pi\)
0.548012 + 0.836471i \(0.315385\pi\)
\(84\) 0 0
\(85\) 8.72129 0.945956
\(86\) 0 0
\(87\) −9.78037 −1.04857
\(88\) 0 0
\(89\) 16.1999 1.71718 0.858592 0.512660i \(-0.171340\pi\)
0.858592 + 0.512660i \(0.171340\pi\)
\(90\) 0 0
\(91\) 5.28449 0.553965
\(92\) 0 0
\(93\) −3.90477 −0.404906
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −0.372404 −0.0378119 −0.0189060 0.999821i \(-0.506018\pi\)
−0.0189060 + 0.999821i \(0.506018\pi\)
\(98\) 0 0
\(99\) 3.69999 0.371863
\(100\) 0 0
\(101\) 18.5966 1.85043 0.925213 0.379447i \(-0.123886\pi\)
0.925213 + 0.379447i \(0.123886\pi\)
\(102\) 0 0
\(103\) −8.97947 −0.884773 −0.442387 0.896824i \(-0.645868\pi\)
−0.442387 + 0.896824i \(0.645868\pi\)
\(104\) 0 0
\(105\) 6.53849 0.638091
\(106\) 0 0
\(107\) −7.48664 −0.723761 −0.361881 0.932224i \(-0.617865\pi\)
−0.361881 + 0.932224i \(0.617865\pi\)
\(108\) 0 0
\(109\) 16.7733 1.60659 0.803297 0.595578i \(-0.203077\pi\)
0.803297 + 0.595578i \(0.203077\pi\)
\(110\) 0 0
\(111\) 13.7966 1.30952
\(112\) 0 0
\(113\) −10.6659 −1.00336 −0.501682 0.865052i \(-0.667285\pi\)
−0.501682 + 0.865052i \(0.667285\pi\)
\(114\) 0 0
\(115\) 1.98389 0.184999
\(116\) 0 0
\(117\) 2.22967 0.206133
\(118\) 0 0
\(119\) 9.65288 0.884878
\(120\) 0 0
\(121\) 9.74757 0.886143
\(122\) 0 0
\(123\) −21.5263 −1.94096
\(124\) 0 0
\(125\) −12.1314 −1.08507
\(126\) 0 0
\(127\) −11.0279 −0.978565 −0.489282 0.872125i \(-0.662741\pi\)
−0.489282 + 0.872125i \(0.662741\pi\)
\(128\) 0 0
\(129\) 11.9185 1.04937
\(130\) 0 0
\(131\) 14.0249 1.22536 0.612682 0.790330i \(-0.290091\pi\)
0.612682 + 0.790330i \(0.290091\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −7.42993 −0.639467
\(136\) 0 0
\(137\) 8.81909 0.753465 0.376733 0.926322i \(-0.377048\pi\)
0.376733 + 0.926322i \(0.377048\pi\)
\(138\) 0 0
\(139\) 6.12544 0.519553 0.259776 0.965669i \(-0.416351\pi\)
0.259776 + 0.965669i \(0.416351\pi\)
\(140\) 0 0
\(141\) −17.1286 −1.44249
\(142\) 0 0
\(143\) 12.5028 1.04554
\(144\) 0 0
\(145\) −8.71295 −0.723571
\(146\) 0 0
\(147\) −6.43066 −0.530392
\(148\) 0 0
\(149\) −2.43152 −0.199198 −0.0995991 0.995028i \(-0.531756\pi\)
−0.0995991 + 0.995028i \(0.531756\pi\)
\(150\) 0 0
\(151\) −11.4850 −0.934636 −0.467318 0.884089i \(-0.654780\pi\)
−0.467318 + 0.884089i \(0.654780\pi\)
\(152\) 0 0
\(153\) 4.07281 0.329267
\(154\) 0 0
\(155\) −3.47861 −0.279409
\(156\) 0 0
\(157\) −2.66113 −0.212382 −0.106191 0.994346i \(-0.533865\pi\)
−0.106191 + 0.994346i \(0.533865\pi\)
\(158\) 0 0
\(159\) −0.104943 −0.00832249
\(160\) 0 0
\(161\) 2.19581 0.173054
\(162\) 0 0
\(163\) −4.11223 −0.322094 −0.161047 0.986947i \(-0.551487\pi\)
−0.161047 + 0.986947i \(0.551487\pi\)
\(164\) 0 0
\(165\) 15.4697 1.20431
\(166\) 0 0
\(167\) −14.9628 −1.15786 −0.578929 0.815378i \(-0.696529\pi\)
−0.578929 + 0.815378i \(0.696529\pi\)
\(168\) 0 0
\(169\) −5.46565 −0.420434
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.37340 0.484561 0.242280 0.970206i \(-0.422105\pi\)
0.242280 + 0.970206i \(0.422105\pi\)
\(174\) 0 0
\(175\) −3.80121 −0.287344
\(176\) 0 0
\(177\) −7.22467 −0.543039
\(178\) 0 0
\(179\) −3.18125 −0.237778 −0.118889 0.992908i \(-0.537933\pi\)
−0.118889 + 0.992908i \(0.537933\pi\)
\(180\) 0 0
\(181\) 4.54805 0.338054 0.169027 0.985611i \(-0.445938\pi\)
0.169027 + 0.985611i \(0.445938\pi\)
\(182\) 0 0
\(183\) −29.2690 −2.16363
\(184\) 0 0
\(185\) 12.2909 0.903642
\(186\) 0 0
\(187\) 22.8381 1.67009
\(188\) 0 0
\(189\) −8.22358 −0.598178
\(190\) 0 0
\(191\) −0.968712 −0.0700935 −0.0350468 0.999386i \(-0.511158\pi\)
−0.0350468 + 0.999386i \(0.511158\pi\)
\(192\) 0 0
