Properties

Label 2883.2.a.n.1.7
Level $2883$
Weight $2$
Character 2883.1
Self dual yes
Analytic conductor $23.021$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2883,2,Mod(1,2883)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2883, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2883.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2883 = 3 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2883.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-5,8,5,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0208709027\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.1697203125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 5x^{6} + 12x^{5} + 9x^{4} - 12x^{3} - 5x^{2} + 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 93)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(1.77306\) of defining polynomial
Character \(\chi\) \(=\) 2883.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.773055 q^{2} +1.00000 q^{3} -1.40239 q^{4} -1.75478 q^{5} +0.773055 q^{6} +1.30487 q^{7} -2.63023 q^{8} +1.00000 q^{9} -1.35654 q^{10} +0.697276 q^{11} -1.40239 q^{12} -3.01220 q^{13} +1.00873 q^{14} -1.75478 q^{15} +0.771457 q^{16} +4.35161 q^{17} +0.773055 q^{18} +3.38600 q^{19} +2.46087 q^{20} +1.30487 q^{21} +0.539033 q^{22} -4.50106 q^{23} -2.63023 q^{24} -1.92076 q^{25} -2.32860 q^{26} +1.00000 q^{27} -1.82992 q^{28} -3.70329 q^{29} -1.35654 q^{30} +5.85684 q^{32} +0.697276 q^{33} +3.36404 q^{34} -2.28975 q^{35} -1.40239 q^{36} -10.5634 q^{37} +2.61756 q^{38} -3.01220 q^{39} +4.61547 q^{40} -4.60973 q^{41} +1.00873 q^{42} +5.22158 q^{43} -0.977850 q^{44} -1.75478 q^{45} -3.47957 q^{46} -4.89455 q^{47} +0.771457 q^{48} -5.29733 q^{49} -1.48485 q^{50} +4.35161 q^{51} +4.22426 q^{52} +13.7088 q^{53} +0.773055 q^{54} -1.22356 q^{55} -3.43210 q^{56} +3.38600 q^{57} -2.86285 q^{58} -4.66377 q^{59} +2.46087 q^{60} -13.2621 q^{61} +1.30487 q^{63} +2.98475 q^{64} +5.28574 q^{65} +0.539033 q^{66} -4.86707 q^{67} -6.10264 q^{68} -4.50106 q^{69} -1.77010 q^{70} -14.1021 q^{71} -2.63023 q^{72} +10.0283 q^{73} -8.16612 q^{74} -1.92076 q^{75} -4.74847 q^{76} +0.909852 q^{77} -2.32860 q^{78} -11.6809 q^{79} -1.35374 q^{80} +1.00000 q^{81} -3.56358 q^{82} +0.0923387 q^{83} -1.82992 q^{84} -7.63611 q^{85} +4.03657 q^{86} -3.70329 q^{87} -1.83400 q^{88} -6.43167 q^{89} -1.35654 q^{90} -3.93051 q^{91} +6.31222 q^{92} -3.78376 q^{94} -5.94167 q^{95} +5.85684 q^{96} +2.36201 q^{97} -4.09513 q^{98} +0.697276 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 5 q^{2} + 8 q^{3} + 5 q^{4} - 6 q^{5} - 5 q^{6} - 6 q^{7} + 8 q^{9} + q^{10} + 5 q^{12} - 12 q^{13} - 3 q^{14} - 6 q^{15} + 3 q^{16} - 2 q^{17} - 5 q^{18} - 8 q^{19} - 5 q^{20} - 6 q^{21} - 4 q^{22}+ \cdots + 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.773055 0.546633 0.273316 0.961924i \(-0.411879\pi\)
0.273316 + 0.961924i \(0.411879\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.40239 −0.701193
\(5\) −1.75478 −0.784760 −0.392380 0.919803i \(-0.628348\pi\)
−0.392380 + 0.919803i \(0.628348\pi\)
\(6\) 0.773055 0.315598
\(7\) 1.30487 0.493193 0.246596 0.969118i \(-0.420688\pi\)
0.246596 + 0.969118i \(0.420688\pi\)
\(8\) −2.63023 −0.929927
\(9\) 1.00000 0.333333
\(10\) −1.35654 −0.428975
\(11\) 0.697276 0.210237 0.105118 0.994460i \(-0.466478\pi\)
0.105118 + 0.994460i \(0.466478\pi\)
\(12\) −1.40239 −0.404834
\(13\) −3.01220 −0.835433 −0.417717 0.908577i \(-0.637170\pi\)
−0.417717 + 0.908577i \(0.637170\pi\)
\(14\) 1.00873 0.269595
\(15\) −1.75478 −0.453081
\(16\) 0.771457 0.192864
\(17\) 4.35161 1.05542 0.527711 0.849424i \(-0.323051\pi\)
0.527711 + 0.849424i \(0.323051\pi\)
\(18\) 0.773055 0.182211
\(19\) 3.38600 0.776801 0.388400 0.921491i \(-0.373028\pi\)
0.388400 + 0.921491i \(0.373028\pi\)
\(20\) 2.46087 0.550268
\(21\) 1.30487 0.284745
\(22\) 0.539033 0.114922
\(23\) −4.50106 −0.938536 −0.469268 0.883056i \(-0.655482\pi\)
−0.469268 + 0.883056i \(0.655482\pi\)
\(24\) −2.63023 −0.536894
\(25\) −1.92076 −0.384152
\(26\) −2.32860 −0.456675
\(27\) 1.00000 0.192450
\(28\) −1.82992 −0.345823
\(29\) −3.70329 −0.687684 −0.343842 0.939027i \(-0.611728\pi\)
−0.343842 + 0.939027i \(0.611728\pi\)
\(30\) −1.35654 −0.247669
\(31\) 0 0
\(32\) 5.85684 1.03535
\(33\) 0.697276 0.121380
\(34\) 3.36404 0.576928
\(35\) −2.28975 −0.387038
\(36\) −1.40239 −0.233731
\(37\) −10.5634 −1.73662 −0.868310 0.496023i \(-0.834793\pi\)
−0.868310 + 0.496023i \(0.834793\pi\)
\(38\) 2.61756 0.424625
\(39\) −3.01220 −0.482338
\(40\) 4.61547 0.729770
\(41\) −4.60973 −0.719919 −0.359960 0.932968i \(-0.617210\pi\)
−0.359960 + 0.932968i \(0.617210\pi\)
\(42\) 1.00873 0.155651
\(43\) 5.22158 0.796283 0.398142 0.917324i \(-0.369655\pi\)
0.398142 + 0.917324i \(0.369655\pi\)
\(44\) −0.977850 −0.147416
\(45\) −1.75478 −0.261587
\(46\) −3.47957 −0.513034
\(47\) −4.89455 −0.713944 −0.356972 0.934115i \(-0.616191\pi\)
−0.356972 + 0.934115i \(0.616191\pi\)
\(48\) 0.771457 0.111350
\(49\) −5.29733 −0.756761
\(50\) −1.48485 −0.209990
\(51\) 4.35161 0.609348
\(52\) 4.22426 0.585800
\(53\) 13.7088 1.88305 0.941523 0.336948i \(-0.109395\pi\)
0.941523 + 0.336948i \(0.109395\pi\)
\(54\) 0.773055 0.105199
\(55\) −1.22356 −0.164985
