Newspace parameters
| Level: | \( N \) | \(=\) | \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2880.f (of order \(2\), degree \(1\), not minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(22.9969157821\) |
| Analytic rank: | \(0\) |
| Dimension: | \(4\) |
| Coefficient field: | \(\Q(i, \sqrt{5})\) |
|
|
|
| Defining polynomial: |
\( x^{4} + 3x^{2} + 1 \)
|
| Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
| Coefficient ring index: | \( 2^{4} \) |
| Twist minimal: | no (minimal twist has level 160) |
| Sato-Tate group: | $\mathrm{U}(1)[D_{2}]$ |
Embedding invariants
| Embedding label | 1729.4 | ||
| Root | \(-0.618034i\) of defining polynomial | ||
| Character | \(\chi\) | \(=\) | 2880.1729 |
| Dual form | 2880.2.f.w.1729.3 |
$q$-expansion
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2880\mathbb{Z}\right)^\times\).
| \(n\) | \(577\) | \(641\) | \(901\) | \(2431\) |
| \(\chi(n)\) | \(-1\) | \(1\) | \(1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
| \(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| \(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
| \(2\) | 0 | 0 | ||||||||
| \(3\) | 0 | 0 | ||||||||
| \(4\) | 0 | 0 | ||||||||
| \(5\) | 2.23607 | 1.00000 | ||||||||
| \(6\) | 0 | 0 | ||||||||
| \(7\) | 0.763932i | 0.288739i | 0.989524 | + | 0.144370i | \(0.0461154\pi\) | ||||
| −0.989524 | + | 0.144370i | \(0.953885\pi\) | |||||||
| \(8\) | 0 | 0 | ||||||||
| \(9\) | 0 | 0 | ||||||||
| \(10\) | 0 | 0 | ||||||||
| \(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(12\) | 0 | 0 | ||||||||
| \(13\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(14\) | 0 | 0 | ||||||||
| \(15\) | 0 | 0 | ||||||||
| \(16\) | 0 | 0 | ||||||||
| \(17\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(18\) | 0 | 0 | ||||||||
| \(19\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(20\) | 0 | 0 | ||||||||
| \(21\) | 0 | 0 | ||||||||
| \(22\) | 0 | 0 | ||||||||
| \(23\) | − 5.70820i | − 1.19024i | −0.803636 | − | 0.595121i | \(-0.797104\pi\) | ||||
| 0.803636 | − | 0.595121i | \(-0.202896\pi\) | |||||||
| \(24\) | 0 | 0 | ||||||||
| \(25\) | 5.00000 | 1.00000 | ||||||||
| \(26\) | 0 | 0 | ||||||||
| \(27\) | 0 | 0 | ||||||||
| \(28\) | 0 | 0 | ||||||||
| \(29\) | 6.00000 | 1.11417 | 0.557086 | − | 0.830455i | \(-0.311919\pi\) | ||||
| 0.557086 | + | 0.830455i | \(0.311919\pi\) | |||||||
| \(30\) | 0 | 0 | ||||||||
| \(31\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(32\) | 0 | 0 | ||||||||
| \(33\) | 0 | 0 | ||||||||
| \(34\) | 0 | 0 | ||||||||
| \(35\) | 1.70820i | 0.288739i | ||||||||
| \(36\) | 0 | 0 | ||||||||
| \(37\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(38\) | 0 | 0 | ||||||||