\(193\) −15.2065 −1.09459 −0.547295 0.836940i \(-0.684343\pi\)
−0.547295 + 0.836940i \(0.684343\pi\)
\(194\) 0 0
\(195\) 9.32224 0.667580
\(196\) 0 0
\(197\) 16.4588 1.17264 0.586320 0.810079i \(-0.300576\pi\)
0.586320 + 0.810079i \(0.300576\pi\)
\(198\) 0 0
\(199\) 21.9412 1.55537 0.777687 0.628652i \(-0.216393\pi\)
0.777687 + 0.628652i \(0.216393\pi\)
\(200\) 0 0
\(201\) −24.7860 −1.74827
\(202\) 0 0
\(203\) −9.64365 −0.676852
\(204\) 0 0
\(205\) −19.1770 −1.33938
\(206\) 0 0
\(207\) 0.926472 0.0643942
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −18.3925 −1.26620 −0.633098 0.774072i \(-0.718217\pi\)
−0.633098 + 0.774072i \(0.718217\pi\)
\(212\) 0 0
\(213\) 4.04052 0.276852
\(214\) 0 0
\(215\) 10.6178 0.724126
\(216\) 0 0
\(217\) −3.85019 −0.261368
\(218\) 0 0
\(219\) −1.39214 −0.0940723
\(220\) 0 0
\(221\) 13.7626 0.925771
\(222\) 0 0
\(223\) 19.5162 1.30690 0.653451 0.756969i \(-0.273321\pi\)
0.653451 + 0.756969i \(0.273321\pi\)
\(224\) 0 0
\(225\) −1.60383 −0.106922
\(226\) 0 0
\(227\) −7.30867 −0.485094 −0.242547 0.970140i \(-0.577983\pi\)
−0.242547 + 0.970140i \(0.577983\pi\)
\(228\) 0 0
\(229\) 21.1319 1.39644 0.698218 0.715885i \(-0.253977\pi\)
0.698218 + 0.715885i \(0.253977\pi\)
\(230\) 0 0
\(231\) 17.1221 1.12655
\(232\) 0 0
\(233\) 4.76072 0.311885 0.155943 0.987766i \(-0.450159\pi\)
0.155943 + 0.987766i \(0.450159\pi\)
\(234\) 0 0
\(235\) −15.2592 −0.995402
\(236\) 0 0
\(237\) 21.9837 1.42799
\(238\) 0 0
\(239\) −20.8740 −1.35023 −0.675114 0.737714i \(-0.735905\pi\)
−0.675114 + 0.737714i \(0.735905\pi\)
\(240\) 0 0
\(241\) −7.06714 −0.455235 −0.227617 0.973751i \(-0.573094\pi\)
−0.227617 + 0.973751i \(0.573094\pi\)
\(242\) 0 0
\(243\) −8.22784 −0.527816
\(244\) 0 0
\(245\) −5.72883 −0.366001
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 19.4963 1.23553
\(250\) 0 0
\(251\) −12.1581 −0.767415 −0.383707 0.923455i \(-0.625353\pi\)
−0.383707 + 0.923455i \(0.625353\pi\)
\(252\) 0 0
\(253\) 5.19515 0.326616
\(254\) 0 0
\(255\) 17.0284 1.06636
\(256\) 0 0
\(257\) 0.329327 0.0205429 0.0102714 0.999947i \(-0.496730\pi\)
0.0102714 + 0.999947i \(0.496730\pi\)
\(258\) 0 0
\(259\) 13.6037 0.845295
\(260\) 0 0
\(261\) −4.06892 −0.251860
\(262\) 0 0
\(263\) −8.86600 −0.546701 −0.273350 0.961915i \(-0.588132\pi\)
−0.273350 + 0.961915i \(0.588132\pi\)
\(264\) 0 0
\(265\) −0.0934893 −0.00574300
\(266\) 0 0
\(267\) 31.6304 1.93575
\(268\) 0 0
\(269\) −11.5241 −0.702635 −0.351317 0.936256i \(-0.614266\pi\)
−0.351317 + 0.936256i \(0.614266\pi\)
\(270\) 0 0
\(271\) −2.97613 −0.180787 −0.0903936 0.995906i \(-0.528813\pi\)
−0.0903936 + 0.995906i \(0.528813\pi\)
\(272\) 0 0
\(273\) 10.3180 0.624475
\(274\) 0 0
\(275\) −8.99342 −0.542324
\(276\) 0 0
\(277\) 31.6704 1.90289 0.951445 0.307818i \(-0.0995989\pi\)
0.951445 + 0.307818i \(0.0995989\pi\)
\(278\) 0 0
\(279\) −1.62450 −0.0972562
\(280\) 0 0
\(281\) 14.9322 0.890778 0.445389 0.895337i \(-0.353065\pi\)
0.445389 + 0.895337i \(0.353065\pi\)
\(282\) 0 0
\(283\) −18.6129 −1.10642 −0.553212 0.833040i \(-0.686598\pi\)
−0.553212 + 0.833040i \(0.686598\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −21.2254 −1.25290
\(288\) 0 0
\(289\) 8.13932 0.478783
\(290\) 0 0
\(291\) −0.727124 −0.0426248
\(292\) 0 0
\(293\) −11.3675 −0.664097 −0.332048 0.943262i \(-0.607740\pi\)
−0.332048 + 0.943262i \(0.607740\pi\)
\(294\) 0 0
\(295\) −6.43618 −0.374729
\(296\) 0 0
\(297\) −19.4565 −1.12898
\(298\) 0 0
\(299\) 3.13067 0.181051
\(300\) 0 0
\(301\) 11.7519 0.677370
\(302\) 0 0
\(303\) 36.3100 2.08595
\(304\) 0 0
\(305\) −26.0747 −1.49303
\(306\) 0 0
\(307\) 10.6593 0.608359 0.304179 0.952615i \(-0.401618\pi\)
