Properties

Label 2883.2.a.s.1.6
Level $2883$
Weight $2$
Character 2883.1
Self dual yes
Analytic conductor $23.021$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2883,2,Mod(1,2883)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2883, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2883.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2883 = 3 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2883.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,5,-12,13,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0208709027\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5 x^{11} - 6 x^{10} + 57 x^{9} - 9 x^{8} - 229 x^{7} + 83 x^{6} + 436 x^{5} - 111 x^{4} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 93)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-0.135601\) of defining polynomial
Character \(\chi\) \(=\) 2883.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.135601 q^{2} -1.00000 q^{3} -1.98161 q^{4} +2.85131 q^{5} +0.135601 q^{6} -2.89040 q^{7} +0.539910 q^{8} +1.00000 q^{9} -0.386640 q^{10} -2.32104 q^{11} +1.98161 q^{12} -4.45689 q^{13} +0.391940 q^{14} -2.85131 q^{15} +3.89001 q^{16} +5.09936 q^{17} -0.135601 q^{18} -1.59754 q^{19} -5.65019 q^{20} +2.89040 q^{21} +0.314735 q^{22} -3.76563 q^{23} -0.539910 q^{24} +3.12996 q^{25} +0.604357 q^{26} -1.00000 q^{27} +5.72765 q^{28} -7.57457 q^{29} +0.386640 q^{30} -1.60731 q^{32} +2.32104 q^{33} -0.691477 q^{34} -8.24142 q^{35} -1.98161 q^{36} +9.95988 q^{37} +0.216627 q^{38} +4.45689 q^{39} +1.53945 q^{40} +7.94420 q^{41} -0.391940 q^{42} +2.12804 q^{43} +4.59940 q^{44} +2.85131 q^{45} +0.510622 q^{46} +1.31084 q^{47} -3.89001 q^{48} +1.35440 q^{49} -0.424425 q^{50} -5.09936 q^{51} +8.83182 q^{52} -7.65141 q^{53} +0.135601 q^{54} -6.61800 q^{55} -1.56055 q^{56} +1.59754 q^{57} +1.02712 q^{58} +12.7657 q^{59} +5.65019 q^{60} -2.92690 q^{61} -2.89040 q^{63} -7.56207 q^{64} -12.7080 q^{65} -0.314735 q^{66} +1.19808 q^{67} -10.1049 q^{68} +3.76563 q^{69} +1.11754 q^{70} -12.8025 q^{71} +0.539910 q^{72} +1.30056 q^{73} -1.35057 q^{74} -3.12996 q^{75} +3.16570 q^{76} +6.70873 q^{77} -0.604357 q^{78} +12.8057 q^{79} +11.0916 q^{80} +1.00000 q^{81} -1.07724 q^{82} -13.1539 q^{83} -5.72765 q^{84} +14.5398 q^{85} -0.288564 q^{86} +7.57457 q^{87} -1.25315 q^{88} -3.12383 q^{89} -0.386640 q^{90} +12.8822 q^{91} +7.46201 q^{92} -0.177752 q^{94} -4.55507 q^{95} +1.60731 q^{96} +18.2970 q^{97} -0.183658 q^{98} -2.32104 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 5 q^{2} - 12 q^{3} + 13 q^{4} + 6 q^{5} - 5 q^{6} + 6 q^{7} + 24 q^{8} + 12 q^{9} + 21 q^{10} - 2 q^{11} - 13 q^{12} - 3 q^{13} + 15 q^{14} - 6 q^{15} + 19 q^{16} + 8 q^{17} + 5 q^{18} + 15 q^{19}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.135601 −0.0958843 −0.0479421 0.998850i \(-0.515266\pi\)
−0.0479421 + 0.998850i \(0.515266\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.98161 −0.990806
\(5\) 2.85131 1.27514 0.637572 0.770391i \(-0.279939\pi\)
0.637572 + 0.770391i \(0.279939\pi\)
\(6\) 0.135601 0.0553588
\(7\) −2.89040 −1.09247 −0.546234 0.837633i \(-0.683939\pi\)
−0.546234 + 0.837633i \(0.683939\pi\)
\(8\) 0.539910 0.190887
\(9\) 1.00000 0.333333
\(10\) −0.386640 −0.122266
\(11\) −2.32104 −0.699820 −0.349910 0.936783i \(-0.613788\pi\)
−0.349910 + 0.936783i \(0.613788\pi\)
\(12\) 1.98161 0.572042
\(13\) −4.45689 −1.23612 −0.618059 0.786132i \(-0.712081\pi\)
−0.618059 + 0.786132i \(0.712081\pi\)
\(14\) 0.391940 0.104750
\(15\) −2.85131 −0.736205
\(16\) 3.89001 0.972503
\(17\) 5.09936 1.23678 0.618388 0.785873i \(-0.287786\pi\)
0.618388 + 0.785873i \(0.287786\pi\)
\(18\) −0.135601 −0.0319614
\(19\) −1.59754 −0.366500 −0.183250 0.983066i \(-0.558662\pi\)
−0.183250 + 0.983066i \(0.558662\pi\)
\(20\) −5.65019 −1.26342
\(21\) 2.89040 0.630737
\(22\) 0.314735 0.0671017
\(23\) −3.76563 −0.785187 −0.392594 0.919712i \(-0.628422\pi\)
−0.392594 + 0.919712i \(0.628422\pi\)
\(24\) −0.539910 −0.110209
\(25\) 3.12996 0.625992
\(26\) 0.604357 0.118524
\(27\) −1.00000 −0.192450
\(28\) 5.72765 1.08242
\(29\) −7.57457 −1.40656 −0.703281 0.710912i \(-0.748282\pi\)
−0.703281 + 0.710912i \(0.748282\pi\)
\(30\) 0.386640 0.0705904
\(31\) 0 0
\(32\) −1.60731 −0.284135
\(33\) 2.32104 0.404041
\(34\) −0.691477 −0.118587
\(35\) −8.24142 −1.39305
\(36\) −1.98161 −0.330269
\(37\) 9.95988 1.63739 0.818697 0.574226i \(-0.194697\pi\)
0.818697 + 0.574226i \(0.194697\pi\)
\(38\) 0.216627 0.0351415
\(39\) 4.45689 0.713673
\(40\) 1.53945 0.243408
\(41\) 7.94420 1.24068 0.620338 0.784335i \(-0.286996\pi\)
0.620338 + 0.784335i \(0.286996\pi\)
\(42\) −0.391940 −0.0604777
\(43\) 2.12804 0.324523 0.162262 0.986748i \(-0.448121\pi\)
0.162262 + 0.986748i \(0.448121\pi\)
\(44\) 4.59940 0.693386
\(45\) 2.85131 0.425048
\(46\) 0.510622 0.0752871
\(47\) 1.31084 0.191206 0.0956032 0.995420i \(-0.469522\pi\)
0.0956032 + 0.995420i \(0.469522\pi\)
\(48\) −3.89001 −0.561475
\(49\) 1.35440 0.193486
\(50\) −0.424425 −0.0600228
\(51\) −5.09936 −0.714053
\(52\) 8.83182 1.22475
\(53\) −7.65141 −1.05100 −0.525501 0.850793i \(-0.676122\pi\)
−0.525501 + 0.850793i \(0.676122\pi\)
\(54\) 0.135601 0.0184529
\(55\) −6.61800 −0.892371
\(56\) −1.56055 −0.208538