\(56\) −3.43210 −0.458633
\(57\) 3.38600 0.448486
\(58\) −2.86285 −0.375911
\(59\) −4.66377 −0.607171 −0.303585 0.952804i \(-0.598184\pi\)
−0.303585 + 0.952804i \(0.598184\pi\)
\(60\) 2.46087 0.317697
\(61\) −13.2621 −1.69804 −0.849021 0.528359i \(-0.822808\pi\)
−0.849021 + 0.528359i \(0.822808\pi\)
\(62\) 0 0
\(63\) 1.30487 0.164398
\(64\) 2.98475 0.373094
\(65\) 5.28574 0.655615
\(66\) 0.539033 0.0663504
\(67\) −4.86707 −0.594607 −0.297304 0.954783i \(-0.596087\pi\)
−0.297304 + 0.954783i \(0.596087\pi\)
\(68\) −6.10264 −0.740054
\(69\) −4.50106 −0.541864
\(70\) −1.77010 −0.211568
\(71\) −14.1021 −1.67361 −0.836804 0.547502i \(-0.815579\pi\)
−0.836804 + 0.547502i \(0.815579\pi\)
\(72\) −2.63023 −0.309976
\(73\) 10.0283 1.17372 0.586861 0.809688i \(-0.300363\pi\)
0.586861 + 0.809688i \(0.300363\pi\)
\(74\) −8.16612 −0.949293
\(75\) −1.92076 −0.221790
\(76\) −4.74847 −0.544687
\(77\) 0.909852 0.103687
\(78\) −2.32860 −0.263661
\(79\) −11.6809 −1.31421 −0.657103 0.753801i \(-0.728218\pi\)
−0.657103 + 0.753801i \(0.728218\pi\)
\(80\) −1.35374 −0.151352
\(81\) 1.00000 0.111111
\(82\) −3.56358 −0.393531
\(83\) 0.0923387 0.0101355 0.00506775 0.999987i \(-0.498387\pi\)
0.00506775 + 0.999987i \(0.498387\pi\)
\(84\) −1.82992 −0.199661
\(85\) −7.63611 −0.828252
\(86\) 4.03657 0.435274
\(87\) −3.70329 −0.397035
\(88\) −1.83400 −0.195505
\(89\) −6.43167 −0.681755 −0.340878 0.940108i \(-0.610724\pi\)
−0.340878 + 0.940108i \(0.610724\pi\)
\(90\) −1.35654 −0.142992
\(91\) −3.93051 −0.412030
\(92\) 6.31222 0.658095
\(93\) 0 0
\(94\) −3.78376 −0.390265
\(95\) −5.94167 −0.609602
\(96\) 5.85684 0.597761
\(97\) 2.36201 0.239826 0.119913 0.992784i \(-0.461738\pi\)
0.119913 + 0.992784i \(0.461738\pi\)
\(98\) −4.09513 −0.413670
\(99\) 0.697276 0.0700789
\(100\) 2.69364 0.269364
\(101\) −4.27380 −0.425259 −0.212629 0.977133i \(-0.568203\pi\)
−0.212629 + 0.977133i \(0.568203\pi\)
\(102\) 3.36404 0.333089
\(103\) −6.02603 −0.593762 −0.296881 0.954914i \(-0.595947\pi\)
−0.296881 + 0.954914i \(0.595947\pi\)
\(104\) 7.92278 0.776892
\(105\) −2.28975 −0.223456
\(106\) 10.5976 1.02933
\(107\) −13.8422 −1.33817 −0.669086 0.743185i \(-0.733314\pi\)
−0.669086 + 0.743185i \(0.733314\pi\)
\(108\) −1.40239 −0.134945
\(109\) −16.7473 −1.60410 −0.802052 0.597254i \(-0.796258\pi\)
−0.802052 + 0.597254i \(0.796258\pi\)
\(110\) −0.945883 −0.0901864
\(111\) −10.5634 −1.00264
\(112\) 1.00665 0.0951193
\(113\) 19.8589 1.86817 0.934085 0.357050i \(-0.116218\pi\)
0.934085 + 0.357050i \(0.116218\pi\)
\(114\) 2.61756 0.245157
\(115\) 7.89836 0.736526
\(116\) 5.19344 0.482199
\(117\) −3.01220 −0.278478
\(118\) −3.60535 −0.331899
\(119\) 5.67827 0.520526
\(120\) 4.61547 0.421333
\(121\) −10.5138 −0.955801
\(122\) −10.2524 −0.928205
\(123\) −4.60973 −0.415646
\(124\) 0 0
\(125\) 12.1444 1.08623
\(126\) 1.00873 0.0898651
\(127\) 6.60604 0.586191 0.293096 0.956083i \(-0.405315\pi\)
0.293096 + 0.956083i \(0.405315\pi\)
\(128\) −9.40631 −0.831408
\(129\) 5.22158 0.459734
\(130\) 4.08617 0.358380
\(131\) −4.88867 −0.427125 −0.213563 0.976929i \(-0.568507\pi\)
−0.213563 + 0.976929i \(0.568507\pi\)
\(132\) −0.977850 −0.0851109
\(133\) 4.41827 0.383113
\(134\) −3.76251 −0.325032
\(135\) −1.75478 −0.151027
\(136\) −11.4458 −0.981465
\(137\) 13.2554 1.13248 0.566242 0.824239i \(-0.308397\pi\)
0.566242 + 0.824239i \(0.308397\pi\)
\(138\) −3.47957 −0.296200
\(139\) 0.0599152 0.00508194 0.00254097 0.999997i \(-0.499191\pi\)
0.00254097 + 0.999997i \(0.499191\pi\)
\(140\) 3.21111 0.271388
\(141\) −4.89455 −0.412196
\(142\) −10.9017 −0.914849
\(143\) −2.10033 −0.175639
\(144\) 0.771457 0.0642881
\(145\) 6.49845 0.539667
\(146\) 7.75242 0.641595
\(147\) −5.29733 −0.436916
\(148\) 14.8140 1.21771
\(149\) 1.10616 0.0906198 0.0453099 0.998973i \(-0.485572\pi\)
0.0453099 + 0.998973i \(0.485572\pi\)
\(150\) −1.48485 −0.121238
\(151\) 6.50260 0.529174 0.264587 0.964362i \(-0.414764\pi\)
0.264587 + 0.964362i \(0.414764\pi\)
\(152\) −8.90596 −0.722368
\(153\) 4.35161 0.351807
\(154\) 0.703365 0.0566788
\(155\) 0 0
\(156\) 4.22426 0.338212
\(157\) −11.6972 −0.933535 −0.466767 0.884380i \(-0.654581\pi\)
−0.466767 + 0.884380i \(0.654581\pi\)
\(158\) −9.02999 −0.718387
\(159\) 13.7088 1.08718
\(160\) −10.2775 −0.812504
\(161\) −5.87328 −0.462879
\(162\) 0.773055 0.0607370
\(163\) −3.09341 −0.242294 −0.121147 0.992635i \(-0.538657\pi\)
−0.121147 + 0.992635i \(0.538657\pi\)
\(164\) 6.46462 0.504802
\(165\) −1.22356 −0.0952543
\(166\) 0.0713829 0.00554039
\(167\) −11.1412 −0.862132 −0.431066 0.902320i \(-0.641862\pi\)
−0.431066 + 0.902320i \(0.641862\pi\)
\(168\) −3.43210 −0.264792
\(169\) −3.92666 −0.302051
\(170\) −5.90313 −0.452750
\(171\) 3.38600 0.258934
\(172\) −7.32267 −0.558348
\(173\) −2.70512 −0.205666 −0.102833 0.994699i \(-0.532791\pi\)
−0.102833 + 0.994699i \(0.532791\pi\)
\(174\) −2.86285 −0.217032
\(175\) −2.50633 −0.189461
\(176\) 0.537919 0.0405471
\(177\) −4.66377 −0.350550
\(178\) −4.97203 −0.372670
\(179\) 24.1722 1.80672 0.903359 0.428886i \(-0.141094\pi\)
0.903359 + 0.428886i \(0.141094\pi\)
\(180\) 2.46087 0.183423
\(181\) 8.56648 0.636742 0.318371 0.947966i \(-0.396864\pi\)
0.318371 + 0.947966i \(0.396864\pi\)
\(182\) −3.03850 −0.225229