| \(39\) | 0 | 0 | ||||||||
| \(40\) | 0 | 0 | ||||||||
| \(41\) | 4.47214 | 0.698430 | 0.349215 | − | 0.937043i | \(-0.386448\pi\) | ||||
| 0.349215 | + | 0.937043i | \(0.386448\pi\) | |||||||
| \(42\) | 0 | 0 | ||||||||
| \(43\) | 11.2361i | 1.71348i | 0.515745 | + | 0.856742i | \(0.327515\pi\) | ||||
| −0.515745 | + | 0.856742i | \(0.672485\pi\) | |||||||
| \(44\) | 0 | 0 | ||||||||
| \(45\) | 0 | 0 | ||||||||
| \(46\) | 0 | 0 | ||||||||
| \(47\) | − 13.7082i | − 1.99955i | −0.0212814 | − | 0.999774i | \(-0.506775\pi\) | ||||
| 0.0212814 | − | 0.999774i | \(-0.493225\pi\) | |||||||
| \(48\) | 0 | 0 | ||||||||
| \(49\) | 6.41641 | 0.916630 | ||||||||
| \(50\) | 0 | 0 | ||||||||
| \(51\) | 0 | 0 | ||||||||
| \(52\) | 0 | 0 | ||||||||
| \(53\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(54\) | 0 | 0 | ||||||||
| \(55\) | 0 | 0 | ||||||||
| \(56\) | 0 | 0 | ||||||||
| \(57\) | 0 | 0 | ||||||||
| \(58\) | 0 | 0 | ||||||||
| \(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(60\) | 0 | 0 | ||||||||
| \(61\) | 13.4164 | 1.71780 | 0.858898 | − | 0.512148i | \(-0.171150\pi\) | ||||
| 0.858898 | + | 0.512148i | \(0.171150\pi\) | |||||||
| \(62\) | 0 | 0 | ||||||||
| \(63\) | 0 | 0 | ||||||||
| \(64\) | 0 | 0 | ||||||||
| \(65\) | 0 | 0 | ||||||||
| \(66\) | 0 | 0 | ||||||||
| \(67\) | 8.18034i | 0.999388i | 0.866202 | + | 0.499694i | \(0.166554\pi\) | ||||
| −0.866202 | + | 0.499694i | \(0.833446\pi\) | |||||||
| \(68\) | 0 | 0 | ||||||||
| \(69\) | 0 | 0 | ||||||||
| \(70\) | 0 | 0 | ||||||||
| \(71\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(72\) | 0 | 0 | ||||||||
| \(73\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(74\) | 0 | 0 | ||||||||
| \(75\) | 0 | 0 | ||||||||
| \(76\) | 0 | 0 | ||||||||
| \(77\) | 0 | 0 | ||||||||
| \(78\) | 0 | 0 | ||||||||
| \(79\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(80\) | 0 | 0 | ||||||||
| \(81\) | 0 | 0 | ||||||||
| \(82\) | 0 | 0 | ||||||||
| \(83\) | 17.7082i | 1.94373i | 0.235543 | + | 0.971864i | \(0.424313\pi\) | ||||
| −0.235543 | + | 0.971864i | \(0.575687\pi\) | |||||||
| \(84\) | 0 | 0 | ||||||||
| \(85\) | 0 | 0 | ||||||||
| \(86\) | 0 | 0 | ||||||||
| \(87\) | 0 | 0 | ||||||||
| \(88\) | 0 | 0 | ||||||||
| \(89\) | 6.00000 | 0.635999 | 0.317999 | − | 0.948091i | \(-0.396989\pi\) | ||||
| 0.317999 | + | 0.948091i | \(0.396989\pi\) | |||||||
| \(90\) | 0 | 0 | ||||||||
| \(91\) | 0 | 0 | ||||||||
| \(92\) | 0 | 0 | ||||||||
| \(93\) | 0 | 0 | ||||||||
| \(94\) | 0 | 0 | ||||||||
| \(95\) | 0 | 0 | ||||||||
| \(96\) | 0 | 0 | ||||||||
| \(97\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(98\) | 0 | 0 | ||||||||
| \(99\) | 0 | 0 | ||||||||
| \(100\) | 0 | 0 | ||||||||