\(57\) 1.59754 0.211599
\(58\) 1.02712 0.134867
\(59\) 12.7657 1.66196 0.830978 0.556306i \(-0.187782\pi\)
0.830978 + 0.556306i \(0.187782\pi\)
\(60\) 5.65019 0.729436
\(61\) −2.92690 −0.374751 −0.187375 0.982288i \(-0.559998\pi\)
−0.187375 + 0.982288i \(0.559998\pi\)
\(62\) 0 0
\(63\) −2.89040 −0.364156
\(64\) −7.56207 −0.945259
\(65\) −12.7080 −1.57623
\(66\) −0.314735 −0.0387412
\(67\) 1.19808 0.146369 0.0731847 0.997318i \(-0.476684\pi\)
0.0731847 + 0.997318i \(0.476684\pi\)
\(68\) −10.1049 −1.22541
\(69\) 3.76563 0.453328
\(70\) 1.11754 0.133572
\(71\) −12.8025 −1.51938 −0.759689 0.650287i \(-0.774649\pi\)
−0.759689 + 0.650287i \(0.774649\pi\)
\(72\) 0.539910 0.0636290
\(73\) 1.30056 0.152219 0.0761095 0.997099i \(-0.475750\pi\)
0.0761095 + 0.997099i \(0.475750\pi\)
\(74\) −1.35057 −0.157000
\(75\) −3.12996 −0.361417
\(76\) 3.16570 0.363130
\(77\) 6.70873 0.764531
\(78\) −0.604357 −0.0684300
\(79\) 12.8057 1.44075 0.720377 0.693582i \(-0.243969\pi\)
0.720377 + 0.693582i \(0.243969\pi\)
\(80\) 11.0916 1.24008
\(81\) 1.00000 0.111111
\(82\) −1.07724 −0.118961
\(83\) −13.1539 −1.44382 −0.721912 0.691985i \(-0.756736\pi\)
−0.721912 + 0.691985i \(0.756736\pi\)
\(84\) −5.72765 −0.624938
\(85\) 14.5398 1.57707
\(86\) −0.288564 −0.0311167
\(87\) 7.57457 0.812079
\(88\) −1.25315 −0.133587
\(89\) −3.12383 −0.331125 −0.165563 0.986199i \(-0.552944\pi\)
−0.165563 + 0.986199i \(0.552944\pi\)
\(90\) −0.386640 −0.0407554
\(91\) 12.8822 1.35042
\(92\) 7.46201 0.777969
\(93\) 0 0
\(94\) −0.177752 −0.0183337
\(95\) −4.55507 −0.467340
\(96\) 1.60731 0.164045
\(97\) 18.2970 1.85778 0.928889 0.370359i \(-0.120765\pi\)
0.928889 + 0.370359i \(0.120765\pi\)
\(98\) −0.183658 −0.0185522
\(99\) −2.32104 −0.233273
\(100\) −6.20237 −0.620237
\(101\) 14.8706 1.47968 0.739838 0.672785i \(-0.234902\pi\)
0.739838 + 0.672785i \(0.234902\pi\)
\(102\) 0.691477 0.0684664
\(103\) 15.0259 1.48055 0.740274 0.672305i \(-0.234696\pi\)
0.740274 + 0.672305i \(0.234696\pi\)
\(104\) −2.40632 −0.235959
\(105\) 8.24142 0.804280
\(106\) 1.03754 0.100775
\(107\) 1.12235 0.108501 0.0542506 0.998527i \(-0.482723\pi\)
0.0542506 + 0.998527i \(0.482723\pi\)
\(108\) 1.98161 0.190681
\(109\) 3.02972 0.290195 0.145097 0.989417i \(-0.453650\pi\)
0.145097 + 0.989417i \(0.453650\pi\)
\(110\) 0.897407 0.0855644
\(111\) −9.95988 −0.945350
\(112\) −11.2437 −1.06243
\(113\) 4.84082 0.455386 0.227693 0.973733i \(-0.426882\pi\)
0.227693 + 0.973733i \(0.426882\pi\)
\(114\) −0.216627 −0.0202890
\(115\) −10.7370 −1.00123
\(116\) 15.0099 1.39363
\(117\) −4.45689 −0.412039
\(118\) −1.73104 −0.159355
\(119\) −14.7392 −1.35114
\(120\) −1.53945 −0.140532
\(121\) −5.61277 −0.510252
\(122\) 0.396890 0.0359327
\(123\) −7.94420 −0.716304
\(124\) 0 0
\(125\) −5.33206 −0.476914
\(126\) 0.391940 0.0349168
\(127\) −12.2294 −1.08518 −0.542591 0.839997i \(-0.682556\pi\)
−0.542591 + 0.839997i \(0.682556\pi\)
\(128\) 4.24004 0.374770
\(129\) −2.12804 −0.187364
\(130\) 1.72321 0.151135
\(131\) 5.05331 0.441510 0.220755 0.975329i \(-0.429148\pi\)
0.220755 + 0.975329i \(0.429148\pi\)
\(132\) −4.59940 −0.400327
\(133\) 4.61751 0.400389
\(134\) −0.162461 −0.0140345
\(135\) −2.85131 −0.245402
\(136\) 2.75319 0.236084
\(137\) 9.05240 0.773399 0.386699 0.922206i \(-0.373615\pi\)
0.386699 + 0.922206i \(0.373615\pi\)
\(138\) −0.510622 −0.0434670
\(139\) 6.36354 0.539749 0.269874 0.962896i \(-0.413018\pi\)
0.269874 + 0.962896i \(0.413018\pi\)
\(140\) 16.3313 1.38025
\(141\) −1.31084 −0.110393
\(142\) 1.73603 0.145684
\(143\) 10.3446 0.865060
\(144\) 3.89001 0.324168
\(145\) −21.5974 −1.79357
\(146\) −0.176357 −0.0145954
\(147\) −1.35440 −0.111709
\(148\) −19.7366 −1.62234
\(149\) 17.0881 1.39991 0.699956 0.714185i \(-0.253203\pi\)
0.699956 + 0.714185i \(0.253203\pi\)
\(150\) 0.424425 0.0346542
\(151\) 6.65343 0.541448 0.270724 0.962657i \(-0.412737\pi\)
0.270724 + 0.962657i \(0.412737\pi\)
\(152\) −0.862525 −0.0699600
\(153\) 5.09936 0.412259
\(154\) −0.909709 −0.0733065
\(155\) 0 0
\(156\) −8.83182 −0.707111
\(157\) 12.7706 1.01920 0.509601 0.860411i \(-0.329793\pi\)
0.509601 + 0.860411i \(0.329793\pi\)
\(158\) −1.73646 −0.138146
\(159\) 7.65141 0.606797
\(160\) −4.58293 −0.362313
\(161\) 10.8842 0.857792
\(162\) −0.135601 −0.0106538
\(163\) −10.0001 −0.783271 −0.391635 0.920121i \(-0.628091\pi\)
−0.391635 + 0.920121i \(0.628091\pi\)
\(164\) −15.7423 −1.22927
\(165\) 6.61800 0.515211
\(166\) 1.78367 0.138440
\(167\) 7.50364 0.580649 0.290325 0.956928i \(-0.406237\pi\)
0.290325 + 0.956928i \(0.406237\pi\)
\(168\) 1.56055 0.120399
\(169\) 6.86383 0.527987
\(170\) −1.97161 −0.151216
\(171\) −1.59754 −0.122167
\(172\) −4.21695 −0.321540
\(173\) 21.9320 1.66746 0.833731 0.552171i \(-0.186200\pi\)
0.833731 + 0.552171i \(0.186200\pi\)
\(174\) −1.02712 −0.0778656
\(175\) −9.04683 −0.683876
\(176\) −9.02888 −0.680577
\(177\) −12.7657 −0.959530
\(178\) 0.423594 0.0317497
\(179\) 3.39484 0.253742 0.126871 0.991919i \(-0.459507\pi\)
0.126871 + 0.991919i \(0.459507\pi\)
\(180\) −5.65019 −0.421140
\(181\) 6.16367 0.458142 0.229071 0.973410i \(-0.426431\pi\)
0.229071 + 0.973410i \(0.426431\pi\)
\(182\) −1.74683 −0.129484
\(183\) 2.92690 0.216362
\(184\) −2.03310 −0.149882