\(183\) −13.2621 −0.980365
\(184\) 11.8388 0.872770
\(185\) 18.5365 1.36283
\(186\) 0 0
\(187\) 3.03428 0.221888
\(188\) 6.86405 0.500613
\(189\) 1.30487 0.0949150
\(190\) −4.59324 −0.333228
\(191\) 23.4530 1.69700 0.848498 0.529198i \(-0.177507\pi\)
0.848498 + 0.529198i \(0.177507\pi\)
\(192\) 2.98475 0.215406
\(193\) −1.53696 −0.110633 −0.0553164 0.998469i \(-0.517617\pi\)
−0.0553164 + 0.998469i \(0.517617\pi\)
\(194\) 1.82597 0.131097
\(195\) 5.28574 0.378519
\(196\) 7.42890 0.530635
\(197\) 0.944824 0.0673159 0.0336580 0.999433i \(-0.489284\pi\)
0.0336580 + 0.999433i \(0.489284\pi\)
\(198\) 0.539033 0.0383074
\(199\) −13.9360 −0.987899 −0.493950 0.869491i \(-0.664447\pi\)
−0.493950 + 0.869491i \(0.664447\pi\)
\(200\) 5.05204 0.357233
\(201\) −4.86707 −0.343297
\(202\) −3.30388 −0.232460
\(203\) −4.83230 −0.339161
\(204\) −6.10264 −0.427270
\(205\) 8.08905 0.564964
\(206\) −4.65845 −0.324570
\(207\) −4.50106 −0.312845
\(208\) −2.32378 −0.161125
\(209\) 2.36097 0.163312
\(210\) −1.77010 −0.122149
\(211\) −3.16978 −0.218217 −0.109108 0.994030i \(-0.534800\pi\)
−0.109108 + 0.994030i \(0.534800\pi\)
\(212\) −19.2250 −1.32038
\(213\) −14.1021 −0.966258
\(214\) −10.7008 −0.731489
\(215\) −9.16271 −0.624892
\(216\) −2.63023 −0.178965
\(217\) 0 0
\(218\) −12.9466 −0.876855
\(219\) 10.0283 0.677649
\(220\) 1.71591 0.115687
\(221\) −13.1079 −0.881734
\(222\) −8.16612 −0.548074
\(223\) 8.52766 0.571054 0.285527 0.958371i \(-0.407831\pi\)
0.285527 + 0.958371i \(0.407831\pi\)
\(224\) 7.64239 0.510629
\(225\) −1.92076 −0.128051
\(226\) 15.3520 1.02120
\(227\) −28.1360 −1.86745 −0.933726 0.357989i \(-0.883462\pi\)
−0.933726 + 0.357989i \(0.883462\pi\)
\(228\) −4.74847 −0.314475
\(229\) 4.42919 0.292689 0.146344 0.989234i \(-0.453249\pi\)
0.146344 + 0.989234i \(0.453249\pi\)
\(230\) 6.10587 0.402609
\(231\) 0.909852 0.0598638
\(232\) 9.74052 0.639496
\(233\) 0.0478018 0.00313160 0.00156580 0.999999i \(-0.499502\pi\)
0.00156580 + 0.999999i \(0.499502\pi\)
\(234\) −2.32860 −0.152225
\(235\) 8.58885 0.560275
\(236\) 6.54040 0.425744
\(237\) −11.6809 −0.758757
\(238\) 4.38961 0.284536
\(239\) 14.8152 0.958318 0.479159 0.877728i \(-0.340942\pi\)
0.479159 + 0.877728i \(0.340942\pi\)
\(240\) −1.35374 −0.0873832
\(241\) 5.07946 0.327197 0.163598 0.986527i \(-0.447690\pi\)
0.163598 + 0.986527i \(0.447690\pi\)
\(242\) −8.12775 −0.522472
\(243\) 1.00000 0.0641500
\(244\) 18.5986 1.19066
\(245\) 9.29563 0.593876
\(246\) −3.56358 −0.227205
\(247\) −10.1993 −0.648965
\(248\) 0 0
\(249\) 0.0923387 0.00585173
\(250\) 9.38828 0.593767
\(251\) 8.30207 0.524022 0.262011 0.965065i \(-0.415614\pi\)
0.262011 + 0.965065i \(0.415614\pi\)
\(252\) −1.82992 −0.115274
\(253\) −3.13848 −0.197315
\(254\) 5.10683 0.320431
\(255\) −7.63611 −0.478192
\(256\) −13.2411 −0.827568
\(257\) −17.7288 −1.10589 −0.552946 0.833217i \(-0.686496\pi\)
−0.552946 + 0.833217i \(0.686496\pi\)
\(258\) 4.03657 0.251306
\(259\) −13.7839 −0.856488
\(260\) −7.41264 −0.459712
\(261\) −3.70329 −0.229228
\(262\) −3.77921 −0.233481
\(263\) −1.24321 −0.0766598 −0.0383299 0.999265i \(-0.512204\pi\)
−0.0383299 + 0.999265i \(0.512204\pi\)
\(264\) −1.83400 −0.112875
\(265\) −24.0559 −1.47774
\(266\) 3.41557 0.209422
\(267\) −6.43167 −0.393612
\(268\) 6.82551 0.416934
\(269\) −19.7286 −1.20288 −0.601438 0.798920i \(-0.705405\pi\)
−0.601438 + 0.798920i \(0.705405\pi\)
\(270\) −1.35654 −0.0825564
\(271\) −14.0605 −0.854116 −0.427058 0.904224i \(-0.640450\pi\)
−0.427058 + 0.904224i \(0.640450\pi\)
\(272\) 3.35708 0.203553
\(273\) −3.93051 −0.237885
\(274\) 10.2472 0.619053
\(275\) −1.33930 −0.0807628
\(276\) 6.31222 0.379951
\(277\) −9.57269 −0.575167 −0.287584 0.957756i \(-0.592852\pi\)
−0.287584 + 0.957756i \(0.592852\pi\)
\(278\) 0.0463178 0.00277796
\(279\) 0 0
\(280\) 6.02257 0.359917
\(281\) −0.746512 −0.0445332 −0.0222666 0.999752i \(-0.507088\pi\)
−0.0222666 + 0.999752i \(0.507088\pi\)
\(282\) −3.78376 −0.225320
\(283\) 30.0863 1.78844 0.894222 0.447624i \(-0.147730\pi\)
0.894222 + 0.447624i \(0.147730\pi\)
\(284\) 19.7766 1.17352
\(285\) −5.94167 −0.351954
\(286\) −1.62367 −0.0960099
\(287\) −6.01508 −0.355059
\(288\) 5.85684 0.345118
\(289\) 1.93653 0.113914
\(290\) 5.02366 0.295000
\(291\) 2.36201 0.138464
\(292\) −14.0635 −0.823006
\(293\) 17.6615 1.03180 0.515898 0.856650i \(-0.327458\pi\)
0.515898 + 0.856650i \(0.327458\pi\)
\(294\) −4.09513 −0.238833
\(295\) 8.18387 0.476483
\(296\) 27.7843 1.61493
\(297\) 0.697276 0.0404601
\(298\) 0.855119 0.0495357
\(299\) 13.5581 0.784084
\(300\) 2.69364 0.155518
\(301\) 6.81346 0.392721
\(302\) 5.02687 0.289264
\(303\) −4.27380 −0.245523
\(304\) 2.61215 0.149817
\(305\) 23.2721 1.33256
\(306\) 3.36404 0.192309
\(307\) 30.6165 1.74737 0.873687 0.486489i \(-0.161723\pi\)
0.873687 + 0.486489i \(0.161723\pi\)
\(308\) −1.27596 −0.0727047
\(309\) −6.02603 −0.342809
\(310\) 0 0
\(311\) −27.1240 −1.53806 −0.769030 0.639213i \(-0.779260\pi\)
−0.769030 + 0.639213i \(0.779260\pi\)
\(312\) 7.92278 0.448539
\(313\) 25.4615 1.43917 0.719586 0.694403i \(-0.244332\pi\)
0.719586 + 0.694403i \(0.244332\pi\)
\(314\) −9.04255 −0.510301
\(315\) −2.28975 −0.129013
\(316\) 16.3811 0.921511