| \(101\) | −18.0000 | −1.79107 | −0.895533 | − | 0.444994i | \(-0.853206\pi\) | ||||
| −0.895533 | + | 0.444994i | \(0.853206\pi\) | |||||||
| \(102\) | 0 | 0 | ||||||||
| \(103\) | − 20.1803i | − 1.98843i | −0.107418 | − | 0.994214i | \(-0.534258\pi\) | ||||
| 0.107418 | − | 0.994214i | \(-0.465742\pi\) | |||||||
| \(104\) | 0 | 0 | ||||||||
| \(105\) | 0 | 0 | ||||||||
| \(106\) | 0 | 0 | ||||||||
| \(107\) | − 6.29180i | − 0.608251i | −0.952632 | − | 0.304125i | \(-0.901636\pi\) | ||||
| 0.952632 | − | 0.304125i | \(-0.0983642\pi\) | |||||||
| \(108\) | 0 | 0 | ||||||||
| \(109\) | 13.4164 | 1.28506 | 0.642529 | − | 0.766261i | \(-0.277885\pi\) | ||||
| 0.642529 | + | 0.766261i | \(0.277885\pi\) | |||||||
| \(110\) | 0 | 0 | ||||||||
| \(111\) | 0 | 0 | ||||||||
| \(112\) | 0 | 0 | ||||||||
| \(113\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(114\) | 0 | 0 | ||||||||
| \(115\) | − 12.7639i | − 1.19024i | ||||||||
| \(116\) | 0 | 0 | ||||||||
| \(117\) | 0 | 0 | ||||||||
| \(118\) | 0 | 0 | ||||||||
| \(119\) | 0 | 0 | ||||||||
| \(120\) | 0 | 0 | ||||||||
| \(121\) | −11.0000 | −1.00000 | ||||||||
| \(122\) | 0 | 0 | ||||||||
| \(123\) | 0 | 0 | ||||||||
| \(124\) | 0 | 0 | ||||||||
| \(125\) | 11.1803 | 1.00000 | ||||||||
| \(126\) | 0 | 0 | ||||||||
| \(127\) | 18.6525i | 1.65514i | 0.561363 | + | 0.827570i | \(0.310277\pi\) | ||||
| −0.561363 | + | 0.827570i | \(0.689723\pi\) | |||||||
| \(128\) | 0 | 0 | ||||||||
| \(129\) | 0 | 0 | ||||||||
| \(130\) | 0 | 0 | ||||||||
| \(131\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(132\) | 0 | 0 | ||||||||
| \(133\) | 0 | 0 | ||||||||
| \(134\) | 0 | 0 | ||||||||
| \(135\) | 0 | 0 | ||||||||
| \(136\) | 0 | 0 | ||||||||
| \(137\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(138\) | 0 | 0 | ||||||||
| \(139\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(140\) | 0 | 0 | ||||||||
| \(141\) | 0 | 0 | ||||||||
| \(142\) | 0 | 0 | ||||||||
| \(143\) | 0 | 0 | ||||||||
| \(144\) | 0 | 0 | ||||||||
| \(145\) | 13.4164 | 1.11417 | ||||||||
| \(146\) | 0 | 0 | ||||||||
| \(147\) | 0 | 0 | ||||||||
| \(148\) | 0 | 0 | ||||||||
| \(149\) | 4.47214 | 0.366372 | 0.183186 | − | 0.983078i | \(-0.441359\pi\) | ||||
| 0.183186 | + | 0.983078i | \(0.441359\pi\) | |||||||
| \(150\) | 0 | 0 | ||||||||
| \(151\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(152\) | 0 | 0 | ||||||||
| \(153\) | 0 | 0 | ||||||||
| \(154\) | 0 | 0 | ||||||||
| \(155\) | 0 | 0 | ||||||||
| \(156\) | 0 | 0 | ||||||||
| \(157\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(158\) | 0 | 0 | ||||||||
| \(159\) | 0 | 0 | ||||||||
| \(160\) | 0 | 0 | ||||||||
| \(161\) | 4.36068 | 0.343670 | ||||||||