\(185\) 28.3987 2.08791
\(186\) 0 0
\(187\) −11.8358 −0.865520
\(188\) −2.59759 −0.189448
\(189\) 2.89040 0.210246
\(190\) 0.617671 0.0448105
\(191\) −8.30833 −0.601170 −0.300585 0.953755i \(-0.597182\pi\)
−0.300585 + 0.953755i \(0.597182\pi\)
\(192\) 7.56207 0.545746
\(193\) −0.0301820 −0.00217255 −0.00108628 0.999999i \(-0.500346\pi\)
−0.00108628 + 0.999999i \(0.500346\pi\)
\(194\) −2.48109 −0.178132
\(195\) 12.7080 0.910036
\(196\) −2.68390 −0.191707
\(197\) 3.91077 0.278631 0.139315 0.990248i \(-0.455510\pi\)
0.139315 + 0.990248i \(0.455510\pi\)
\(198\) 0.314735 0.0223672
\(199\) −8.40479 −0.595800 −0.297900 0.954597i \(-0.596286\pi\)
−0.297900 + 0.954597i \(0.596286\pi\)
\(200\) 1.68990 0.119494
\(201\) −1.19808 −0.0845064
\(202\) −2.01646 −0.141878
\(203\) 21.8935 1.53662
\(204\) 10.1049 0.707488
\(205\) 22.6514 1.58204
\(206\) −2.03753 −0.141961
\(207\) −3.76563 −0.261729
\(208\) −17.3373 −1.20213
\(209\) 3.70794 0.256484
\(210\) −1.11754 −0.0771178
\(211\) 9.75000 0.671218 0.335609 0.942001i \(-0.391058\pi\)
0.335609 + 0.942001i \(0.391058\pi\)
\(212\) 15.1621 1.04134
\(213\) 12.8025 0.877213
\(214\) −0.152191 −0.0104036
\(215\) 6.06770 0.413814
\(216\) −0.539910 −0.0367362
\(217\) 0 0
\(218\) −0.410833 −0.0278251
\(219\) −1.30056 −0.0878837
\(220\) 13.1143 0.884167
\(221\) −22.7272 −1.52880
\(222\) 1.35057 0.0906442
\(223\) 4.32182 0.289410 0.144705 0.989475i \(-0.453777\pi\)
0.144705 + 0.989475i \(0.453777\pi\)
\(224\) 4.64576 0.310408
\(225\) 3.12996 0.208664
\(226\) −0.656419 −0.0436644
\(227\) 6.33675 0.420585 0.210292 0.977639i \(-0.432558\pi\)
0.210292 + 0.977639i \(0.432558\pi\)
\(228\) −3.16570 −0.209653
\(229\) 12.7159 0.840289 0.420145 0.907457i \(-0.361979\pi\)
0.420145 + 0.907457i \(0.361979\pi\)
\(230\) 1.45594 0.0960019
\(231\) −6.70873 −0.441402
\(232\) −4.08958 −0.268494
\(233\) −8.19366 −0.536785 −0.268392 0.963310i \(-0.586492\pi\)
−0.268392 + 0.963310i \(0.586492\pi\)
\(234\) 0.604357 0.0395081
\(235\) 3.73762 0.243816
\(236\) −25.2967 −1.64668
\(237\) −12.8057 −0.831820
\(238\) 1.99864 0.129553
\(239\) 22.0641 1.42721 0.713603 0.700550i \(-0.247062\pi\)
0.713603 + 0.700550i \(0.247062\pi\)
\(240\) −11.0916 −0.715961
\(241\) 14.8684 0.957761 0.478880 0.877880i \(-0.341043\pi\)
0.478880 + 0.877880i \(0.341043\pi\)
\(242\) 0.761096 0.0489251
\(243\) −1.00000 −0.0641500
\(244\) 5.79997 0.371305
\(245\) 3.86181 0.246722
\(246\) 1.07724 0.0686823
\(247\) 7.12003 0.453037
\(248\) 0 0
\(249\) 13.1539 0.833592
\(250\) 0.723031 0.0457285
\(251\) −20.1278 −1.27046 −0.635229 0.772324i \(-0.719094\pi\)
−0.635229 + 0.772324i \(0.719094\pi\)
\(252\) 5.72765 0.360808
\(253\) 8.74017 0.549490
\(254\) 1.65831 0.104052
\(255\) −14.5398 −0.910520
\(256\) 14.5492 0.909325
\(257\) 2.63430 0.164323 0.0821616 0.996619i \(-0.473818\pi\)
0.0821616 + 0.996619i \(0.473818\pi\)
\(258\) 0.288564 0.0179652
\(259\) −28.7880 −1.78880
\(260\) 25.1822 1.56174
\(261\) −7.57457 −0.468854
\(262\) −0.685233 −0.0423338
\(263\) 13.5125 0.833215 0.416608 0.909086i \(-0.363219\pi\)
0.416608 + 0.909086i \(0.363219\pi\)
\(264\) 1.25315 0.0771262
\(265\) −21.8165 −1.34018
\(266\) −0.626138 −0.0383910
\(267\) 3.12383 0.191175
\(268\) −2.37414 −0.145024
\(269\) 19.7335 1.20317 0.601587 0.798807i \(-0.294535\pi\)
0.601587 + 0.798807i \(0.294535\pi\)
\(270\) 0.386640 0.0235301
\(271\) −18.5574 −1.12728 −0.563640 0.826020i \(-0.690600\pi\)
−0.563640 + 0.826020i \(0.690600\pi\)
\(272\) 19.8366 1.20277
\(273\) −12.8822 −0.779665
\(274\) −1.22751 −0.0741568
\(275\) −7.26477 −0.438082
\(276\) −7.46201 −0.449160
\(277\) 1.27067 0.0763470 0.0381735 0.999271i \(-0.487846\pi\)
0.0381735 + 0.999271i \(0.487846\pi\)
\(278\) −0.862902 −0.0517534
\(279\) 0 0
\(280\) −4.44962 −0.265916
\(281\) −4.32347 −0.257917 −0.128958 0.991650i \(-0.541163\pi\)
−0.128958 + 0.991650i \(0.541163\pi\)
\(282\) 0.177752 0.0105850
\(283\) −6.10839 −0.363106 −0.181553 0.983381i \(-0.558112\pi\)
−0.181553 + 0.983381i \(0.558112\pi\)
\(284\) 25.3696 1.50541
\(285\) 4.55507 0.269819
\(286\) −1.40274 −0.0829456
\(287\) −22.9619 −1.35540
\(288\) −1.60731 −0.0947116
\(289\) 9.00344 0.529614
\(290\) 2.92863 0.171975
\(291\) −18.2970 −1.07259
\(292\) −2.57720 −0.150819
\(293\) 30.9979 1.81091 0.905457 0.424438i \(-0.139528\pi\)
0.905457 + 0.424438i \(0.139528\pi\)
\(294\) 0.183658 0.0107111
\(295\) 36.3990 2.11923
\(296\) 5.37744 0.312557
\(297\) 2.32104 0.134680
\(298\) −2.31716 −0.134230
\(299\) 16.7830 0.970584
\(300\) 6.20237 0.358094
\(301\) −6.15089 −0.354531
\(302\) −0.902210 −0.0519164
\(303\) −14.8706 −0.854291
\(304\) −6.21443 −0.356422
\(305\) −8.34549 −0.477861
\(306\) −0.691477 −0.0395291
\(307\) 11.1527 0.636519 0.318260 0.948004i \(-0.396902\pi\)
0.318260 + 0.948004i \(0.396902\pi\)
\(308\) −13.2941 −0.757502
\(309\) −15.0259 −0.854795
\(310\) 0 0
\(311\) −4.21465 −0.238991 −0.119495 0.992835i \(-0.538128\pi\)
−0.119495 + 0.992835i \(0.538128\pi\)
\(312\) 2.40632 0.136231
\(313\) 3.09257 0.174802 0.0874011 0.996173i \(-0.472144\pi\)
0.0874011 + 0.996173i \(0.472144\pi\)
\(314\) −1.73170 −0.0977255
\(315\) −8.24142 −0.464351
\(316\) −25.3759 −1.42751
\(317\) 12.8095 0.719451 0.359726 0.933058i \(-0.382870\pi\)