\(317\) 21.4972 1.20740 0.603700 0.797211i \(-0.293692\pi\)
0.603700 + 0.797211i \(0.293692\pi\)
\(318\) 10.5976 0.594287
\(319\) −2.58222 −0.144576
\(320\) −5.23757 −0.292789
\(321\) −13.8422 −0.772594
\(322\) −4.54037 −0.253025
\(323\) 14.7345 0.819852
\(324\) −1.40239 −0.0779103
\(325\) 5.78570 0.320933
\(326\) −2.39137 −0.132446
\(327\) −16.7473 −0.926130
\(328\) 12.1247 0.669473
\(329\) −6.38673 −0.352112
\(330\) −0.945883 −0.0520691
\(331\) 13.1974 0.725393 0.362696 0.931907i \(-0.381856\pi\)
0.362696 + 0.931907i \(0.381856\pi\)
\(332\) −0.129495 −0.00710693
\(333\) −10.5634 −0.578873
\(334\) −8.61277 −0.471270
\(335\) 8.54062 0.466624
\(336\) 1.00665 0.0549171
\(337\) 2.21139 0.120462 0.0602311 0.998184i \(-0.480816\pi\)
0.0602311 + 0.998184i \(0.480816\pi\)
\(338\) −3.03553 −0.165111
\(339\) 19.8589 1.07859
\(340\) 10.7088 0.580765
\(341\) 0 0
\(342\) 2.61756 0.141542
\(343\) −16.0464 −0.866422
\(344\) −13.7340 −0.740486
\(345\) 7.89836 0.425233
\(346\) −2.09121 −0.112424
\(347\) −7.78395 −0.417864 −0.208932 0.977930i \(-0.566999\pi\)
−0.208932 + 0.977930i \(0.566999\pi\)
\(348\) 5.19344 0.278398
\(349\) 16.4768 0.881982 0.440991 0.897512i \(-0.354627\pi\)
0.440991 + 0.897512i \(0.354627\pi\)
\(350\) −1.93753 −0.103565
\(351\) −3.01220 −0.160779
\(352\) 4.08384 0.217669
\(353\) 32.0848 1.70770 0.853850 0.520519i \(-0.174262\pi\)
0.853850 + 0.520519i \(0.174262\pi\)
\(354\) −3.60535 −0.191622
\(355\) 24.7460 1.31338
\(356\) 9.01968 0.478042
\(357\) 5.67827 0.300526
\(358\) 18.6865 0.987611
\(359\) 27.9610 1.47572 0.737862 0.674951i \(-0.235835\pi\)
0.737862 + 0.674951i \(0.235835\pi\)
\(360\) 4.61547 0.243257
\(361\) −7.53503 −0.396580
\(362\) 6.62236 0.348064
\(363\) −10.5138 −0.551832
\(364\) 5.51209 0.288912
\(365\) −17.5974 −0.921091
\(366\) −10.2524 −0.535900
\(367\) −16.2554 −0.848525 −0.424262 0.905539i \(-0.639467\pi\)
−0.424262 + 0.905539i \(0.639467\pi\)
\(368\) −3.47237 −0.181010
\(369\) −4.60973 −0.239973
\(370\) 14.3297 0.744967
\(371\) 17.8881 0.928705
\(372\) 0 0
\(373\) 14.4593 0.748674 0.374337 0.927293i \(-0.377870\pi\)
0.374337 + 0.927293i \(0.377870\pi\)
\(374\) 2.34566 0.121291
\(375\) 12.1444 0.627133
\(376\) 12.8738 0.663916
\(377\) 11.1550 0.574514
\(378\) 1.00873 0.0518836
\(379\) −17.5005 −0.898938 −0.449469 0.893296i \(-0.648387\pi\)
−0.449469 + 0.893296i \(0.648387\pi\)
\(380\) 8.33251 0.427449
\(381\) 6.60604 0.338438
\(382\) 18.1304 0.927634
\(383\) −12.0938 −0.617965 −0.308983 0.951068i \(-0.599989\pi\)
−0.308983 + 0.951068i \(0.599989\pi\)
\(384\) −9.40631 −0.480014
\(385\) −1.59659 −0.0813696
\(386\) −1.18816 −0.0604755
\(387\) 5.22158 0.265428
\(388\) −3.31245 −0.168164
\(389\) 7.97101 0.404146 0.202073 0.979370i \(-0.435232\pi\)
0.202073 + 0.979370i \(0.435232\pi\)
\(390\) 4.08617 0.206911
\(391\) −19.5869 −0.990551
\(392\) 13.9332 0.703733
\(393\) −4.88867 −0.246601
\(394\) 0.730401 0.0367971
\(395\) 20.4974 1.03134
\(396\) −0.977850 −0.0491388
\(397\) −19.4337 −0.975348 −0.487674 0.873026i \(-0.662155\pi\)
−0.487674 + 0.873026i \(0.662155\pi\)
\(398\) −10.7733 −0.540018
\(399\) 4.41827 0.221190
\(400\) −1.48178 −0.0740891
\(401\) −6.49266 −0.324228 −0.162114 0.986772i \(-0.551831\pi\)
−0.162114 + 0.986772i \(0.551831\pi\)
\(402\) −3.76251 −0.187657
\(403\) 0 0
\(404\) 5.99351 0.298188
\(405\) −1.75478 −0.0871956
\(406\) −3.73563 −0.185396
\(407\) −7.36564 −0.365101
\(408\) −11.4458 −0.566649
\(409\) −10.5829 −0.523291 −0.261646 0.965164i \(-0.584265\pi\)
−0.261646 + 0.965164i \(0.584265\pi\)
\(410\) 6.25328 0.308828
\(411\) 13.2554 0.653840
\(412\) 8.45082 0.416342
\(413\) −6.08559 −0.299452
\(414\) −3.47957 −0.171011
\(415\) −0.162034 −0.00795393
\(416\) −17.6420 −0.864969
\(417\) 0.0599152 0.00293406
\(418\) 1.82516 0.0892717
\(419\) −24.0990 −1.17731 −0.588656 0.808384i \(-0.700343\pi\)
−0.588656 + 0.808384i \(0.700343\pi\)
\(420\) 3.21111 0.156686
\(421\) 16.6514 0.811540 0.405770 0.913975i \(-0.367003\pi\)
0.405770 + 0.913975i \(0.367003\pi\)
\(422\) −2.45042 −0.119284
\(423\) −4.89455 −0.237981
\(424\) −36.0573 −1.75110
\(425\) −8.35839 −0.405442
\(426\) −10.9017 −0.528188
\(427\) −17.3053 −0.837462
\(428\) 19.4120 0.938317
\(429\) −2.10033 −0.101405
\(430\) −7.08328 −0.341586
\(431\) 38.4425 1.85171 0.925855 0.377878i \(-0.123346\pi\)
0.925855 + 0.377878i \(0.123346\pi\)
\(432\) 0.771457 0.0371167
\(433\) −26.0635 −1.25253 −0.626265 0.779610i \(-0.715417\pi\)
−0.626265 + 0.779610i \(0.715417\pi\)
\(434\) 0 0
\(435\) 6.49845 0.311577
\(436\) 23.4862 1.12479
\(437\) −15.2406 −0.729055
\(438\) 7.75242 0.370425
\(439\) 0.979258 0.0467374 0.0233687 0.999727i \(-0.492561\pi\)
0.0233687 + 0.999727i \(0.492561\pi\)
\(440\) 3.21826 0.153424
\(441\) −5.29733 −0.252254
\(442\) −10.1331 −0.481985
\(443\) −19.3542 −0.919547 −0.459774 0.888036i \(-0.652069\pi\)
−0.459774 + 0.888036i \(0.652069\pi\)
\(444\) 14.8140 0.703042
\(445\) 11.2861 0.535014
\(446\) 6.59235 0.312157
\(447\) 1.10616 0.0523194
\(448\) 3.89469 0.184007
\(449\) 2.57427 0.121488 0.0607438 0.998153i \(-0.480653\pi\)
0.0607438 + 0.998153i \(0.480653\pi\)
\(450\) −1.48485 −0.0699966
\(451\) −3.21426 −0.151353
\(452\) −27.8499 −1.30995
\(453\) 6.50260 0.305519
\(454\) −21.7507 −1.02081