0.304179 + 0.952615i \(0.401618\pi\)
\(308\) 0 0
\(309\) −17.5325 −0.997390
\(310\) 0 0
\(311\) −25.4182 −1.44134 −0.720668 0.693281i \(-0.756165\pi\)
−0.720668 + 0.693281i \(0.756165\pi\)
\(312\) 0 0
\(313\) −1.68895 −0.0954651 −0.0477325 0.998860i \(-0.515200\pi\)
−0.0477325 + 0.998860i \(0.515200\pi\)
\(314\) 0 0
\(315\) 2.72020 0.153266
\(316\) 0 0
\(317\) −19.6811 −1.10540 −0.552701 0.833379i \(-0.686403\pi\)
−0.552701 + 0.833379i \(0.686403\pi\)
\(318\) 0 0
\(319\) −22.8163 −1.27747
\(320\) 0 0
\(321\) −14.6178 −0.815884
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −5.41956 −0.300623
\(326\) 0 0
\(327\) 32.7501 1.81109
\(328\) 0 0
\(329\) −16.8892 −0.931131
\(330\) 0 0
\(331\) −9.00708 −0.495074 −0.247537 0.968878i \(-0.579621\pi\)
−0.247537 + 0.968878i \(0.579621\pi\)
\(332\) 0 0
\(333\) 5.73979 0.314538
\(334\) 0 0
\(335\) −22.0809 −1.20641
\(336\) 0 0
\(337\) 10.9783 0.598027 0.299014 0.954249i \(-0.403342\pi\)
0.299014 + 0.954249i \(0.403342\pi\)
\(338\) 0 0
\(339\) −20.8253 −1.13107
\(340\) 0 0
\(341\) −9.10931 −0.493297
\(342\) 0 0
\(343\) −19.8173 −1.07003
\(344\) 0 0
\(345\) 3.87358 0.208546
\(346\) 0 0
\(347\) 2.80115 0.150374 0.0751868 0.997169i \(-0.476045\pi\)
0.0751868 + 0.997169i \(0.476045\pi\)
\(348\) 0 0
\(349\) 33.7780 1.80810 0.904048 0.427431i \(-0.140581\pi\)
0.904048 + 0.427431i \(0.140581\pi\)
\(350\) 0 0
\(351\) −11.7248 −0.625821
\(352\) 0 0
\(353\) 2.50634 0.133399 0.0666996 0.997773i \(-0.478753\pi\)
0.0666996 + 0.997773i \(0.478753\pi\)
\(354\) 0 0
\(355\) 3.59954 0.191044
\(356\) 0 0
\(357\) 18.8474 0.997508
\(358\) 0 0
\(359\) 21.3669 1.12770 0.563850 0.825877i \(-0.309320\pi\)
0.563850 + 0.825877i \(0.309320\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) 19.0322 0.998934
\(364\) 0 0
\(365\) −1.24021 −0.0649154
\(366\) 0 0
\(367\) 3.58067 0.186910 0.0934548 0.995624i \(-0.470209\pi\)
0.0934548 + 0.995624i \(0.470209\pi\)
\(368\) 0 0
\(369\) −8.95557 −0.466208
\(370\) 0 0
\(371\) −0.103476 −0.00537219
\(372\) 0 0
\(373\) 35.5217 1.83924 0.919622 0.392804i \(-0.128495\pi\)
0.919622 + 0.392804i \(0.128495\pi\)
\(374\) 0 0
\(375\) −23.6868 −1.22318
\(376\) 0 0
\(377\) −13.7494 −0.708131
\(378\) 0 0
\(379\) 7.31674 0.375836 0.187918 0.982185i \(-0.439826\pi\)
0.187918 + 0.982185i \(0.439826\pi\)
\(380\) 0 0
\(381\) −21.5320 −1.10312
\(382\) 0 0
\(383\) −7.37459 −0.376824 −0.188412 0.982090i \(-0.560334\pi\)
−0.188412 + 0.982090i \(0.560334\pi\)
\(384\) 0 0
\(385\) 15.2534 0.777387
\(386\) 0 0
\(387\) 4.95846 0.252053
\(388\) 0 0
\(389\) 7.83370 0.397184 0.198592 0.980082i \(-0.436363\pi\)
0.198592 + 0.980082i \(0.436363\pi\)
\(390\) 0 0
\(391\) 5.71862 0.289203
\(392\) 0 0
\(393\) 27.3838 1.38133
\(394\) 0 0
\(395\) 19.5844 0.985398
\(396\) 0 0
\(397\) 20.0680 1.00718 0.503591 0.863942i \(-0.332012\pi\)
0.503591 + 0.863942i \(0.332012\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.33346 −0.316278 −0.158139 0.987417i \(-0.550549\pi\)
−0.158139 + 0.987417i \(0.550549\pi\)
\(402\) 0 0
\(403\) −5.48940 −0.273447
\(404\) 0 0
\(405\) −18.7458 −0.931487
\(406\) 0 0
\(407\) 32.1856 1.59538
\(408\) 0 0
\(409\) −19.5731 −0.967827 −0.483913 0.875116i \(-0.660785\pi\)
−0.483913 + 0.875116i \(0.660785\pi\)
\(410\) 0 0
\(411\) 17.2194 0.849369
\(412\) 0 0
\(413\) −7.12368 −0.350533
\(414\) 0 0
\(415\) 17.3685 0.852587
\(416\) 0 0
\(417\) 11.9600 0.585683
\(418\) 0 0
\(419\) −9.06493 −0.442851 −0.221426 0.975177i \(-0.571071\pi\)
−0.221426 + 0.975177i \(0.571071\pi\)
\(420\) 0 0
\(421\) 25.0706 1.22186 0.610932 0.791683i \(-0.290795\pi\)