0.359726 + 0.933058i \(0.382870\pi\)
\(318\) −1.03754 −0.0581822
\(319\) 17.5809 0.984340
\(320\) −21.5618 −1.20534
\(321\) −1.12235 −0.0626432
\(322\) −1.47590 −0.0822487
\(323\) −8.14640 −0.453278
\(324\) −1.98161 −0.110090
\(325\) −13.9499 −0.773800
\(326\) 1.35603 0.0751033
\(327\) −3.02972 −0.167544
\(328\) 4.28915 0.236829
\(329\) −3.78886 −0.208887
\(330\) −0.897407 −0.0494006
\(331\) 19.7594 1.08607 0.543036 0.839709i \(-0.317275\pi\)
0.543036 + 0.839709i \(0.317275\pi\)
\(332\) 26.0659 1.43055
\(333\) 9.95988 0.545798
\(334\) −1.01750 −0.0556751
\(335\) 3.41611 0.186642
\(336\) 11.2437 0.613393
\(337\) −26.0944 −1.42145 −0.710727 0.703468i \(-0.751634\pi\)
−0.710727 + 0.703468i \(0.751634\pi\)
\(338\) −0.930741 −0.0506256
\(339\) −4.84082 −0.262917
\(340\) −28.8123 −1.56257
\(341\) 0 0
\(342\) 0.216627 0.0117138
\(343\) 16.3180 0.881091
\(344\) 1.14895 0.0619473
\(345\) 10.7370 0.578059
\(346\) −2.97400 −0.159883
\(347\) 21.4411 1.15102 0.575508 0.817796i \(-0.304804\pi\)
0.575508 + 0.817796i \(0.304804\pi\)
\(348\) −15.0099 −0.804613
\(349\) 18.3252 0.980926 0.490463 0.871462i \(-0.336828\pi\)
0.490463 + 0.871462i \(0.336828\pi\)
\(350\) 1.22676 0.0655730
\(351\) 4.45689 0.237891
\(352\) 3.73063 0.198843
\(353\) −29.8671 −1.58967 −0.794834 0.606827i \(-0.792442\pi\)
−0.794834 + 0.606827i \(0.792442\pi\)
\(354\) 1.73104 0.0920038
\(355\) −36.5039 −1.93743
\(356\) 6.19022 0.328081
\(357\) 14.7392 0.780080
\(358\) −0.460343 −0.0243299
\(359\) −21.6724 −1.14382 −0.571912 0.820315i \(-0.693798\pi\)
−0.571912 + 0.820315i \(0.693798\pi\)
\(360\) 1.53945 0.0811361
\(361\) −16.4479 −0.865678
\(362\) −0.835798 −0.0439286
\(363\) 5.61277 0.294594
\(364\) −25.5275 −1.33800
\(365\) 3.70830 0.194101
\(366\) −0.396890 −0.0207457
\(367\) −0.231759 −0.0120977 −0.00604885 0.999982i \(-0.501925\pi\)
−0.00604885 + 0.999982i \(0.501925\pi\)
\(368\) −14.6483 −0.763597
\(369\) 7.94420 0.413558
\(370\) −3.85089 −0.200198
\(371\) 22.1156 1.14819
\(372\) 0 0
\(373\) 23.9527 1.24023 0.620113 0.784512i \(-0.287087\pi\)
0.620113 + 0.784512i \(0.287087\pi\)
\(374\) 1.60495 0.0829898
\(375\) 5.33206 0.275346
\(376\) 0.707738 0.0364988
\(377\) 33.7590 1.73868
\(378\) −0.391940 −0.0201592
\(379\) −0.715025 −0.0367283 −0.0183642 0.999831i \(-0.505846\pi\)
−0.0183642 + 0.999831i \(0.505846\pi\)
\(380\) 9.02637 0.463043
\(381\) 12.2294 0.626530
\(382\) 1.12662 0.0576427
\(383\) 24.0287 1.22781 0.613904 0.789381i \(-0.289598\pi\)
0.613904 + 0.789381i \(0.289598\pi\)
\(384\) −4.24004 −0.216374
\(385\) 19.1287 0.974887
\(386\) 0.00409271 0.000208313 0
\(387\) 2.12804 0.108174
\(388\) −36.2575 −1.84070
\(389\) 13.5918 0.689129 0.344565 0.938763i \(-0.388027\pi\)
0.344565 + 0.938763i \(0.388027\pi\)
\(390\) −1.72321 −0.0872581
\(391\) −19.2023 −0.971101
\(392\) 0.731254 0.0369339
\(393\) −5.05331 −0.254906
\(394\) −0.530304 −0.0267163
\(395\) 36.5130 1.83717
\(396\) 4.59940 0.231129
\(397\) −24.5001 −1.22962 −0.614811 0.788674i \(-0.710768\pi\)
−0.614811 + 0.788674i \(0.710768\pi\)
\(398\) 1.13970 0.0571278
\(399\) −4.61751 −0.231165
\(400\) 12.1756 0.608779
\(401\) −18.5690 −0.927293 −0.463646 0.886020i \(-0.653459\pi\)
−0.463646 + 0.886020i \(0.653459\pi\)
\(402\) 0.162461 0.00810283
\(403\) 0 0
\(404\) −29.4677 −1.46607
\(405\) 2.85131 0.141683
\(406\) −2.96878 −0.147338
\(407\) −23.1173 −1.14588
\(408\) −2.75319 −0.136303
\(409\) 3.76712 0.186272 0.0931360 0.995653i \(-0.470311\pi\)
0.0931360 + 0.995653i \(0.470311\pi\)
\(410\) −3.07154 −0.151693
\(411\) −9.05240 −0.446522
\(412\) −29.7756 −1.46694
\(413\) −36.8980 −1.81563
\(414\) 0.510622 0.0250957
\(415\) −37.5057 −1.84108
\(416\) 7.16359 0.351224
\(417\) −6.36354 −0.311624
\(418\) −0.502800 −0.0245928
\(419\) −17.8145 −0.870296 −0.435148 0.900359i \(-0.643304\pi\)
−0.435148 + 0.900359i \(0.643304\pi\)
\(420\) −16.3313 −0.796886
\(421\) −39.2291 −1.91191 −0.955955 0.293513i \(-0.905176\pi\)
−0.955955 + 0.293513i \(0.905176\pi\)
\(422\) −1.32211 −0.0643592
\(423\) 1.31084 0.0637355
\(424\) −4.13107 −0.200623
\(425\) 15.9608 0.774212
\(426\) −1.73603 −0.0841109
\(427\) 8.45990 0.409403
\(428\) −2.22405 −0.107504
\(429\) −10.3446 −0.499443
\(430\) −0.822786 −0.0396782
\(431\) 3.76486 0.181347 0.0906733 0.995881i \(-0.471098\pi\)
0.0906733 + 0.995881i \(0.471098\pi\)
\(432\) −3.89001 −0.187158
\(433\) 5.67881 0.272906 0.136453 0.990647i \(-0.456430\pi\)
0.136453 + 0.990647i \(0.456430\pi\)
\(434\) 0 0
\(435\) 21.5974 1.03552
\(436\) −6.00374 −0.287527
\(437\) 6.01572 0.287771
\(438\) 0.176357 0.00842666
\(439\) −30.7261 −1.46648 −0.733238 0.679972i \(-0.761992\pi\)
−0.733238 + 0.679972i \(0.761992\pi\)
\(440\) −3.57313 −0.170342
\(441\) 1.35440 0.0644952
\(442\) 3.08183 0.146588
\(443\) −34.7126 −1.64925 −0.824623 0.565682i \(-0.808613\pi\)
−0.824623 + 0.565682i \(0.808613\pi\)
\(444\) 19.7366 0.936658
\(445\) −8.90700 −0.422232
\(446\) −0.586042 −0.0277499
\(447\) −17.0881 −0.808240
\(448\) 21.8574 1.03267
\(449\) −27.7826 −1.31114 −0.655570 0.755134i \(-0.727572\pi\)
−0.655570 + 0.755134i \(0.727572\pi\)
\(450\) −0.424425 −0.0200076
\(451\) −18.4388 −0.868250
\(452\) −9.59263 −0.451199
\(453\) −6.65343 −0.312605
\(454\) −0.859268 −0.0403275