\(455\) 6.89717 0.323344
\(456\) −8.90596 −0.417060
\(457\) 30.3760 1.42093 0.710465 0.703733i \(-0.248485\pi\)
0.710465 + 0.703733i \(0.248485\pi\)
\(458\) 3.42401 0.159993
\(459\) 4.35161 0.203116
\(460\) −11.0765 −0.516446
\(461\) −5.65416 −0.263340 −0.131670 0.991294i \(-0.542034\pi\)
−0.131670 + 0.991294i \(0.542034\pi\)
\(462\) 0.703365 0.0327235
\(463\) 1.17124 0.0544321 0.0272160 0.999630i \(-0.491336\pi\)
0.0272160 + 0.999630i \(0.491336\pi\)
\(464\) −2.85693 −0.132630
\(465\) 0 0
\(466\) 0.0369534 0.00171183
\(467\) −27.7924 −1.28608 −0.643039 0.765833i \(-0.722327\pi\)
−0.643039 + 0.765833i \(0.722327\pi\)
\(468\) 4.22426 0.195267
\(469\) −6.35087 −0.293256
\(470\) 6.63966 0.306264
\(471\) −11.6972 −0.538977
\(472\) 12.2668 0.564625
\(473\) 3.64088 0.167408
\(474\) −9.02999 −0.414761
\(475\) −6.50368 −0.298409
\(476\) −7.96312 −0.364989
\(477\) 13.7088 0.627682
\(478\) 11.4530 0.523848
\(479\) 25.0606 1.14505 0.572524 0.819888i \(-0.305964\pi\)
0.572524 + 0.819888i \(0.305964\pi\)
\(480\) −10.2775 −0.469099
\(481\) 31.8192 1.45083
\(482\) 3.92670 0.178856
\(483\) −5.87328 −0.267243
\(484\) 14.7444 0.670201
\(485\) −4.14481 −0.188206
\(486\) 0.773055 0.0350665
\(487\) −35.7351 −1.61931 −0.809655 0.586906i \(-0.800346\pi\)
−0.809655 + 0.586906i \(0.800346\pi\)
\(488\) 34.8825 1.57906
\(489\) −3.09341 −0.139889
\(490\) 7.18603 0.324632
\(491\) −7.75165 −0.349827 −0.174913 0.984584i \(-0.555965\pi\)
−0.174913 + 0.984584i \(0.555965\pi\)
\(492\) 6.46462 0.291448
\(493\) −16.1153 −0.725796
\(494\) −7.88461 −0.354746
\(495\) −1.22356 −0.0549951
\(496\) 0 0
\(497\) −18.4013 −0.825412
\(498\) 0.0713829 0.00319875
\(499\) −31.4079 −1.40601 −0.703005 0.711185i \(-0.748159\pi\)
−0.703005 + 0.711185i \(0.748159\pi\)
\(500\) −17.0311 −0.761655
\(501\) −11.1412 −0.497752
\(502\) 6.41796 0.286447
\(503\) 26.8130 1.19553 0.597766 0.801671i \(-0.296055\pi\)
0.597766 + 0.801671i \(0.296055\pi\)
\(504\) −3.43210 −0.152878
\(505\) 7.49956 0.333726
\(506\) −2.42622 −0.107859
\(507\) −3.92666 −0.174389
\(508\) −9.26422 −0.411033
\(509\) 21.1073 0.935564 0.467782 0.883844i \(-0.345053\pi\)
0.467782 + 0.883844i \(0.345053\pi\)
\(510\) −5.90313 −0.261395
\(511\) 13.0856 0.578871
\(512\) 8.57652 0.379032
\(513\) 3.38600 0.149495
\(514\) −13.7053 −0.604516
\(515\) 10.5743 0.465961
\(516\) −7.32267 −0.322363
\(517\) −3.41286 −0.150097
\(518\) −10.6557 −0.468184
\(519\) −2.70512 −0.118741
\(520\) −13.9027 −0.609674
\(521\) 26.9948 1.18266 0.591332 0.806428i \(-0.298602\pi\)
0.591332 + 0.806428i \(0.298602\pi\)
\(522\) −2.86285 −0.125304
\(523\) 4.43450 0.193907 0.0969535 0.995289i \(-0.469090\pi\)
0.0969535 + 0.995289i \(0.469090\pi\)
\(524\) 6.85581 0.299497
\(525\) −2.50633 −0.109385
\(526\) −0.961072 −0.0419047
\(527\) 0 0
\(528\) 0.537919 0.0234099
\(529\) −2.74046 −0.119150
\(530\) −18.5965 −0.807781
\(531\) −4.66377 −0.202390
\(532\) −6.19612 −0.268636
\(533\) 13.8854 0.601444
\(534\) −4.97203 −0.215161
\(535\) 24.2899 1.05014
\(536\) 12.8015 0.552941
\(537\) 24.1722 1.04311
\(538\) −15.2513 −0.657531
\(539\) −3.69370 −0.159099
\(540\) 2.46087 0.105899
\(541\) −33.0353 −1.42030 −0.710150 0.704050i \(-0.751373\pi\)
−0.710150 + 0.704050i \(0.751373\pi\)
\(542\) −10.8696 −0.466887
\(543\) 8.56648 0.367623
\(544\) 25.4867 1.09273
\(545\) 29.3878 1.25884
\(546\) −3.03850 −0.130036
\(547\) −36.9117 −1.57823 −0.789115 0.614245i \(-0.789461\pi\)
−0.789115 + 0.614245i \(0.789461\pi\)
\(548\) −18.5892 −0.794090
\(549\) −13.2621 −0.566014
\(550\) −1.03535 −0.0441475
\(551\) −12.5393 −0.534194
\(552\) 11.8388 0.503894
\(553\) −15.2420 −0.648156
\(554\) −7.40022 −0.314405
\(555\) 18.5365 0.786830
\(556\) −0.0840243 −0.00356342
\(557\) 45.3487 1.92149 0.960744 0.277437i \(-0.0894850\pi\)
0.960744 + 0.277437i \(0.0894850\pi\)
\(558\) 0 0
\(559\) −15.7284 −0.665242
\(560\) −1.76644 −0.0746458
\(561\) 3.03428 0.128107
\(562\) −0.577095 −0.0243433
\(563\) −6.00705 −0.253167 −0.126584 0.991956i \(-0.540401\pi\)
−0.126584 + 0.991956i \(0.540401\pi\)
\(564\) 6.86405 0.289029
\(565\) −34.8480 −1.46607
\(566\) 23.2584 0.977622
\(567\) 1.30487 0.0547992
\(568\) 37.0917 1.55633
\(569\) 43.7995 1.83617 0.918086 0.396381i \(-0.129734\pi\)
0.918086 + 0.396381i \(0.129734\pi\)
\(570\) −4.59324 −0.192390
\(571\) −24.7649 −1.03638 −0.518190 0.855265i \(-0.673394\pi\)
−0.518190 + 0.855265i \(0.673394\pi\)
\(572\) 2.94548 0.123157
\(573\) 23.4530 0.979762
\(574\) −4.64999 −0.194087
\(575\) 8.64545 0.360540
\(576\) 2.98475 0.124365
\(577\) −23.1812 −0.965045 −0.482523 0.875883i \(-0.660279\pi\)
−0.482523 + 0.875883i \(0.660279\pi\)
\(578\) 1.49705 0.0622690
\(579\) −1.53696 −0.0638739
\(580\) −9.11334 −0.378411
\(581\) 0.120490 0.00499875
\(582\) 1.82597 0.0756887
\(583\) 9.55881 0.395885
\(584\) −26.3767 −1.09148
\(585\) 5.28574 0.218538
\(586\) 13.6533 0.564014
\(587\) 17.5502 0.724374 0.362187 0.932106i \(-0.382030\pi\)
0.362187 + 0.932106i \(0.382030\pi\)
\(588\) 7.42890 0.306362
\(589\) 0 0
\(590\) 6.32658 0.260461
\(591\) 0.944824 0.0388649
\(592\) −8.14924 −0.334932
\(593\) −11.4099 −0.468549 −0.234275 0.972170i \(-0.575271\pi\)
−0.234275 + 0.972170i \(0.575271\pi\)
\(594\) 0.539033 0.0221168