| \(162\) | 0 | 0 | ||||||||
| \(163\) | − 6.65248i | − 0.521062i | −0.965465 | − | 0.260531i | \(-0.916102\pi\) | ||||
| 0.965465 | − | 0.260531i | \(-0.0838976\pi\) | |||||||
| \(164\) | 0 | 0 | ||||||||
| \(165\) | 0 | 0 | ||||||||
| \(166\) | 0 | 0 | ||||||||
| \(167\) | 10.2918i | 0.796403i | 0.917298 | + | 0.398202i | \(0.130366\pi\) | ||||
| −0.917298 | + | 0.398202i | \(0.869634\pi\) | |||||||
| \(168\) | 0 | 0 | ||||||||
| \(169\) | 13.0000 | 1.00000 | ||||||||
| \(170\) | 0 | 0 | ||||||||
| \(171\) | 0 | 0 | ||||||||
| \(172\) | 0 | 0 | ||||||||
| \(173\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(174\) | 0 | 0 | ||||||||
| \(175\) | 3.81966i | 0.288739i | ||||||||
| \(176\) | 0 | 0 | ||||||||
| \(177\) | 0 | 0 | ||||||||
| \(178\) | 0 | 0 | ||||||||
| \(179\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(180\) | 0 | 0 | ||||||||
| \(181\) | 2.00000 | 0.148659 | 0.0743294 | − | 0.997234i | \(-0.476318\pi\) | ||||
| 0.0743294 | + | 0.997234i | \(0.476318\pi\) | |||||||
| \(182\) | 0 | 0 | ||||||||
| \(183\) | 0 | 0 | ||||||||
| \(184\) | 0 | 0 | ||||||||
| \(185\) | 0 | 0 | ||||||||
| \(186\) | 0 | 0 | ||||||||
| \(187\) | 0 | 0 | ||||||||
| \(188\) | 0 | 0 | ||||||||
| \(189\) | 0 | 0 | ||||||||
| \(190\) | 0 | 0 | ||||||||
| \(191\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(192\) | 0 | 0 | ||||||||
| \(193\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(194\) | 0 | 0 | ||||||||
| \(195\) | 0 | 0 | ||||||||
| \(196\) | 0 | 0 | ||||||||
| \(197\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(198\) | 0 | 0 | ||||||||
| \(199\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(200\) | 0 | 0 | ||||||||
| \(201\) | 0 | 0 | ||||||||
| \(202\) | 0 | 0 | ||||||||
| \(203\) | 4.58359i | 0.321705i | ||||||||
| \(204\) | 0 | 0 | ||||||||
| \(205\) | 10.0000 | 0.698430 | ||||||||
| \(206\) | 0 | 0 | ||||||||
| \(207\) | 0 | 0 | ||||||||
| \(208\) | 0 | 0 | ||||||||
| \(209\) | 0 | 0 | ||||||||
| \(210\) | 0 | 0 | ||||||||
| \(211\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(212\) | 0 | 0 | ||||||||
| \(213\) | 0 | 0 | ||||||||
| \(214\) | 0 | 0 | ||||||||
| \(215\) | 25.1246i | 1.71348i | ||||||||
| \(216\) | 0 | 0 | ||||||||
| \(217\) | 0 | 0 | ||||||||
| \(218\) | 0 | 0 | ||||||||
| \(219\) | 0 | 0 | ||||||||
| \(220\) | 0 | 0 | ||||||||
| \(221\) | 0 | 0 | ||||||||
| \(222\) | 0 | 0 | ||||||||
| \(223\) | − 23.2361i | − 1.55600i | −0.628263 | − | 0.778001i | \(-0.716234\pi\) | ||||
| 0.628263 | − | 0.778001i | \(-0.283766\pi\) | |||||||
| \(224\) | 0 | 0 | ||||||||
| \(225\) | 0 | 0 | ||||||||
| \(226\) | 0 | 0 | ||||||||
| \(227\) | − 13.1246i | − 0.871111i | −0.900162 | − | 0.435556i | \(-0.856552\pi\) | ||||