\(455\) 36.7310 1.72198
\(456\) 0.862525 0.0403914
\(457\) −22.0585 −1.03185 −0.515926 0.856633i \(-0.672552\pi\)
−0.515926 + 0.856633i \(0.672552\pi\)
\(458\) −1.72428 −0.0805705
\(459\) −5.09936 −0.238018
\(460\) 21.2765 0.992022
\(461\) 24.2126 1.12769 0.563847 0.825879i \(-0.309321\pi\)
0.563847 + 0.825879i \(0.309321\pi\)
\(462\) 0.909709 0.0423235
\(463\) 25.5775 1.18869 0.594344 0.804211i \(-0.297412\pi\)
0.594344 + 0.804211i \(0.297412\pi\)
\(464\) −29.4652 −1.36789
\(465\) 0 0
\(466\) 1.11107 0.0514692
\(467\) −14.7000 −0.680233 −0.340116 0.940383i \(-0.610466\pi\)
−0.340116 + 0.940383i \(0.610466\pi\)
\(468\) 8.83182 0.408251
\(469\) −3.46294 −0.159904
\(470\) −0.506825 −0.0233781
\(471\) −12.7706 −0.588437
\(472\) 6.89234 0.317246
\(473\) −4.93927 −0.227108
\(474\) 1.73646 0.0797584
\(475\) −5.00022 −0.229426
\(476\) 29.2073 1.33872
\(477\) −7.65141 −0.350334
\(478\) −2.99191 −0.136847
\(479\) −18.4132 −0.841320 −0.420660 0.907218i \(-0.638201\pi\)
−0.420660 + 0.907218i \(0.638201\pi\)
\(480\) 4.58293 0.209181
\(481\) −44.3900 −2.02401
\(482\) −2.01617 −0.0918342
\(483\) −10.8842 −0.495246
\(484\) 11.1223 0.505561
\(485\) 52.1704 2.36893
\(486\) 0.135601 0.00615098
\(487\) −15.2201 −0.689686 −0.344843 0.938660i \(-0.612068\pi\)
−0.344843 + 0.938660i \(0.612068\pi\)
\(488\) −1.58026 −0.0715350
\(489\) 10.0001 0.452222
\(490\) −0.523665 −0.0236568
\(491\) −4.69213 −0.211753 −0.105877 0.994379i \(-0.533765\pi\)
−0.105877 + 0.994379i \(0.533765\pi\)
\(492\) 15.7423 0.709719
\(493\) −38.6254 −1.73960
\(494\) −0.965482 −0.0434391
\(495\) −6.61800 −0.297457
\(496\) 0 0
\(497\) 37.0043 1.65987
\(498\) −1.78367 −0.0799284
\(499\) 3.67921 0.164704 0.0823521 0.996603i \(-0.473757\pi\)
0.0823521 + 0.996603i \(0.473757\pi\)
\(500\) 10.5661 0.472529
\(501\) −7.50364 −0.335238
\(502\) 2.72935 0.121817
\(503\) 24.8069 1.10609 0.553044 0.833152i \(-0.313466\pi\)
0.553044 + 0.833152i \(0.313466\pi\)
\(504\) −1.56055 −0.0695126
\(505\) 42.4005 1.88680
\(506\) −1.18517 −0.0526874
\(507\) −6.86383 −0.304833
\(508\) 24.2339 1.07520
\(509\) 17.7641 0.787378 0.393689 0.919244i \(-0.371199\pi\)
0.393689 + 0.919244i \(0.371199\pi\)
\(510\) 1.97161 0.0873045
\(511\) −3.75913 −0.166294
\(512\) −10.4530 −0.461960
\(513\) 1.59754 0.0705329
\(514\) −0.357213 −0.0157560
\(515\) 42.8436 1.88791
\(516\) 4.21695 0.185641
\(517\) −3.04252 −0.133810
\(518\) 3.90368 0.171518
\(519\) −21.9320 −0.962709
\(520\) −6.86115 −0.300881
\(521\) 18.0438 0.790515 0.395257 0.918570i \(-0.370655\pi\)
0.395257 + 0.918570i \(0.370655\pi\)
\(522\) 1.02712 0.0449557
\(523\) 18.6624 0.816049 0.408025 0.912971i \(-0.366218\pi\)
0.408025 + 0.912971i \(0.366218\pi\)
\(524\) −10.0137 −0.437450
\(525\) 9.04683 0.394836
\(526\) −1.83230 −0.0798922
\(527\) 0 0
\(528\) 9.02888 0.392931
\(529\) −8.82005 −0.383481
\(530\) 2.95834 0.128502
\(531\) 12.7657 0.553985
\(532\) −9.15012 −0.396708
\(533\) −35.4064 −1.53362
\(534\) −0.423594 −0.0183307
\(535\) 3.20015 0.138355
\(536\) 0.646858 0.0279400
\(537\) −3.39484 −0.146498
\(538\) −2.67588 −0.115365
\(539\) −3.14362 −0.135405
\(540\) 5.65019 0.243145
\(541\) −18.5739 −0.798555 −0.399278 0.916830i \(-0.630739\pi\)
−0.399278 + 0.916830i \(0.630739\pi\)
\(542\) 2.51640 0.108088
\(543\) −6.16367 −0.264508
\(544\) −8.19624 −0.351411
\(545\) 8.63868 0.370040
\(546\) 1.74683 0.0747576
\(547\) −1.58403 −0.0677281 −0.0338640 0.999426i \(-0.510781\pi\)
−0.0338640 + 0.999426i \(0.510781\pi\)
\(548\) −17.9384 −0.766289
\(549\) −2.92690 −0.124917
\(550\) 0.985108 0.0420052
\(551\) 12.1006 0.515505
\(552\) 2.03310 0.0865345
\(553\) −37.0136 −1.57398
\(554\) −0.172304 −0.00732048
\(555\) −28.3987 −1.20546
\(556\) −12.6101 −0.534786
\(557\) 16.2178 0.687168 0.343584 0.939122i \(-0.388359\pi\)
0.343584 + 0.939122i \(0.388359\pi\)
\(558\) 0 0
\(559\) −9.48444 −0.401149
\(560\) −32.0592 −1.35475
\(561\) 11.8358 0.499708
\(562\) 0.586267 0.0247302
\(563\) −14.9949 −0.631961 −0.315981 0.948766i \(-0.602333\pi\)
−0.315981 + 0.948766i \(0.602333\pi\)
\(564\) 2.59759 0.109378
\(565\) 13.8027 0.580683
\(566\) 0.828302 0.0348161
\(567\) −2.89040 −0.121385
\(568\) −6.91220 −0.290029
\(569\) −1.51909 −0.0636837 −0.0318418 0.999493i \(-0.510137\pi\)
−0.0318418 + 0.999493i \(0.510137\pi\)
\(570\) −0.617671 −0.0258714
\(571\) −0.758974 −0.0317621 −0.0158810 0.999874i \(-0.505055\pi\)
−0.0158810 + 0.999874i \(0.505055\pi\)
\(572\) −20.4990 −0.857107
\(573\) 8.30833 0.347086
\(574\) 3.11365 0.129961
\(575\) −11.7863 −0.491521
\(576\) −7.56207 −0.315086
\(577\) 9.37218 0.390169 0.195085 0.980786i \(-0.437502\pi\)
0.195085 + 0.980786i \(0.437502\pi\)
\(578\) −1.22087 −0.0507817
\(579\) 0.0301820 0.00125432
\(580\) 42.7977 1.77708
\(581\) 38.0199 1.57733
\(582\) 2.48109 0.102844
\(583\) 17.7592 0.735513
\(584\) 0.702185 0.0290566
\(585\) −12.7080 −0.525409
\(586\) −4.20333 −0.173638
\(587\) −24.9622 −1.03030 −0.515151 0.857099i \(-0.672264\pi\)
−0.515151 + 0.857099i \(0.672264\pi\)
\(588\) 2.68390 0.110682
\(589\) 0 0
\(590\) −4.93573 −0.203201
\(591\) −3.91077 −0.160868
\(592\) 38.7441 1.59237
\(593\) −28.2065 −1.15830 −0.579151 0.815220i \(-0.696616\pi\)
−0.579151 + 0.815220i \(0.696616\pi\)
\(594\) −0.314735 −0.0129137