\(595\) −9.96410 −0.408488
\(596\) −1.55126 −0.0635420
\(597\) −13.9360 −0.570364
\(598\) 10.4811 0.428606
\(599\) 22.9201 0.936490 0.468245 0.883599i \(-0.344886\pi\)
0.468245 + 0.883599i \(0.344886\pi\)
\(600\) 5.05204 0.206249
\(601\) 31.1666 1.27131 0.635655 0.771973i \(-0.280730\pi\)
0.635655 + 0.771973i \(0.280730\pi\)
\(602\) 5.26718 0.214674
\(603\) −4.86707 −0.198202
\(604\) −9.11915 −0.371053
\(605\) 18.4494 0.750074
\(606\) −3.30388 −0.134211
\(607\) −33.0843 −1.34285 −0.671426 0.741072i \(-0.734318\pi\)
−0.671426 + 0.741072i \(0.734318\pi\)
\(608\) 19.8312 0.804263
\(609\) −4.83230 −0.195815
\(610\) 17.9906 0.728418
\(611\) 14.7434 0.596453
\(612\) −6.10264 −0.246685
\(613\) −24.3138 −0.982026 −0.491013 0.871152i \(-0.663373\pi\)
−0.491013 + 0.871152i \(0.663373\pi\)
\(614\) 23.6682 0.955171
\(615\) 8.08905 0.326182
\(616\) −2.39312 −0.0964216
\(617\) −3.75808 −0.151295 −0.0756474 0.997135i \(-0.524102\pi\)
−0.0756474 + 0.997135i \(0.524102\pi\)
\(618\) −4.65845 −0.187390
\(619\) −10.1016 −0.406017 −0.203009 0.979177i \(-0.565072\pi\)
−0.203009 + 0.979177i \(0.565072\pi\)
\(620\) 0 0
\(621\) −4.50106 −0.180621
\(622\) −20.9683 −0.840753
\(623\) −8.39246 −0.336237
\(624\) −2.32378 −0.0930257
\(625\) −11.7069 −0.468276
\(626\) 19.6832 0.786698
\(627\) 2.36097 0.0942883
\(628\) 16.4039 0.654588
\(629\) −45.9680 −1.83286
\(630\) −1.77010 −0.0705225
\(631\) −29.7072 −1.18263 −0.591313 0.806442i \(-0.701390\pi\)
−0.591313 + 0.806442i \(0.701390\pi\)
\(632\) 30.7235 1.22212
\(633\) −3.16978 −0.125988
\(634\) 16.6185 0.660005
\(635\) −11.5921 −0.460020
\(636\) −19.2250 −0.762321
\(637\) 15.9566 0.632223
\(638\) −1.99620 −0.0790302
\(639\) −14.1021 −0.557870
\(640\) 16.5060 0.652456
\(641\) 44.6653 1.76417 0.882087 0.471087i \(-0.156138\pi\)
0.882087 + 0.471087i \(0.156138\pi\)
\(642\) −10.7008 −0.422325
\(643\) −3.77464 −0.148857 −0.0744286 0.997226i \(-0.523713\pi\)
−0.0744286 + 0.997226i \(0.523713\pi\)
\(644\) 8.23660 0.324567
\(645\) −9.16271 −0.360781
\(646\) 11.3906 0.448158
\(647\) 32.6232 1.28255 0.641274 0.767312i \(-0.278406\pi\)
0.641274 + 0.767312i \(0.278406\pi\)
\(648\) −2.63023 −0.103325
\(649\) −3.25193 −0.127650
\(650\) 4.47267 0.175432
\(651\) 0 0
\(652\) 4.33815 0.169895
\(653\) −17.6023 −0.688832 −0.344416 0.938817i \(-0.611923\pi\)
−0.344416 + 0.938817i \(0.611923\pi\)
\(654\) −12.9466 −0.506253
\(655\) 8.57853 0.335191
\(656\) −3.55621 −0.138847
\(657\) 10.0283 0.391241
\(658\) −4.93730 −0.192476
\(659\) −15.6139 −0.608233 −0.304116 0.952635i \(-0.598361\pi\)
−0.304116 + 0.952635i \(0.598361\pi\)
\(660\) 1.71591 0.0667917
\(661\) 7.50294 0.291831 0.145915 0.989297i \(-0.453387\pi\)
0.145915 + 0.989297i \(0.453387\pi\)
\(662\) 10.2023 0.396523
\(663\) −13.1079 −0.509069
\(664\) −0.242872 −0.00942527
\(665\) −7.75308 −0.300651
\(666\) −8.16612 −0.316431
\(667\) 16.6687 0.645416
\(668\) 15.6243 0.604521
\(669\) 8.52766 0.329698
\(670\) 6.60237 0.255072
\(671\) −9.24737 −0.356991
\(672\) 7.64239 0.294812
\(673\) −33.5710 −1.29407 −0.647034 0.762461i \(-0.723991\pi\)
−0.647034 + 0.762461i \(0.723991\pi\)
\(674\) 1.70953 0.0658485
\(675\) −1.92076 −0.0739300
\(676\) 5.50670 0.211796
\(677\) 43.7099 1.67991 0.839955 0.542656i \(-0.182581\pi\)
0.839955 + 0.542656i \(0.182581\pi\)
\(678\) 15.3520 0.589592
\(679\) 3.08211 0.118280
\(680\) 20.0847 0.770215
\(681\) −28.1360 −1.07817
\(682\) 0 0
\(683\) −20.1917 −0.772615 −0.386307 0.922370i \(-0.626250\pi\)
−0.386307 + 0.922370i \(0.626250\pi\)
\(684\) −4.74847 −0.181562
\(685\) −23.2603 −0.888729
\(686\) −12.4047 −0.473614
\(687\) 4.42919 0.168984
\(688\) 4.02822 0.153575
\(689\) −41.2936 −1.57316
\(690\) 6.10587 0.232446
\(691\) −35.6758 −1.35717 −0.678586 0.734521i \(-0.737407\pi\)
−0.678586 + 0.734521i \(0.737407\pi\)
\(692\) 3.79362 0.144212
\(693\) 0.909852 0.0345624
\(694\) −6.01742 −0.228418
\(695\) −0.105138 −0.00398811
\(696\) 9.74052 0.369213
\(697\) −20.0598 −0.759818
\(698\) 12.7375 0.482120
\(699\) 0.0478018 0.00180803
\(700\) 3.51484 0.132849
\(701\) −20.6555 −0.780147 −0.390074 0.920784i \(-0.627550\pi\)
−0.390074 + 0.920784i \(0.627550\pi\)
\(702\) −2.32860 −0.0878872
\(703\) −35.7678 −1.34901
\(704\) 2.08119 0.0784379
\(705\) 8.58885 0.323475
\(706\) 24.8033 0.933484
\(707\) −5.57673 −0.209734
\(708\) 6.54040 0.245803
\(709\) −18.3550 −0.689335 −0.344667 0.938725i \(-0.612008\pi\)
−0.344667 + 0.938725i \(0.612008\pi\)
\(710\) 19.1300 0.717937
\(711\) −11.6809 −0.438068
\(712\) 16.9168 0.633983
\(713\) 0 0
\(714\) 4.38961 0.164277
\(715\) 3.68562 0.137834
\(716\) −33.8988 −1.26686
\(717\) 14.8152 0.553285
\(718\) 21.6154 0.806679
\(719\) −5.83120 −0.217467 −0.108733 0.994071i \(-0.534680\pi\)
−0.108733 + 0.994071i \(0.534680\pi\)
\(720\) −1.35374 −0.0504507
\(721\) −7.86316 −0.292839
\(722\) −5.82499 −0.216784
\(723\) 5.07946 0.188907
\(724\) −12.0135 −0.446479
\(725\) 7.11313 0.264175
\(726\) −8.12775 −0.301649
\(727\) −4.98495 −0.184882 −0.0924408 0.995718i \(-0.529467\pi\)
−0.0924408 + 0.995718i \(0.529467\pi\)
\(728\) 10.3382 0.383158
\(729\) 1.00000 0.0370370
\(730\) −13.6038 −0.503498
\(731\) 22.7223 0.840414
\(732\) 18.5986 0.687425
\(733\) 9.71555 0.358852 0.179426 0.983771i \(-0.442576\pi\)