0.610932 + 0.791683i \(0.290795\pi\)
\(422\) 0 0
\(423\) −7.12601 −0.346478
\(424\) 0 0
\(425\) −9.89961 −0.480202
\(426\) 0 0
\(427\) −28.8599 −1.39663
\(428\) 0 0
\(429\) 24.4118 1.17861
\(430\) 0 0
\(431\) −6.58203 −0.317045 −0.158523 0.987355i \(-0.550673\pi\)
−0.158523 + 0.987355i \(0.550673\pi\)
\(432\) 0 0
\(433\) 19.6621 0.944899 0.472450 0.881358i \(-0.343370\pi\)
0.472450 + 0.881358i \(0.343370\pi\)
\(434\) 0 0
\(435\) −17.0121 −0.815669
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 16.8664 0.804988 0.402494 0.915423i \(-0.368143\pi\)
0.402494 + 0.915423i \(0.368143\pi\)
\(440\) 0 0
\(441\) −2.67534 −0.127397
\(442\) 0 0
\(443\) −37.7997 −1.79592 −0.897959 0.440079i \(-0.854950\pi\)
−0.897959 + 0.440079i \(0.854950\pi\)
\(444\) 0 0
\(445\) 28.1783 1.33578
\(446\) 0 0
\(447\) −4.74758 −0.224553
\(448\) 0 0
\(449\) 14.0452 0.662836 0.331418 0.943484i \(-0.392473\pi\)
0.331418 + 0.943484i \(0.392473\pi\)
\(450\) 0 0
\(451\) −50.2180 −2.36467
\(452\) 0 0
\(453\) −22.4246 −1.05360
\(454\) 0 0
\(455\) 9.19193 0.430924
\(456\) 0 0
\(457\) −10.9491 −0.512177 −0.256089 0.966653i \(-0.582434\pi\)
−0.256089 + 0.966653i \(0.582434\pi\)
\(458\) 0 0
\(459\) −21.4170 −0.999658
\(460\) 0 0
\(461\) 7.85327 0.365763 0.182882 0.983135i \(-0.441458\pi\)
0.182882 + 0.983135i \(0.441458\pi\)
\(462\) 0 0
\(463\) −19.7742 −0.918985 −0.459492 0.888182i \(-0.651969\pi\)
−0.459492 + 0.888182i \(0.651969\pi\)
\(464\) 0 0
\(465\) −6.79203 −0.314973
\(466\) 0 0
\(467\) 9.12248 0.422138 0.211069 0.977471i \(-0.432305\pi\)
0.211069 + 0.977471i \(0.432305\pi\)
\(468\) 0 0
\(469\) −24.4395 −1.12851
\(470\) 0 0
\(471\) −5.19590 −0.239414
\(472\) 0 0
\(473\) 27.8044 1.27845
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −0.0436592 −0.00199902
\(478\) 0 0
\(479\) −34.9470 −1.59677 −0.798385 0.602147i \(-0.794312\pi\)
−0.798385 + 0.602147i \(0.794312\pi\)
\(480\) 0 0
\(481\) 19.3955 0.884359
\(482\) 0 0
\(483\) 4.28734 0.195081
\(484\) 0 0
\(485\) −0.647767 −0.0294136
\(486\) 0 0
\(487\) 29.8364 1.35202 0.676009 0.736893i \(-0.263708\pi\)
0.676009 + 0.736893i \(0.263708\pi\)
\(488\) 0 0
\(489\) −8.02917 −0.363092
\(490\) 0 0
\(491\) −7.17461 −0.323785 −0.161893 0.986808i \(-0.551760\pi\)
−0.161893 + 0.986808i \(0.551760\pi\)
\(492\) 0 0
\(493\) −25.1153 −1.13114
\(494\) 0 0
\(495\) 6.43583 0.289269
\(496\) 0 0
\(497\) 3.98404 0.178709
\(498\) 0 0
\(499\) −16.2309 −0.726594 −0.363297 0.931673i \(-0.618349\pi\)
−0.363297 + 0.931673i \(0.618349\pi\)
\(500\) 0 0
\(501\) −29.2151 −1.30523
\(502\) 0 0
\(503\) 18.6165 0.830069 0.415034 0.909806i \(-0.363770\pi\)
0.415034 + 0.909806i \(0.363770\pi\)
\(504\) 0 0
\(505\) 32.3472 1.43943
\(506\) 0 0
\(507\) −10.6717 −0.473949
\(508\) 0 0
\(509\) 4.23235 0.187595 0.0937977 0.995591i \(-0.470099\pi\)
0.0937977 + 0.995591i \(0.470099\pi\)
\(510\) 0 0
\(511\) −1.37268 −0.0607239
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −15.6190 −0.688257
\(516\) 0 0
\(517\) −39.9588 −1.75739
\(518\) 0 0
\(519\) 12.4441 0.546237
\(520\) 0 0
\(521\) −12.8106 −0.561242 −0.280621 0.959819i \(-0.590540\pi\)
−0.280621 + 0.959819i \(0.590540\pi\)
\(522\) 0 0
\(523\) −32.3625 −1.41511 −0.707557 0.706656i \(-0.750203\pi\)
−0.707557 + 0.706656i \(0.750203\pi\)
\(524\) 0 0
\(525\) −7.42190 −0.323918
\(526\) 0 0
\(527\) −10.0272 −0.436791
\(528\) 0 0
\(529\) −21.6991 −0.943441
\(530\) 0 0
\(531\) −3.00567 −0.130435
\(532\) 0 0
\(533\) −30.2621 −1.31080
\(534\) 0 0
\(535\) −13.0224 −0.563007
\(536\) 0 0
\(537\) −6.21143 −0.268043
\(538\) 0 0
\(539\) −15.0019 −0.646177
\(540\) 0 0
\(541\) 18.4412 0.792850 0.396425 0.918067i \(-0.370251\pi\)