\(595\) −42.0259 −1.72289
\(596\) −33.8620 −1.38704
\(597\) 8.40479 0.343985
\(598\) −2.27578 −0.0930637
\(599\) −35.0087 −1.43042 −0.715209 0.698910i \(-0.753669\pi\)
−0.715209 + 0.698910i \(0.753669\pi\)
\(600\) −1.68990 −0.0689898
\(601\) −24.9349 −1.01712 −0.508558 0.861028i \(-0.669821\pi\)
−0.508558 + 0.861028i \(0.669821\pi\)
\(602\) 0.834065 0.0339940
\(603\) 1.19808 0.0487898
\(604\) −13.1845 −0.536470
\(605\) −16.0037 −0.650645
\(606\) 2.01646 0.0819131
\(607\) −23.5335 −0.955194 −0.477597 0.878579i \(-0.658492\pi\)
−0.477597 + 0.878579i \(0.658492\pi\)
\(608\) 2.56773 0.104135
\(609\) −21.8935 −0.887170
\(610\) 1.13165 0.0458194
\(611\) −5.84229 −0.236354
\(612\) −10.1049 −0.408468
\(613\) 10.6445 0.429928 0.214964 0.976622i \(-0.431037\pi\)
0.214964 + 0.976622i \(0.431037\pi\)
\(614\) −1.51232 −0.0610322
\(615\) −22.6514 −0.913391
\(616\) 3.62211 0.145939
\(617\) −4.11284 −0.165577 −0.0827884 0.996567i \(-0.526383\pi\)
−0.0827884 + 0.996567i \(0.526383\pi\)
\(618\) 2.03753 0.0819614
\(619\) −27.4112 −1.10175 −0.550875 0.834588i \(-0.685706\pi\)
−0.550875 + 0.834588i \(0.685706\pi\)
\(620\) 0 0
\(621\) 3.76563 0.151109
\(622\) 0.571510 0.0229154
\(623\) 9.02911 0.361744
\(624\) 17.3373 0.694049
\(625\) −30.8531 −1.23413
\(626\) −0.419355 −0.0167608
\(627\) −3.70794 −0.148081
\(628\) −25.3063 −1.00983
\(629\) 50.7890 2.02509
\(630\) 1.11754 0.0445240
\(631\) 40.5448 1.61406 0.807031 0.590510i \(-0.201073\pi\)
0.807031 + 0.590510i \(0.201073\pi\)
\(632\) 6.91393 0.275021
\(633\) −9.75000 −0.387528
\(634\) −1.73697 −0.0689841
\(635\) −34.8697 −1.38376
\(636\) −15.1621 −0.601218
\(637\) −6.03640 −0.239171
\(638\) −2.38398 −0.0943827
\(639\) −12.8025 −0.506459
\(640\) 12.0897 0.477886
\(641\) −37.2864 −1.47273 −0.736363 0.676587i \(-0.763458\pi\)
−0.736363 + 0.676587i \(0.763458\pi\)
\(642\) 0.152191 0.00600650
\(643\) 1.38973 0.0548057 0.0274028 0.999624i \(-0.491276\pi\)
0.0274028 + 0.999624i \(0.491276\pi\)
\(644\) −21.5682 −0.849906
\(645\) −6.06770 −0.238916
\(646\) 1.10466 0.0434622
\(647\) 23.0086 0.904560 0.452280 0.891876i \(-0.350611\pi\)
0.452280 + 0.891876i \(0.350611\pi\)
\(648\) 0.539910 0.0212097
\(649\) −29.6298 −1.16307
\(650\) 1.89161 0.0741952
\(651\) 0 0
\(652\) 19.8164 0.776069
\(653\) 20.2893 0.793981 0.396991 0.917823i \(-0.370055\pi\)
0.396991 + 0.917823i \(0.370055\pi\)
\(654\) 0.410833 0.0160648
\(655\) 14.4085 0.562988
\(656\) 30.9030 1.20656
\(657\) 1.30056 0.0507396
\(658\) 0.513773 0.0200290
\(659\) −44.6702 −1.74010 −0.870052 0.492961i \(-0.835915\pi\)
−0.870052 + 0.492961i \(0.835915\pi\)
\(660\) −13.1143 −0.510474
\(661\) −17.1746 −0.668016 −0.334008 0.942570i \(-0.608401\pi\)
−0.334008 + 0.942570i \(0.608401\pi\)
\(662\) −2.67938 −0.104137
\(663\) 22.7272 0.882653
\(664\) −7.10190 −0.275607
\(665\) 13.1660 0.510554
\(666\) −1.35057 −0.0523334
\(667\) 28.5230 1.10441
\(668\) −14.8693 −0.575311
\(669\) −4.32182 −0.167091
\(670\) −0.463227 −0.0178960
\(671\) 6.79345 0.262258
\(672\) −4.64576 −0.179214
\(673\) 11.0367 0.425434 0.212717 0.977114i \(-0.431769\pi\)
0.212717 + 0.977114i \(0.431769\pi\)
\(674\) 3.53843 0.136295
\(675\) −3.12996 −0.120472
\(676\) −13.6014 −0.523132
\(677\) 4.13682 0.158991 0.0794955 0.996835i \(-0.474669\pi\)
0.0794955 + 0.996835i \(0.474669\pi\)
\(678\) 0.656419 0.0252096
\(679\) −52.8856 −2.02956
\(680\) 7.85020 0.301042
\(681\) −6.33675 −0.242825
\(682\) 0 0
\(683\) −17.8255 −0.682076 −0.341038 0.940050i \(-0.610778\pi\)
−0.341038 + 0.940050i \(0.610778\pi\)
\(684\) 3.16570 0.121043
\(685\) 25.8112 0.986195
\(686\) −2.21274 −0.0844827
\(687\) −12.7159 −0.485141
\(688\) 8.27811 0.315600
\(689\) 34.1015 1.29916
\(690\) −1.45594 −0.0554267
\(691\) −23.9337 −0.910479 −0.455240 0.890369i \(-0.650446\pi\)
−0.455240 + 0.890369i \(0.650446\pi\)
\(692\) −43.4608 −1.65213
\(693\) 6.70873 0.254844
\(694\) −2.90743 −0.110364
\(695\) 18.1444 0.688257
\(696\) 4.08958 0.155015
\(697\) 40.5103 1.53444
\(698\) −2.48491 −0.0940554
\(699\) 8.19366 0.309913
\(700\) 17.9273 0.677589
\(701\) 2.07407 0.0783365 0.0391683 0.999233i \(-0.487529\pi\)
0.0391683 + 0.999233i \(0.487529\pi\)
\(702\) −0.604357 −0.0228100
\(703\) −15.9113 −0.600104
\(704\) 17.5519 0.661511
\(705\) −3.73762 −0.140767
\(706\) 4.05001 0.152424
\(707\) −42.9818 −1.61650
\(708\) 25.2967 0.950708
\(709\) 5.34612 0.200778 0.100389 0.994948i \(-0.467991\pi\)
0.100389 + 0.994948i \(0.467991\pi\)
\(710\) 4.94996 0.185769
\(711\) 12.8057 0.480252
\(712\) −1.68659 −0.0632075
\(713\) 0 0
\(714\) −1.99864 −0.0747974
\(715\) 29.4957 1.10308
\(716\) −6.72726 −0.251410
\(717\) −22.0641 −0.823998
\(718\) 2.93879 0.109675
\(719\) 5.26476 0.196342 0.0981712 0.995170i \(-0.468701\pi\)
0.0981712 + 0.995170i \(0.468701\pi\)
\(720\) 11.0916 0.413361
\(721\) −43.4309 −1.61745
\(722\) 2.23035 0.0830049
\(723\) −14.8684 −0.552963
\(724\) −12.2140 −0.453930
\(725\) −23.7081 −0.880497
\(726\) −0.761096 −0.0282469
\(727\) 34.5926 1.28297 0.641484 0.767136i \(-0.278319\pi\)
0.641484 + 0.767136i \(0.278319\pi\)
\(728\) 6.95521 0.257777
\(729\) 1.00000 0.0370370
\(730\) −0.502848 −0.0186112
\(731\) 10.8516 0.401363
\(732\) −5.79997 −0.214373