0.179426 + 0.983771i \(0.442576\pi\)
\(734\) −12.5663 −0.463831
\(735\) 9.29563 0.342874
\(736\) −26.3620 −0.971716
\(737\) −3.39369 −0.125008
\(738\) −3.56358 −0.131177
\(739\) 26.3659 0.969885 0.484943 0.874546i \(-0.338841\pi\)
0.484943 + 0.874546i \(0.338841\pi\)
\(740\) −25.9953 −0.955606
\(741\) −10.1993 −0.374680
\(742\) 13.8285 0.507660
\(743\) −23.1796 −0.850376 −0.425188 0.905105i \(-0.639792\pi\)
−0.425188 + 0.905105i \(0.639792\pi\)
\(744\) 0 0
\(745\) −1.94106 −0.0711148
\(746\) 11.1778 0.409250
\(747\) 0.0923387 0.00337850
\(748\) −4.25523 −0.155586
\(749\) −18.0622 −0.659977
\(750\) 9.38828 0.342812
\(751\) 4.17694 0.152419 0.0762093 0.997092i \(-0.475718\pi\)
0.0762093 + 0.997092i \(0.475718\pi\)
\(752\) −3.77594 −0.137694
\(753\) 8.30207 0.302544
\(754\) 8.62347 0.314048
\(755\) −11.4106 −0.415275
\(756\) −1.82992 −0.0665537
\(757\) 17.7945 0.646753 0.323376 0.946270i \(-0.395182\pi\)
0.323376 + 0.946270i \(0.395182\pi\)
\(758\) −13.5288 −0.491389
\(759\) −3.13848 −0.113920
\(760\) 15.6280 0.566886
\(761\) 33.1196 1.20059 0.600293 0.799780i \(-0.295051\pi\)
0.600293 + 0.799780i \(0.295051\pi\)
\(762\) 5.10683 0.185001
\(763\) −21.8530 −0.791132
\(764\) −32.8901 −1.18992
\(765\) −7.63611 −0.276084
\(766\) −9.34919 −0.337800
\(767\) 14.0482 0.507251
\(768\) −13.2411 −0.477797
\(769\) 13.6473 0.492135 0.246067 0.969253i \(-0.420862\pi\)
0.246067 + 0.969253i \(0.420862\pi\)
\(770\) −1.23425 −0.0444793
\(771\) −17.7288 −0.638487
\(772\) 2.15541 0.0775750
\(773\) −24.9319 −0.896738 −0.448369 0.893849i \(-0.647995\pi\)
−0.448369 + 0.893849i \(0.647995\pi\)
\(774\) 4.03657 0.145091
\(775\) 0 0
\(776\) −6.21264 −0.223021
\(777\) −13.7839 −0.494494
\(778\) 6.16203 0.220919
\(779\) −15.6085 −0.559234
\(780\) −7.41264 −0.265415
\(781\) −9.83304 −0.351854
\(782\) −15.1417 −0.541467
\(783\) −3.70329 −0.132345
\(784\) −4.08666 −0.145952
\(785\) 20.5259 0.732601
\(786\) −3.77921 −0.134800
\(787\) 22.6198 0.806310 0.403155 0.915132i \(-0.367914\pi\)
0.403155 + 0.915132i \(0.367914\pi\)
\(788\) −1.32501 −0.0472015
\(789\) −1.24321 −0.0442596
\(790\) 15.8456 0.563762
\(791\) 25.9132 0.921368
\(792\) −1.83400 −0.0651683
\(793\) 39.9482 1.41860
\(794\) −15.0233 −0.533157
\(795\) −24.0559 −0.853173
\(796\) 19.5437 0.692708
\(797\) 0.459299 0.0162692 0.00813460 0.999967i \(-0.497411\pi\)
0.00813460 + 0.999967i \(0.497411\pi\)
\(798\) 3.41557 0.120910
\(799\) −21.2992 −0.753512
\(800\) −11.2496 −0.397733
\(801\) −6.43167 −0.227252
\(802\) −5.01919 −0.177234
\(803\) 6.99249 0.246760
\(804\) 6.82551 0.240717
\(805\) 10.3063 0.363249
\(806\) 0 0
\(807\) −19.7286 −0.694481
\(808\) 11.2411 0.395460
\(809\) 2.44846 0.0860834 0.0430417 0.999073i \(-0.486295\pi\)
0.0430417 + 0.999073i \(0.486295\pi\)
\(810\) −1.35654 −0.0476639
\(811\) 55.6918 1.95560 0.977802 0.209530i \(-0.0671934\pi\)
0.977802 + 0.209530i \(0.0671934\pi\)
\(812\) 6.77674 0.237817
\(813\) −14.0605 −0.493124
\(814\) −5.69404 −0.199576
\(815\) 5.42824 0.190143
\(816\) 3.35708 0.117521
\(817\) 17.6803 0.618554
\(818\) −8.18117 −0.286048
\(819\) −3.93051 −0.137343
\(820\) −11.3440 −0.396149
\(821\) 11.6067 0.405076 0.202538 0.979274i \(-0.435081\pi\)
0.202538 + 0.979274i \(0.435081\pi\)
\(822\) 10.2472 0.357410
\(823\) −0.0981262 −0.00342046 −0.00171023 0.999999i \(-0.500544\pi\)
−0.00171023 + 0.999999i \(0.500544\pi\)
\(824\) 15.8499 0.552156
\(825\) −1.33930 −0.0466284
\(826\) −4.70449 −0.163690
\(827\) 2.94776 0.102504 0.0512519 0.998686i \(-0.483679\pi\)
0.0512519 + 0.998686i \(0.483679\pi\)
\(828\) 6.31222 0.219365
\(829\) −11.5569 −0.401389 −0.200695 0.979654i \(-0.564320\pi\)
−0.200695 + 0.979654i \(0.564320\pi\)
\(830\) −0.125261 −0.00434788
\(831\) −9.57269 −0.332073
\(832\) −8.99065 −0.311695
\(833\) −23.0519 −0.798702
\(834\) 0.0463178 0.00160385
\(835\) 19.5503 0.676567
\(836\) −3.31100 −0.114513
\(837\) 0 0
\(838\) −18.6298 −0.643557
\(839\) 1.17000 0.0403928 0.0201964 0.999796i \(-0.493571\pi\)
0.0201964 + 0.999796i \(0.493571\pi\)
\(840\) 6.02257 0.207798
\(841\) −15.2856 −0.527091
\(842\) 12.8725 0.443614
\(843\) −0.746512 −0.0257112
\(844\) 4.44526 0.153012
\(845\) 6.89042 0.237038
\(846\) −3.78376 −0.130088
\(847\) −13.7191 −0.471394
\(848\) 10.5757 0.363172
\(849\) 30.0863 1.03256
\(850\) −6.46150 −0.221628
\(851\) 47.5467 1.62988
\(852\) 19.7766 0.677534
\(853\) 16.6400 0.569743 0.284872 0.958566i \(-0.408049\pi\)
0.284872 + 0.958566i \(0.408049\pi\)
\(854\) −13.3780 −0.457784
\(855\) −5.94167 −0.203201
\(856\) 36.4081 1.24440
\(857\) 24.3272 0.831001 0.415500 0.909593i \(-0.363606\pi\)
0.415500 + 0.909593i \(0.363606\pi\)
\(858\) −1.62367 −0.0554313
\(859\) −3.57607 −0.122014 −0.0610070 0.998137i \(-0.519431\pi\)
−0.0610070 + 0.998137i \(0.519431\pi\)
\(860\) 12.8497 0.438169
\(861\) −6.01508 −0.204993
\(862\) 29.7182 1.01221
\(863\) 15.7085 0.534723 0.267362 0.963596i \(-0.413848\pi\)
0.267362 + 0.963596i \(0.413848\pi\)
\(864\) 5.85684 0.199254
\(865\) 4.74688 0.161399
\(866\) −20.1485 −0.684674
\(867\) 1.93653 0.0657682
\(868\) 0 0
\(869\) −8.14482 −0.276294
\(870\) 5.02366 0.170318
\(871\) 14.6606 0.496755
\(872\) 44.0494 1.49170
\(873\) 2.36201 0.0799420
\(874\) −11.7818 −0.398525