0.396425 + 0.918067i \(0.370251\pi\)
\(542\) 0 0
\(543\) 8.88011 0.381082
\(544\) 0 0
\(545\) 29.1758 1.24976
\(546\) 0 0
\(547\) −32.6193 −1.39470 −0.697351 0.716730i \(-0.745638\pi\)
−0.697351 + 0.716730i \(0.745638\pi\)
\(548\) 0 0
\(549\) −12.1768 −0.519692
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 21.6764 0.921773
\(554\) 0 0
\(555\) 23.9980 1.01866
\(556\) 0 0
\(557\) 13.0507 0.552974 0.276487 0.961018i \(-0.410830\pi\)
0.276487 + 0.961018i \(0.410830\pi\)
\(558\) 0 0
\(559\) 16.7553 0.708674
\(560\) 0 0
\(561\) 44.5917 1.88266
\(562\) 0 0
\(563\) 18.2500 0.769145 0.384573 0.923095i \(-0.374349\pi\)
0.384573 + 0.923095i \(0.374349\pi\)
\(564\) 0 0
\(565\) −18.5524 −0.780507
\(566\) 0 0
\(567\) −20.7482 −0.871343
\(568\) 0 0
\(569\) 34.4274 1.44327 0.721636 0.692273i \(-0.243390\pi\)
0.721636 + 0.692273i \(0.243390\pi\)
\(570\) 0 0
\(571\) 16.6525 0.696884 0.348442 0.937330i \(-0.386711\pi\)
0.348442 + 0.937330i \(0.386711\pi\)
\(572\) 0 0
\(573\) −1.89142 −0.0790153
\(574\) 0 0
\(575\) −2.25194 −0.0939122
\(576\) 0 0
\(577\) −37.4788 −1.56026 −0.780130 0.625617i \(-0.784847\pi\)
−0.780130 + 0.625617i \(0.784847\pi\)
\(578\) 0 0
\(579\) −29.6909 −1.23391
\(580\) 0 0
\(581\) 19.2238 0.797537
\(582\) 0 0
\(583\) −0.244817 −0.0101393
\(584\) 0 0
\(585\) 3.87833 0.160349
\(586\) 0 0
\(587\) −33.9793 −1.40248 −0.701238 0.712927i \(-0.747369\pi\)
−0.701238 + 0.712927i \(0.747369\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 32.1360 1.32190
\(592\) 0 0
\(593\) 18.9644 0.778773 0.389386 0.921074i \(-0.372687\pi\)
0.389386 + 0.921074i \(0.372687\pi\)
\(594\) 0 0
\(595\) 16.7904 0.688339
\(596\) 0 0
\(597\) 42.8405 1.75335
\(598\) 0 0
\(599\) 33.4965 1.36863 0.684314 0.729187i \(-0.260102\pi\)
0.684314 + 0.729187i \(0.260102\pi\)
\(600\) 0 0
\(601\) 15.0011 0.611908 0.305954 0.952046i \(-0.401025\pi\)
0.305954 + 0.952046i \(0.401025\pi\)
\(602\) 0 0
\(603\) −10.3117 −0.419925
\(604\) 0 0
\(605\) 16.9551 0.689322
\(606\) 0 0
\(607\) 7.06547 0.286779 0.143389 0.989666i \(-0.454200\pi\)
0.143389 + 0.989666i \(0.454200\pi\)
\(608\) 0 0
\(609\) −18.8293 −0.763003
\(610\) 0 0
\(611\) −24.0797 −0.974162
\(612\) 0 0
\(613\) −26.1833 −1.05753 −0.528767 0.848767i \(-0.677345\pi\)
−0.528767 + 0.848767i \(0.677345\pi\)
\(614\) 0 0
\(615\) −37.4432 −1.50986
\(616\) 0 0
\(617\) −43.5538 −1.75341 −0.876705 0.481029i \(-0.840263\pi\)
−0.876705 + 0.481029i \(0.840263\pi\)
\(618\) 0 0
\(619\) 24.9837 1.00418 0.502090 0.864815i \(-0.332565\pi\)
0.502090 + 0.864815i \(0.332565\pi\)
\(620\) 0 0
\(621\) −4.87187 −0.195501
\(622\) 0 0
\(623\) 31.1883 1.24953
\(624\) 0 0
\(625\) −11.2295 −0.449180
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 35.4287 1.41263
\(630\) 0 0
\(631\) −46.5146 −1.85172 −0.925858 0.377873i \(-0.876656\pi\)
−0.925858 + 0.377873i \(0.876656\pi\)
\(632\) 0 0
\(633\) −35.9117 −1.42736
\(634\) 0 0
\(635\) −19.1821 −0.761217
\(636\) 0 0
\(637\) −9.04034 −0.358192
\(638\) 0 0
\(639\) 1.68098 0.0664983
\(640\) 0 0
\(641\) −7.08499 −0.279840 −0.139920 0.990163i \(-0.544685\pi\)
−0.139920 + 0.990163i \(0.544685\pi\)
\(642\) 0 0
\(643\) 0.159804 0.00630206 0.00315103 0.999995i \(-0.498997\pi\)
0.00315103 + 0.999995i \(0.498997\pi\)
\(644\) 0 0
\(645\) 20.7313 0.816295
\(646\) 0 0
\(647\) −18.8979 −0.742955 −0.371478 0.928442i \(-0.621149\pi\)
−0.371478 + 0.928442i \(0.621149\pi\)
\(648\) 0 0
\(649\) −16.8542 −0.661585
\(650\) 0 0
\(651\) −7.51754 −0.294636
\(652\) 0 0
\(653\) −11.2493 −0.440218 −0.220109 0.975475i \(-0.570641\pi\)
−0.220109 + 0.975475i \(0.570641\pi\)