\(733\) 19.7731 0.730336 0.365168 0.930942i \(-0.381012\pi\)
0.365168 + 0.930942i \(0.381012\pi\)
\(734\) 0.0314267 0.00115998
\(735\) −3.86181 −0.142445
\(736\) 6.05252 0.223099
\(737\) −2.78080 −0.102432
\(738\) −1.07724 −0.0396537
\(739\) −12.6319 −0.464672 −0.232336 0.972636i \(-0.574637\pi\)
−0.232336 + 0.972636i \(0.574637\pi\)
\(740\) −56.2752 −2.06872
\(741\) −7.12003 −0.261561
\(742\) −2.99890 −0.110093
\(743\) 11.5104 0.422274 0.211137 0.977456i \(-0.432283\pi\)
0.211137 + 0.977456i \(0.432283\pi\)
\(744\) 0 0
\(745\) 48.7235 1.78509
\(746\) −3.24801 −0.118918
\(747\) −13.1539 −0.481275
\(748\) 23.4540 0.857563
\(749\) −3.24403 −0.118534
\(750\) −0.723031 −0.0264014
\(751\) −18.9676 −0.692139 −0.346070 0.938209i \(-0.612484\pi\)
−0.346070 + 0.938209i \(0.612484\pi\)
\(752\) 5.09920 0.185949
\(753\) 20.1278 0.733499
\(754\) −4.57775 −0.166712
\(755\) 18.9710 0.690425
\(756\) −5.72765 −0.208313
\(757\) −36.5777 −1.32944 −0.664720 0.747092i \(-0.731449\pi\)
−0.664720 + 0.747092i \(0.731449\pi\)
\(758\) 0.0969579 0.00352167
\(759\) −8.74017 −0.317248
\(760\) −2.45932 −0.0892091
\(761\) 11.7188 0.424806 0.212403 0.977182i \(-0.431871\pi\)
0.212403 + 0.977182i \(0.431871\pi\)
\(762\) −1.65831 −0.0600743
\(763\) −8.75711 −0.317029
\(764\) 16.4639 0.595643
\(765\) 14.5398 0.525689
\(766\) −3.25831 −0.117727
\(767\) −56.8953 −2.05437
\(768\) −14.5492 −0.524999
\(769\) −20.1073 −0.725088 −0.362544 0.931967i \(-0.618092\pi\)
−0.362544 + 0.931967i \(0.618092\pi\)
\(770\) −2.59386 −0.0934763
\(771\) −2.63430 −0.0948720
\(772\) 0.0598091 0.00215258
\(773\) 19.6800 0.707842 0.353921 0.935275i \(-0.384848\pi\)
0.353921 + 0.935275i \(0.384848\pi\)
\(774\) −0.288564 −0.0103722
\(775\) 0 0
\(776\) 9.87873 0.354626
\(777\) 28.7880 1.03276
\(778\) −1.84305 −0.0660766
\(779\) −12.6911 −0.454707
\(780\) −25.1822 −0.901669
\(781\) 29.7151 1.06329
\(782\) 2.60384 0.0931133
\(783\) 7.57457 0.270693
\(784\) 5.26863 0.188165
\(785\) 36.4129 1.29963
\(786\) 0.685233 0.0244414
\(787\) 24.1448 0.860670 0.430335 0.902669i \(-0.358395\pi\)
0.430335 + 0.902669i \(0.358395\pi\)
\(788\) −7.74963 −0.276069
\(789\) −13.5125 −0.481057
\(790\) −4.95120 −0.176156
\(791\) −13.9919 −0.497495
\(792\) −1.25315 −0.0445288
\(793\) 13.0448 0.463236
\(794\) 3.32223 0.117901
\(795\) 21.8165 0.773753
\(796\) 16.6550 0.590322
\(797\) 12.5882 0.445898 0.222949 0.974830i \(-0.428432\pi\)
0.222949 + 0.974830i \(0.428432\pi\)
\(798\) 0.626138 0.0221651
\(799\) 6.68447 0.236479
\(800\) −5.03081 −0.177866
\(801\) −3.12383 −0.110375
\(802\) 2.51797 0.0889128
\(803\) −3.01865 −0.106526
\(804\) 2.37414 0.0837294
\(805\) 31.0341 1.09381
\(806\) 0 0
\(807\) −19.7335 −0.694653
\(808\) 8.02876 0.282451
\(809\) 45.5787 1.60246 0.801231 0.598355i \(-0.204179\pi\)
0.801231 + 0.598355i \(0.204179\pi\)
\(810\) −0.386640 −0.0135851
\(811\) 41.3002 1.45025 0.725123 0.688620i \(-0.241783\pi\)
0.725123 + 0.688620i \(0.241783\pi\)
\(812\) −43.3845 −1.52250
\(813\) 18.5574 0.650836
\(814\) 3.13472 0.109872
\(815\) −28.5135 −0.998783
\(816\) −19.8366 −0.694419
\(817\) −3.39962 −0.118938
\(818\) −0.510824 −0.0178606
\(819\) 12.8822 0.450140
\(820\) −44.8862 −1.56749
\(821\) 28.6694 1.00057 0.500284 0.865862i \(-0.333229\pi\)
0.500284 + 0.865862i \(0.333229\pi\)
\(822\) 1.22751 0.0428144
\(823\) 19.9295 0.694698 0.347349 0.937736i \(-0.387082\pi\)
0.347349 + 0.937736i \(0.387082\pi\)
\(824\) 8.11265 0.282618
\(825\) 7.26477 0.252927
\(826\) 5.00340 0.174091
\(827\) 44.3154 1.54100 0.770499 0.637441i \(-0.220007\pi\)
0.770499 + 0.637441i \(0.220007\pi\)
\(828\) 7.46201 0.259323
\(829\) −4.10806 −0.142679 −0.0713394 0.997452i \(-0.522727\pi\)
−0.0713394 + 0.997452i \(0.522727\pi\)
\(830\) 5.08581 0.176531
\(831\) −1.27067 −0.0440790
\(832\) 33.7033 1.16845
\(833\) 6.90657 0.239298
\(834\) 0.862902 0.0298798
\(835\) 21.3952 0.740412
\(836\) −7.34771 −0.254126
\(837\) 0 0
\(838\) 2.41566 0.0834477
\(839\) 29.9761 1.03489 0.517445 0.855716i \(-0.326883\pi\)
0.517445 + 0.855716i \(0.326883\pi\)
\(840\) 4.44962 0.153527
\(841\) 28.3741 0.978417
\(842\) 5.31950 0.183322
\(843\) 4.32347 0.148908
\(844\) −19.3207 −0.665047
\(845\) 19.5709 0.673259
\(846\) −0.177752 −0.00611123
\(847\) 16.2231 0.557434
\(848\) −29.7641 −1.02210
\(849\) 6.10839 0.209639
\(850\) −2.16430 −0.0742347
\(851\) −37.5052 −1.28566
\(852\) −25.3696 −0.869148
\(853\) −13.1100 −0.448877 −0.224438 0.974488i \(-0.572055\pi\)
−0.224438 + 0.974488i \(0.572055\pi\)
\(854\) −1.14717 −0.0392553
\(855\) −4.55507 −0.155780
\(856\) 0.605966 0.0207115
\(857\) −9.29585 −0.317540 −0.158770 0.987316i \(-0.550753\pi\)
−0.158770 + 0.987316i \(0.550753\pi\)
\(858\) 1.40274 0.0478887
\(859\) 46.2394 1.57767 0.788834 0.614606i \(-0.210685\pi\)
0.788834 + 0.614606i \(0.210685\pi\)
\(860\) −12.0238 −0.410009
\(861\) 22.9619 0.782539
\(862\) −0.510517 −0.0173883
\(863\) 46.3548 1.57794 0.788968 0.614434i \(-0.210615\pi\)
0.788968 + 0.614434i \(0.210615\pi\)
\(864\) 1.60731 0.0546818
\(865\) 62.5350 2.12625
\(866\) −0.770051 −0.0261674
\(867\) −9.00344 −0.305773
\(868\) 0 0
\(869\) −29.7226 −1.00827
\(870\) −2.92863 −0.0992898
\(871\) −5.33973 −0.180930
\(872\) 1.63578 0.0553944
\(873\) 18.2970 0.619259
\(874\) −0.815737 −0.0275927