\(875\) 15.8468 0.535719
\(876\) −14.0635 −0.475163
\(877\) −37.4703 −1.26528 −0.632641 0.774445i \(-0.718029\pi\)
−0.632641 + 0.774445i \(0.718029\pi\)
\(878\) 0.757020 0.0255482
\(879\) 17.6615 0.595708
\(880\) −0.943927 −0.0318198
\(881\) 0.261197 0.00879994 0.00439997 0.999990i \(-0.498599\pi\)
0.00439997 + 0.999990i \(0.498599\pi\)
\(882\) −4.09513 −0.137890
\(883\) −37.1782 −1.25115 −0.625573 0.780165i \(-0.715135\pi\)
−0.625573 + 0.780165i \(0.715135\pi\)
\(884\) 18.3824 0.618266
\(885\) 8.18387 0.275098
\(886\) −14.9619 −0.502654
\(887\) −14.8602 −0.498955 −0.249478 0.968381i \(-0.580259\pi\)
−0.249478 + 0.968381i \(0.580259\pi\)
\(888\) 27.7843 0.932380
\(889\) 8.61999 0.289105
\(890\) 8.72481 0.292456
\(891\) 0.697276 0.0233596
\(892\) −11.9591 −0.400419
\(893\) −16.5729 −0.554592
\(894\) 0.855119 0.0285995
\(895\) −42.4169 −1.41784
\(896\) −12.2740 −0.410044
\(897\) 13.5581 0.452691
\(898\) 1.99006 0.0664090
\(899\) 0 0
\(900\) 2.69364 0.0897881
\(901\) 59.6553 1.98741
\(902\) −2.48480 −0.0827347
\(903\) 6.81346 0.226738
\(904\) −52.2336 −1.73726
\(905\) −15.0323 −0.499689
\(906\) 5.02687 0.167006
\(907\) 21.5541 0.715693 0.357847 0.933780i \(-0.383511\pi\)
0.357847 + 0.933780i \(0.383511\pi\)
\(908\) 39.4575 1.30944
\(909\) −4.27380 −0.141753
\(910\) 5.33190 0.176751
\(911\) 9.42479 0.312257 0.156129 0.987737i \(-0.450099\pi\)
0.156129 + 0.987737i \(0.450099\pi\)
\(912\) 2.61215 0.0864970
\(913\) 0.0643856 0.00213085
\(914\) 23.4823 0.776726
\(915\) 23.2721 0.769352
\(916\) −6.21143 −0.205231
\(917\) −6.37906 −0.210655
\(918\) 3.36404 0.111030
\(919\) 17.3908 0.573669 0.286835 0.957980i \(-0.407397\pi\)
0.286835 + 0.957980i \(0.407397\pi\)
\(920\) −20.7745 −0.684915
\(921\) 30.6165 1.00885
\(922\) −4.37098 −0.143950
\(923\) 42.4782 1.39819
\(924\) −1.27596 −0.0419761
\(925\) 20.2898 0.667125
\(926\) 0.905432 0.0297543
\(927\) −6.02603 −0.197921
\(928\) −21.6896 −0.711996
\(929\) −4.65072 −0.152585 −0.0762926 0.997085i \(-0.524308\pi\)
−0.0762926 + 0.997085i \(0.524308\pi\)
\(930\) 0 0
\(931\) −17.9367 −0.587853
\(932\) −0.0670365 −0.00219586
\(933\) −27.1240 −0.887999
\(934\) −21.4851 −0.703013
\(935\) −5.32448 −0.174129
\(936\) 7.92278 0.258964
\(937\) 16.8302 0.549819 0.274909 0.961470i \(-0.411352\pi\)
0.274909 + 0.961470i \(0.411352\pi\)
\(938\) −4.90957 −0.160303
\(939\) 25.4615 0.830906
\(940\) −12.0449 −0.392861
\(941\) −24.8551 −0.810254 −0.405127 0.914260i \(-0.632773\pi\)
−0.405127 + 0.914260i \(0.632773\pi\)
\(942\) −9.04255 −0.294622
\(943\) 20.7487 0.675670
\(944\) −3.59789 −0.117102
\(945\) −2.28975 −0.0744855
\(946\) 2.81460 0.0915107
\(947\) −13.2606 −0.430912 −0.215456 0.976514i \(-0.569124\pi\)
−0.215456 + 0.976514i \(0.569124\pi\)
\(948\) 16.3811 0.532035
\(949\) −30.2072 −0.980567
\(950\) −5.02770 −0.163120
\(951\) 21.4972 0.697093
\(952\) −14.9352 −0.484051
\(953\) −47.2097 −1.52927 −0.764637 0.644461i \(-0.777082\pi\)
−0.764637 + 0.644461i \(0.777082\pi\)
\(954\) 10.5976 0.343111
\(955\) −41.1547 −1.33174
\(956\) −20.7767 −0.671965
\(957\) −2.58222 −0.0834712
\(958\) 19.3732 0.625920
\(959\) 17.2965 0.558533
\(960\) −5.23757 −0.169042
\(961\) 0 0
\(962\) 24.5980 0.793071
\(963\) −13.8422 −0.446057
\(964\) −7.12336 −0.229428
\(965\) 2.69702 0.0868203
\(966\) −4.54037 −0.146084
\(967\) 25.9297 0.833842 0.416921 0.908943i \(-0.363109\pi\)
0.416921 + 0.908943i \(0.363109\pi\)
\(968\) 27.6537 0.888825
\(969\) 14.7345 0.473342
\(970\) −3.20416 −0.102880
\(971\) 34.7397 1.11485 0.557426 0.830227i \(-0.311789\pi\)
0.557426 + 0.830227i \(0.311789\pi\)
\(972\) −1.40239 −0.0449815
\(973\) 0.0781813 0.00250638
\(974\) −27.6252 −0.885168
\(975\) 5.78570 0.185291
\(976\) −10.2312 −0.327492
\(977\) −30.9102 −0.988905 −0.494452 0.869205i \(-0.664631\pi\)
−0.494452 + 0.869205i \(0.664631\pi\)
\(978\) −2.39137 −0.0764677
\(979\) −4.48465 −0.143330
\(980\) −13.0361 −0.416421
\(981\) −16.7473 −0.534701
\(982\) −5.99245 −0.191227
\(983\) −25.0053 −0.797546 −0.398773 0.917050i \(-0.630564\pi\)
−0.398773 + 0.917050i \(0.630564\pi\)
\(984\) 12.1247 0.386520
\(985\) −1.65796 −0.0528269
\(986\) −12.4580 −0.396744
\(987\) −6.38673 −0.203292
\(988\) 14.3033 0.455050
\(989\) −23.5026 −0.747341
\(990\) −0.945883 −0.0300621
\(991\) 37.3608 1.18680 0.593402 0.804906i \(-0.297784\pi\)
0.593402 + 0.804906i \(0.297784\pi\)
\(992\) 0 0
\(993\) 13.1974 0.418806
\(994\) −14.2252 −0.451197
\(995\) 24.4546 0.775264
\(996\) −0.129495 −0.00410319
\(997\) −44.6107 −1.41284 −0.706418 0.707795i \(-0.749690\pi\)
−0.706418 + 0.707795i \(0.749690\pi\)
\(998\) −24.2800 −0.768571
\(999\) −10.5634 −0.334213
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2883.2.a.n.1.7 8
3.2 odd 2 8649.2.a.bi.1.2 8
31.12 odd 30 93.2.m.a.82.2 yes 16
31.13 odd 30 93.2.m.a.76.2 16
31.30 odd 2 2883.2.a.m.1.7 8
93.44 even 30 279.2.y.b.262.1 16
93.74 even 30 279.2.y.b.82.1 16
93.92 even 2 8649.2.a.bj.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
93.2.m.a.76.2 16 31.13 odd 30
93.2.m.a.82.2 yes 16 31.12 odd 30
279.2.y.b.82.1 16 93.74 even 30
279.2.y.b.262.1 16 93.44 even 30
2883.2.a.m.1.7 8 31.30 odd 2
2883.2.a.n.1.7 8 1.1 even 1 trivial
8649.2.a.bi.1.2 8 3.2 odd 2
8649.2.a.bj.1.2 8 93.92 even 2