\(654\) 0 0
\(655\) 24.3952 0.953199
\(656\) 0 0
\(657\) −0.579172 −0.0225957
\(658\) 0 0
\(659\) 12.6573 0.493058 0.246529 0.969135i \(-0.420710\pi\)
0.246529 + 0.969135i \(0.420710\pi\)
\(660\) 0 0
\(661\) 3.69864 0.143861 0.0719303 0.997410i \(-0.477084\pi\)
0.0719303 + 0.997410i \(0.477084\pi\)
\(662\) 0 0
\(663\) 26.8716 1.04361
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −5.71316 −0.221214
\(668\) 0 0
\(669\) 38.1056 1.47325
\(670\) 0 0
\(671\) −68.2808 −2.63595
\(672\) 0 0
\(673\) 22.2546 0.857851 0.428926 0.903340i \(-0.358892\pi\)
0.428926 + 0.903340i \(0.358892\pi\)
\(674\) 0 0
\(675\) 8.43378 0.324616
\(676\) 0 0
\(677\) −23.8967 −0.918425 −0.459213 0.888326i \(-0.651868\pi\)
−0.459213 + 0.888326i \(0.651868\pi\)
\(678\) 0 0
\(679\) −0.716960 −0.0275144
\(680\) 0 0
\(681\) −14.2703 −0.546838
\(682\) 0 0
\(683\) −26.9375 −1.03073 −0.515367 0.856970i \(-0.672344\pi\)
−0.515367 + 0.856970i \(0.672344\pi\)
\(684\) 0 0
\(685\) 15.3401 0.586114
\(686\) 0 0
\(687\) 41.2603 1.57418
\(688\) 0 0
\(689\) −0.147530 −0.00562046
\(690\) 0 0
\(691\) 27.3737 1.04135 0.520673 0.853756i \(-0.325681\pi\)
0.520673 + 0.853756i \(0.325681\pi\)
\(692\) 0 0
\(693\) 7.12330 0.270592
\(694\) 0 0
\(695\) 10.6547 0.404156
\(696\) 0 0
\(697\) −55.2780 −2.09380
\(698\) 0 0
\(699\) 9.29537 0.351583
\(700\) 0 0
\(701\) −23.1852 −0.875695 −0.437847 0.899049i \(-0.644259\pi\)
−0.437847 + 0.899049i \(0.644259\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −29.7938 −1.12210
\(706\) 0 0
\(707\) 35.8024 1.34649
\(708\) 0 0
\(709\) −0.189146 −0.00710354 −0.00355177 0.999994i \(-0.501131\pi\)
−0.00355177 + 0.999994i \(0.501131\pi\)
\(710\) 0 0
\(711\) 9.14585 0.342996
\(712\) 0 0
\(713\) −2.28095 −0.0854224
\(714\) 0 0
\(715\) 21.7476 0.813312
\(716\) 0 0
\(717\) −40.7568 −1.52209
\(718\) 0 0
\(719\) −11.4260 −0.426119 −0.213059 0.977039i \(-0.568343\pi\)
−0.213059 + 0.977039i \(0.568343\pi\)
\(720\) 0 0
\(721\) −17.2874 −0.643818
\(722\) 0 0
\(723\) −13.7987 −0.513178
\(724\) 0 0
\(725\) 9.89015 0.367311
\(726\) 0 0
\(727\) 30.0799 1.11560 0.557801 0.829974i \(-0.311645\pi\)
0.557801 + 0.829974i \(0.311645\pi\)
\(728\) 0 0
\(729\) 16.2663 0.602454
\(730\) 0 0
\(731\) 30.6060 1.13200
\(732\) 0 0
\(733\) −32.6737 −1.20683 −0.603414 0.797428i \(-0.706194\pi\)
−0.603414 + 0.797428i \(0.706194\pi\)
\(734\) 0 0
\(735\) −11.1856 −0.412587
\(736\) 0 0
\(737\) −57.8225 −2.12992
\(738\) 0 0
\(739\) −25.5448 −0.939682 −0.469841 0.882751i \(-0.655689\pi\)
−0.469841 + 0.882751i \(0.655689\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −23.0945 −0.847255 −0.423628 0.905836i \(-0.639244\pi\)
−0.423628 + 0.905836i \(0.639244\pi\)
\(744\) 0 0
\(745\) −4.22943 −0.154954
\(746\) 0 0
\(747\) 8.11104 0.296767
\(748\) 0 0
\(749\) −14.4134 −0.526655
\(750\) 0 0
\(751\) 12.9465 0.472426 0.236213 0.971701i \(-0.424094\pi\)
0.236213 + 0.971701i \(0.424094\pi\)
\(752\) 0 0
\(753\) −23.7389 −0.865093
\(754\) 0 0
\(755\) −19.9772 −0.727045
\(756\) 0 0
\(757\) 17.4823 0.635404 0.317702 0.948191i \(-0.397089\pi\)
0.317702 + 0.948191i \(0.397089\pi\)
\(758\) 0 0
\(759\) 10.1436 0.368189
\(760\) 0 0
\(761\) −4.43066 −0.160611 −0.0803057 0.996770i \(-0.525590\pi\)
−0.0803057 + 0.996770i \(0.525590\pi\)
\(762\) 0 0
\(763\) 32.2924 1.16906
\(764\) 0 0
\(765\) 7.08432 0.256134
\(766\) 0 0
\(767\) −10.1566 −0.366733
\(768\) 0 0
\(769\) 40.9324 1.47606 0.738031 0.674767i \(-0.235756\pi\)
0.738031 + 0.674767i \(0.235756\pi\)
\(770\) 0 0
\(771\) 0.643015 0.0231576
\(772\) 0 0
\(773\) −7.58321 −0.272749 −0.136375 0.990657i \(-0.543545\pi\)
