Properties

Label 2880.3.l.e
Level $2880$
Weight $3$
Character orbit 2880.l
Analytic conductor $78.474$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2880,3,Mod(1601,2880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2880.1601"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2880, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2880.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,-8,0,0,0,0,0,32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.4743161358\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{5} + \beta_{3} q^{7} + (2 \beta_{2} - \beta_1) q^{11} + ( - \beta_{3} - 2) q^{13} - 8 \beta_{2} q^{17} + ( - 6 \beta_{3} + 8) q^{19} + ( - 6 \beta_{2} + 2 \beta_1) q^{23} - 5 q^{25} + (14 \beta_{2} + 8 \beta_1) q^{29}+ \cdots + ( - 22 \beta_{3} + 30) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{13} + 32 q^{19} - 20 q^{25} + 8 q^{31} - 24 q^{37} - 144 q^{43} - 156 q^{49} - 40 q^{55} - 152 q^{61} + 16 q^{67} + 152 q^{73} - 376 q^{79} + 160 q^{85} - 40 q^{91} + 120 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 4x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - \nu ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 7\nu ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{3} + 7\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(2431\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1601.1
−1.58114 + 0.707107i
1.58114 0.707107i
−1.58114 0.707107i
1.58114 + 0.707107i
0 0 0 2.23607i 0 −3.16228 0 0 0
1601.2 0 0 0 2.23607i 0 3.16228 0 0 0
1601.3 0 0 0 2.23607i 0 −3.16228 0 0 0
1601.4 0 0 0 2.23607i 0 3.16228 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2880.3.l.e 4
3.b odd 2 1 inner 2880.3.l.e 4
4.b odd 2 1 2880.3.l.d 4
8.b even 2 1 360.3.l.b 4
8.d odd 2 1 720.3.l.b 4
12.b even 2 1 2880.3.l.d 4
24.f even 2 1 720.3.l.b 4
24.h odd 2 1 360.3.l.b 4
40.e odd 2 1 3600.3.l.q 4
40.f even 2 1 1800.3.l.d 4
40.i odd 4 2 1800.3.c.d 8
40.k even 4 2 3600.3.c.h 8
120.i odd 2 1 1800.3.l.d 4
120.m even 2 1 3600.3.l.q 4
120.q odd 4 2 3600.3.c.h 8
120.w even 4 2 1800.3.c.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
360.3.l.b 4 8.b even 2 1
360.3.l.b 4 24.h odd 2 1
720.3.l.b 4 8.d odd 2 1
720.3.l.b 4 24.f even 2 1
1800.3.c.d 8 40.i odd 4 2
1800.3.c.d 8 120.w even 4 2
1800.3.l.d 4 40.f even 2 1
1800.3.l.d 4 120.i odd 2 1
2880.3.l.d 4 4.b odd 2 1
2880.3.l.d 4 12.b even 2 1
2880.3.l.e 4 1.a even 1 1 trivial
2880.3.l.e 4 3.b odd 2 1 inner
3600.3.c.h 8 40.k even 4 2
3600.3.c.h 8 120.q odd 4 2
3600.3.l.q 4 40.e odd 2 1
3600.3.l.q 4 120.m even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(2880, [\chi])\):

\( T_{7}^{2} - 10 \) Copy content Toggle raw display
\( T_{19}^{2} - 16T_{19} - 296 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 5)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} - 10)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 44T^{2} + 324 \) Copy content Toggle raw display
$13$ \( (T^{2} + 4 T - 6)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 320)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 16 T - 296)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 376 T^{2} + 29584 \) Copy content Toggle raw display
$29$ \( T^{4} + 2216 T^{2} + 725904 \) Copy content Toggle raw display
$31$ \( (T^{2} - 4 T - 996)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 12 T - 54)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 2564 T^{2} + 1633284 \) Copy content Toggle raw display
$43$ \( (T^{2} + 72 T - 664)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 304T^{2} + 64 \) Copy content Toggle raw display
$53$ \( T^{4} + 7184 T^{2} + 1065024 \) Copy content Toggle raw display
$59$ \( T^{4} + 5804 T^{2} + 887364 \) Copy content Toggle raw display
$61$ \( (T^{2} + 76 T - 516)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 8 T - 5744)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 6624 T^{2} + 3504384 \) Copy content Toggle raw display
$73$ \( (T^{2} - 76 T - 3396)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 188 T + 7836)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 10256 T^{2} + 26132544 \) Copy content Toggle raw display
$89$ \( T^{4} + 12260 T^{2} + 35640900 \) Copy content Toggle raw display
$97$ \( (T^{2} - 60 T - 3940)^{2} \) Copy content Toggle raw display
show more
show less