\(875\) 15.4118 0.521013
\(876\) 2.57720 0.0870757
\(877\) 30.4791 1.02921 0.514603 0.857429i \(-0.327939\pi\)
0.514603 + 0.857429i \(0.327939\pi\)
\(878\) 4.16648 0.140612
\(879\) −30.9979 −1.04553
\(880\) −25.7441 −0.867834
\(881\) 26.7393 0.900869 0.450435 0.892809i \(-0.351269\pi\)
0.450435 + 0.892809i \(0.351269\pi\)
\(882\) −0.183658 −0.00618408
\(883\) −15.1276 −0.509085 −0.254542 0.967062i \(-0.581925\pi\)
−0.254542 + 0.967062i \(0.581925\pi\)
\(884\) 45.0366 1.51474
\(885\) −36.3990 −1.22354
\(886\) 4.70706 0.158137
\(887\) 4.81887 0.161802 0.0809010 0.996722i \(-0.474220\pi\)
0.0809010 + 0.996722i \(0.474220\pi\)
\(888\) −5.37744 −0.180455
\(889\) 35.3477 1.18553
\(890\) 1.20780 0.0404854
\(891\) −2.32104 −0.0777578
\(892\) −8.56417 −0.286750
\(893\) −2.09412 −0.0700771
\(894\) 2.31716 0.0774975
\(895\) 9.67974 0.323558
\(896\) −12.2554 −0.409424
\(897\) −16.7830 −0.560367
\(898\) 3.76734 0.125718
\(899\) 0 0
\(900\) −6.20237 −0.206746
\(901\) −39.0173 −1.29985
\(902\) 2.50032 0.0832515
\(903\) 6.15089 0.204689
\(904\) 2.61361 0.0869273
\(905\) 17.5745 0.584197
\(906\) 0.902210 0.0299739
\(907\) −9.14390 −0.303618 −0.151809 0.988410i \(-0.548510\pi\)
−0.151809 + 0.988410i \(0.548510\pi\)
\(908\) −12.5570 −0.416718
\(909\) 14.8706 0.493225
\(910\) −4.98076 −0.165111
\(911\) −24.2794 −0.804411 −0.402205 0.915549i \(-0.631756\pi\)
−0.402205 + 0.915549i \(0.631756\pi\)
\(912\) 6.21443 0.205780
\(913\) 30.5306 1.01042
\(914\) 2.99115 0.0989384
\(915\) 8.34549 0.275893
\(916\) −25.1980 −0.832564
\(917\) −14.6061 −0.482335
\(918\) 0.691477 0.0228221
\(919\) 49.5447 1.63433 0.817164 0.576405i \(-0.195545\pi\)
0.817164 + 0.576405i \(0.195545\pi\)
\(920\) −5.79699 −0.191121
\(921\) −11.1527 −0.367494
\(922\) −3.28325 −0.108128
\(923\) 57.0593 1.87813
\(924\) 13.2941 0.437344
\(925\) 31.1740 1.02500
\(926\) −3.46833 −0.113976
\(927\) 15.0259 0.493516
\(928\) 12.1747 0.399653
\(929\) −10.1197 −0.332016 −0.166008 0.986124i \(-0.553088\pi\)
−0.166008 + 0.986124i \(0.553088\pi\)
\(930\) 0 0
\(931\) −2.16370 −0.0709124
\(932\) 16.2367 0.531850
\(933\) 4.21465 0.137981
\(934\) 1.99333 0.0652236
\(935\) −33.7476 −1.10366
\(936\) −2.40632 −0.0786529
\(937\) −2.52636 −0.0825326 −0.0412663 0.999148i \(-0.513139\pi\)
−0.0412663 + 0.999148i \(0.513139\pi\)
\(938\) 0.469578 0.0153323
\(939\) −3.09257 −0.100922
\(940\) −7.40652 −0.241574
\(941\) −27.9395 −0.910801 −0.455400 0.890287i \(-0.650504\pi\)
−0.455400 + 0.890287i \(0.650504\pi\)
\(942\) 1.73170 0.0564219
\(943\) −29.9149 −0.974163
\(944\) 49.6588 1.61626
\(945\) 8.24142 0.268093
\(946\) 0.669769 0.0217761
\(947\) 41.6169 1.35237 0.676183 0.736734i \(-0.263633\pi\)
0.676183 + 0.736734i \(0.263633\pi\)
\(948\) 25.3759 0.824172
\(949\) −5.79644 −0.188161
\(950\) 0.678034 0.0219983
\(951\) −12.8095 −0.415375
\(952\) −7.95782 −0.257915
\(953\) −50.6784 −1.64163 −0.820817 0.571191i \(-0.806482\pi\)
−0.820817 + 0.571191i \(0.806482\pi\)
\(954\) 1.03754 0.0335915
\(955\) −23.6896 −0.766578
\(956\) −43.7224 −1.41409
\(957\) −17.5809 −0.568309
\(958\) 2.49684 0.0806693
\(959\) −26.1650 −0.844913
\(960\) 21.5618 0.695904
\(961\) 0 0
\(962\) 6.01933 0.194071
\(963\) 1.12235 0.0361671
\(964\) −29.4635 −0.948955
\(965\) −0.0860583 −0.00277032
\(966\) 1.47590 0.0474863
\(967\) 8.66079 0.278512 0.139256 0.990256i \(-0.455529\pi\)
0.139256 + 0.990256i \(0.455529\pi\)
\(968\) −3.03039 −0.0974004
\(969\) 8.14640 0.261700
\(970\) −7.07434 −0.227143
\(971\) 46.6438 1.49687 0.748435 0.663208i \(-0.230806\pi\)
0.748435 + 0.663208i \(0.230806\pi\)
\(972\) 1.98161 0.0635602
\(973\) −18.3932 −0.589658
\(974\) 2.06385 0.0661301
\(975\) 13.9499 0.446754
\(976\) −11.3857 −0.364446
\(977\) −17.8313 −0.570474 −0.285237 0.958457i \(-0.592072\pi\)
−0.285237 + 0.958457i \(0.592072\pi\)
\(978\) −1.35603 −0.0433609
\(979\) 7.25054 0.231728
\(980\) −7.65261 −0.244454
\(981\) 3.02972 0.0967316
\(982\) 0.636257 0.0203038
\(983\) 8.08619 0.257909 0.128955 0.991650i \(-0.458838\pi\)
0.128955 + 0.991650i \(0.458838\pi\)
\(984\) −4.28915 −0.136733
\(985\) 11.1508 0.355295
\(986\) 5.23764 0.166800
\(987\) 3.78886 0.120601
\(988\) −14.1091 −0.448872
\(989\) −8.01341 −0.254812
\(990\) 0.897407 0.0285215
\(991\) −54.7383 −1.73882 −0.869409 0.494093i \(-0.835500\pi\)
−0.869409 + 0.494093i \(0.835500\pi\)
\(992\) 0 0
\(993\) −19.7594 −0.627044
\(994\) −5.01782 −0.159155
\(995\) −23.9646 −0.759730
\(996\) −26.0659 −0.825928
\(997\) 42.7521 1.35397 0.676986 0.735996i \(-0.263286\pi\)
0.676986 + 0.735996i \(0.263286\pi\)
\(998\) −0.498904 −0.0157925
\(999\) −9.95988 −0.315117
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2883.2.a.s.1.6 12
3.2 odd 2 8649.2.a.bl.1.7 12
31.12 odd 30 93.2.m.b.82.2 yes 24
31.13 odd 30 93.2.m.b.76.2 24
31.30 odd 2 2883.2.a.t.1.6 12
93.44 even 30 279.2.y.d.262.2 24
93.74 even 30 279.2.y.d.82.2 24
93.92 even 2 8649.2.a.bk.1.7 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
93.2.m.b.76.2 24 31.13 odd 30
93.2.m.b.82.2 yes 24 31.12 odd 30
279.2.y.d.82.2 24 93.74 even 30
279.2.y.d.262.2 24 93.44 even 30
2883.2.a.s.1.6 12 1.1 even 1 trivial
2883.2.a.t.1.6 12 31.30 odd 2
8649.2.a.bk.1.7 12 93.92 even 2
8649.2.a.bl.1.7 12 3.2 odd 2