−0.136375 + 0.990657i \(0.543545\pi\)
\(774\) 0 0
\(775\) 3.94860 0.141838
\(776\) 0 0
\(777\) 26.5615 0.952887
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 9.42600 0.337289
\(782\) 0 0
\(783\) 21.3965 0.764648
\(784\) 0 0
\(785\) −4.62882 −0.165210
\(786\) 0 0
\(787\) −30.9049 −1.10164 −0.550821 0.834623i \(-0.685685\pi\)
−0.550821 + 0.834623i \(0.685685\pi\)
\(788\) 0 0
\(789\) −17.3110 −0.616287
\(790\) 0 0
\(791\) −20.5342 −0.730111
\(792\) 0 0
\(793\) −41.1470 −1.46117
\(794\) 0 0
\(795\) −0.182539 −0.00647399
\(796\) 0 0
\(797\) 17.9708 0.636559 0.318279 0.947997i \(-0.396895\pi\)
0.318279 + 0.947997i \(0.396895\pi\)
\(798\) 0 0
\(799\) −43.9851 −1.55608
\(800\) 0 0
\(801\) 13.1592 0.464957
\(802\) 0 0
\(803\) −3.24769 −0.114608
\(804\) 0 0
\(805\) 3.81943 0.134617
\(806\) 0 0
\(807\) −22.5009 −0.792068
\(808\) 0 0
\(809\) 5.04923 0.177522 0.0887608 0.996053i \(-0.471709\pi\)
0.0887608 + 0.996053i \(0.471709\pi\)
\(810\) 0 0
\(811\) −19.7394 −0.693144 −0.346572 0.938023i \(-0.612654\pi\)
−0.346572 + 0.938023i \(0.612654\pi\)
\(812\) 0 0
\(813\) −5.81093 −0.203798
\(814\) 0 0
\(815\) −7.15288 −0.250554
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 4.29260 0.149996
\(820\) 0 0
\(821\) 2.01298 0.0702535 0.0351267 0.999383i \(-0.488817\pi\)
0.0351267 + 0.999383i \(0.488817\pi\)
\(822\) 0 0
\(823\) 43.0060 1.49909 0.749547 0.661951i \(-0.230271\pi\)
0.749547 + 0.661951i \(0.230271\pi\)
\(824\) 0 0
\(825\) −17.5598 −0.611352
\(826\) 0 0
\(827\) −33.6192 −1.16905 −0.584527 0.811375i \(-0.698720\pi\)
−0.584527 + 0.811375i \(0.698720\pi\)
\(828\) 0 0
\(829\) 34.7597 1.20725 0.603627 0.797267i \(-0.293721\pi\)
0.603627 + 0.797267i \(0.293721\pi\)
\(830\) 0 0
\(831\) 61.8368 2.14510
\(832\) 0 0
\(833\) −16.5135 −0.572158
\(834\) 0 0
\(835\) −26.0266 −0.900687
\(836\) 0 0
\(837\) 8.54246 0.295271
\(838\) 0 0
\(839\) −18.5759 −0.641311 −0.320656 0.947196i \(-0.603903\pi\)
−0.320656 + 0.947196i \(0.603903\pi\)
\(840\) 0 0
\(841\) −3.90872 −0.134783
\(842\) 0 0
\(843\) 29.1552 1.00416
\(844\) 0 0
\(845\) −9.50704 −0.327052
\(846\) 0 0
\(847\) 18.7662 0.644814
\(848\) 0 0
\(849\) −36.3420 −1.24725
\(850\) 0 0
\(851\) 8.05922 0.276266
\(852\) 0 0
\(853\) −2.05122 −0.0702325 −0.0351162 0.999383i \(-0.511180\pi\)
−0.0351162 + 0.999383i \(0.511180\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −20.1261 −0.687495 −0.343747 0.939062i \(-0.611696\pi\)
−0.343747 + 0.939062i \(0.611696\pi\)
\(858\) 0 0
\(859\) −9.55321 −0.325951 −0.162976 0.986630i \(-0.552109\pi\)
−0.162976 + 0.986630i \(0.552109\pi\)
\(860\) 0 0
\(861\) −41.4428 −1.41237
\(862\) 0 0
\(863\) 34.7287 1.18218 0.591089 0.806606i \(-0.298698\pi\)
0.591089 + 0.806606i \(0.298698\pi\)
\(864\) 0 0
\(865\) 11.0860 0.376935
\(866\) 0 0
\(867\) 15.8921 0.539725
\(868\) 0 0
\(869\) 51.2850 1.73972
\(870\) 0 0
\(871\) −34.8446 −1.18067
\(872\) 0 0
\(873\) −0.302505 −0.0102382
\(874\) 0 0
\(875\) −23.3557 −0.789566
\(876\) 0 0
\(877\) 26.7932 0.904743 0.452371 0.891830i \(-0.350578\pi\)
0.452371 + 0.891830i \(0.350578\pi\)
\(878\) 0 0
\(879\) −22.1952 −0.748625
\(880\) 0 0
\(881\) −15.7588 −0.530928 −0.265464 0.964121i \(-0.585525\pi\)
−0.265464 + 0.964121i \(0.585525\pi\)
\(882\) 0 0
\(883\) 41.3896 1.39287 0.696435 0.717620i \(-0.254768\pi\)
0.696435 + 0.717620i \(0.254768\pi\)
\(884\) 0 0
\(885\) −12.5667 −0.422425
\(886\) 0 0
\(887\) −46.5948 −1.56450 −0.782249 0.622965i \(-0.785928\pi\)
−0.782249 + 0.622965i \(0.785928\pi\)
\(888\) 0 0
\(889\) −21.2311 −0.712067
\(890\) 0 0
\(891\) −49.0890 −1.64454
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −5.53352 −0.184965
