Properties

Label 2883.2.a.i
Level $2883$
Weight $2$
Character orbit 2883.a
Self dual yes
Analytic conductor $23.021$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2883,2,Mod(1,2883)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2883, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2883.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2883 = 3 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2883.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,-4,6,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0208709027\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.8768.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 5x^{2} + 6x + 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} - q^{3} + (\beta_{2} - \beta_1 + 2) q^{4} + ( - \beta_{3} - \beta_1 + 1) q^{5} + ( - \beta_1 + 1) q^{6} - q^{7} + (\beta_{3} - 2 \beta_{2} + \beta_1 - 3) q^{8} + q^{9} + ( - 3 \beta_{2} + \beta_1 - 3) q^{10}+ \cdots + ( - \beta_{3} - \beta_{2} - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 4 q^{3} + 6 q^{4} + 4 q^{5} + 2 q^{6} - 4 q^{7} - 12 q^{8} + 4 q^{9} - 10 q^{10} - 6 q^{12} + 8 q^{13} + 2 q^{14} - 4 q^{15} + 2 q^{16} + 16 q^{17} - 2 q^{18} - 8 q^{19} + 10 q^{20} + 4 q^{21}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 5x^{2} + 6x + 7 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 4\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 5\beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.65968
−0.854912
1.85491
2.65968
−2.65968 −1.00000 5.07389 3.34714 2.65968 −1.00000 −8.17557 1.00000 −8.90232
1.2 −1.85491 −1.00000 1.44070 −0.209028 1.85491 −1.00000 1.03746 1.00000 0.387729
1.3 0.854912 −1.00000 −1.26913 3.62324 −0.854912 −1.00000 −2.79481 1.00000 3.09755
1.4 1.65968 −1.00000 0.754535 −2.76135 −1.65968 −1.00000 −2.06707 1.00000 −4.58296
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(31\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2883.2.a.i 4
3.b odd 2 1 8649.2.a.z 4
31.b odd 2 1 2883.2.a.j yes 4
93.c even 2 1 8649.2.a.y 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2883.2.a.i 4 1.a even 1 1 trivial
2883.2.a.j yes 4 31.b odd 2 1
8649.2.a.y 4 93.c even 2 1
8649.2.a.z 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2883))\):

\( T_{2}^{4} + 2T_{2}^{3} - 5T_{2}^{2} - 6T_{2} + 7 \) Copy content Toggle raw display
\( T_{11}^{4} - 22T_{11}^{2} + 24T_{11} - 4 \) Copy content Toggle raw display
\( T_{13}^{4} - 8T_{13}^{3} + 10T_{13}^{2} + 32T_{13} - 28 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 2 T^{3} + \cdots + 7 \) Copy content Toggle raw display
$3$ \( (T + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 4 T^{3} + \cdots + 7 \) Copy content Toggle raw display
$7$ \( (T + 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 22 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$13$ \( T^{4} - 8 T^{3} + \cdots - 28 \) Copy content Toggle raw display
$17$ \( (T^{2} - 8 T + 8)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 8 T^{3} + \cdots - 359 \) Copy content Toggle raw display
$23$ \( T^{4} + 4 T^{3} + \cdots - 164 \) Copy content Toggle raw display
$29$ \( T^{4} - 8 T^{3} + \cdots + 1244 \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} - 24 T^{3} + \cdots - 284 \) Copy content Toggle raw display
$41$ \( T^{4} - 24 T^{3} + \cdots + 287 \) Copy content Toggle raw display
$43$ \( T^{4} - 8 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$47$ \( T^{4} + 16 T^{3} + \cdots - 1984 \) Copy content Toggle raw display
$53$ \( (T^{2} - 8 T + 8)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 4 T^{3} + \cdots + 1519 \) Copy content Toggle raw display
$61$ \( T^{4} - 8 T^{3} + \cdots + 1792 \) Copy content Toggle raw display
$67$ \( T^{4} + 8 T^{3} + \cdots - 1792 \) Copy content Toggle raw display
$71$ \( T^{4} - 4 T^{3} + \cdots + 199 \) Copy content Toggle raw display
$73$ \( T^{4} + 16 T^{3} + \cdots - 6076 \) Copy content Toggle raw display
$79$ \( T^{4} - 212 T^{2} + \cdots + 8356 \) Copy content Toggle raw display
$83$ \( T^{4} - 12 T^{3} + \cdots - 1316 \) Copy content Toggle raw display
$89$ \( T^{4} - 28 T^{3} + \cdots + 796 \) Copy content Toggle raw display
$97$ \( T^{4} + 12 T^{3} + \cdots - 7 \) Copy content Toggle raw display
show more
show less