\(896\) 0 0
\(897\) 6.11267 0.204096
\(898\) 0 0
\(899\) 10.0176 0.334106
\(900\) 0 0
\(901\) −0.269485 −0.00897785
\(902\) 0 0
\(903\) 22.9458 0.763588
\(904\) 0 0
\(905\) 7.91095 0.262969
\(906\) 0 0
\(907\) −2.43901 −0.0809861 −0.0404930 0.999180i \(-0.512893\pi\)
−0.0404930 + 0.999180i \(0.512893\pi\)
\(908\) 0 0
\(909\) 15.1060 0.501035
\(910\) 0 0
\(911\) 29.8844 0.990115 0.495057 0.868860i \(-0.335147\pi\)
0.495057 + 0.868860i \(0.335147\pi\)
\(912\) 0 0
\(913\) 45.4823 1.50524
\(914\) 0 0
\(915\) −50.9111 −1.68307
\(916\) 0 0
\(917\) 27.0010 0.891653
\(918\) 0 0
\(919\) 40.3474 1.33094 0.665469 0.746426i \(-0.268232\pi\)
0.665469 + 0.746426i \(0.268232\pi\)
\(920\) 0 0
\(921\) 20.8124 0.685793
\(922\) 0 0
\(923\) 5.68024 0.186967
\(924\) 0 0
\(925\) −13.9515 −0.458721
\(926\) 0 0
\(927\) −7.29404 −0.239568
\(928\) 0 0
\(929\) −52.6807 −1.72840 −0.864199 0.503150i \(-0.832174\pi\)
−0.864199 + 0.503150i \(0.832174\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −49.6294 −1.62479
\(934\) 0 0
\(935\) 39.7250 1.29915
\(936\) 0 0
\(937\) 31.9362 1.04331 0.521655 0.853156i \(-0.325315\pi\)
0.521655 + 0.853156i \(0.325315\pi\)
\(938\) 0 0
\(939\) −3.29769 −0.107616
\(940\) 0 0
\(941\) 1.68453 0.0549141 0.0274570 0.999623i \(-0.491259\pi\)
0.0274570 + 0.999623i \(0.491259\pi\)
\(942\) 0 0
\(943\) −12.5745 −0.409482
\(944\) 0 0
\(945\) −14.3042 −0.465317
\(946\) 0 0
\(947\) 31.1218 1.01132 0.505661 0.862732i \(-0.331249\pi\)
0.505661 + 0.862732i \(0.331249\pi\)
\(948\) 0 0
\(949\) −1.95710 −0.0635302
\(950\) 0 0
\(951\) −38.4277 −1.24610
\(952\) 0 0
\(953\) −23.3357 −0.755917 −0.377959 0.925822i \(-0.623374\pi\)
−0.377959 + 0.925822i \(0.623374\pi\)
\(954\) 0 0
\(955\) −1.68499 −0.0545251
\(956\) 0 0
\(957\) −44.5491 −1.44007
\(958\) 0 0
\(959\) 16.9787 0.548270
\(960\) 0 0
\(961\) −27.0005 −0.870984
\(962\) 0 0
\(963\) −6.08142 −0.195971
\(964\) 0 0
\(965\) −26.4505 −0.851472
\(966\) 0 0
\(967\) 54.4984 1.75255 0.876276 0.481810i \(-0.160020\pi\)
0.876276 + 0.481810i \(0.160020\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −29.2286 −0.937991 −0.468995 0.883201i \(-0.655384\pi\)
−0.468995 + 0.883201i \(0.655384\pi\)
\(972\) 0 0
\(973\) 11.7928 0.378060
\(974\) 0 0
\(975\) −10.5818 −0.338888
\(976\) 0 0
\(977\) 34.0062 1.08795 0.543977 0.839100i \(-0.316918\pi\)
0.543977 + 0.839100i \(0.316918\pi\)
\(978\) 0 0
\(979\) 73.7896 2.35833
\(980\) 0 0
\(981\) 13.6250 0.435013
\(982\) 0 0
\(983\) 34.2563 1.09261 0.546304 0.837587i \(-0.316034\pi\)
0.546304 + 0.837587i \(0.316034\pi\)
\(984\) 0 0
\(985\) 28.6287 0.912186
\(986\) 0 0
\(987\) −32.9763 −1.04965
\(988\) 0 0
\(989\) 6.96216 0.221384
\(990\) 0 0
\(991\) 43.9047 1.39468 0.697339 0.716742i \(-0.254367\pi\)
0.697339 + 0.716742i \(0.254367\pi\)
\(992\) 0 0
\(993\) −17.5864 −0.558089
\(994\) 0 0
\(995\) 38.1650 1.20991
\(996\) 0 0
\(997\) −57.6104 −1.82454 −0.912270 0.409590i \(-0.865672\pi\)
−0.912270 + 0.409590i \(0.865672\pi\)
\(998\) 0 0
\(999\) −30.1828 −0.954941
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.2.a.x.1.8 9
4.3 odd 2 5776.2.a.ce.1.2 9
19.14 odd 18 152.2.q.c.25.3 18
19.15 odd 18 152.2.q.c.73.3 yes 18
19.18 odd 2 2888.2.a.y.1.2 9
76.15 even 18 304.2.u.f.225.1 18
76.71 even 18 304.2.u.f.177.1 18
76.75 even 2 5776.2.a.cd.1.8 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.q.c.25.3 18 19.14 odd 18
152.2.q.c.73.3 yes 18 19.15 odd 18
304.2.u.f.177.1 18 76.71 even 18
304.2.u.f.225.1 18 76.15 even 18
2888.2.a.x.1.8 9 1.1 even 1 trivial
2888.2.a.y.1.2 9 19.18 odd 2
5776.2.a.cd.1.8 9 76.75 even 2
5776.2.a.ce.1.2 9 4.3 odd 2