| 0.900162 | − | 0.435556i | \(-0.143448\pi\) | |||||||
| \(228\) | 0 | 0 | ||||||||
| \(229\) | −14.0000 | −0.925146 | −0.462573 | − | 0.886581i | \(-0.653074\pi\) | ||||
| −0.462573 | + | 0.886581i | \(0.653074\pi\) | |||||||
| \(230\) | 0 | 0 | ||||||||
| \(231\) | 0 | 0 | ||||||||
| \(232\) | 0 | 0 | ||||||||
| \(233\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(234\) | 0 | 0 | ||||||||
| \(235\) | − 30.6525i | − 1.99955i | ||||||||
| \(236\) | 0 | 0 | ||||||||
| \(237\) | 0 | 0 | ||||||||
| \(238\) | 0 | 0 | ||||||||
| \(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(240\) | 0 | 0 | ||||||||
| \(241\) | 13.4164 | 0.864227 | 0.432113 | − | 0.901819i | \(-0.357768\pi\) | ||||
| 0.432113 | + | 0.901819i | \(0.357768\pi\) | |||||||
| \(242\) | 0 | 0 | ||||||||
| \(243\) | 0 | 0 | ||||||||
| \(244\) | 0 | 0 | ||||||||
| \(245\) | 14.3475 | 0.916630 | ||||||||
| \(246\) | 0 | 0 | ||||||||
| \(247\) | 0 | 0 | ||||||||
| \(248\) | 0 | 0 | ||||||||
| \(249\) | 0 | 0 | ||||||||
| \(250\) | 0 | 0 | ||||||||
| \(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(252\) | 0 | 0 | ||||||||
| \(253\) | 0 | 0 | ||||||||
| \(254\) | 0 | 0 | ||||||||
| \(255\) | 0 | 0 | ||||||||
| \(256\) | 0 | 0 | ||||||||
| \(257\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(258\) | 0 | 0 | ||||||||
| \(259\) | 0 | 0 | ||||||||
| \(260\) | 0 | 0 | ||||||||
| \(261\) | 0 | 0 | ||||||||
| \(262\) | 0 | 0 | ||||||||
| \(263\) | 9.12461i | 0.562648i | 0.959613 | + | 0.281324i | \(0.0907735\pi\) | ||||
| −0.959613 | + | 0.281324i | \(0.909226\pi\) | |||||||
| \(264\) | 0 | 0 | ||||||||
| \(265\) | 0 | 0 | ||||||||
| \(266\) | 0 | 0 | ||||||||
| \(267\) | 0 | 0 | ||||||||
| \(268\) | 0 | 0 | ||||||||
| \(269\) | 22.3607 | 1.36335 | 0.681677 | − | 0.731653i | \(-0.261251\pi\) | ||||
| 0.681677 | + | 0.731653i | \(0.261251\pi\) | |||||||
| \(270\) | 0 | 0 | ||||||||
| \(271\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(272\) | 0 | 0 | ||||||||
| \(273\) | 0 | 0 | ||||||||
| \(274\) | 0 | 0 | ||||||||
| \(275\) | 0 | 0 | ||||||||
| \(276\) | 0 | 0 | ||||||||
| \(277\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(278\) | 0 | 0 | ||||||||
| \(279\) | 0 | 0 | ||||||||
| \(280\) | 0 | 0 | ||||||||
| \(281\) | −31.3050 | −1.86750 | −0.933748 | − | 0.357930i | \(-0.883483\pi\) | ||||
| −0.933748 | + | 0.357930i | \(0.883483\pi\) | |||||||
| \(282\) | 0 | 0 | ||||||||
| \(283\) | 32.1803i | 1.91292i | 0.291859 | + | 0.956461i | \(0.405726\pi\) | ||||
| −0.291859 | + | 0.956461i | \(0.594274\pi\) | |||||||
| \(284\) | 0 | 0 | ||||||||
| \(285\) | 0 | 0 | ||||||||
| \(286\) | 0 | 0 | ||||||||
| \(287\) | 3.41641i | 0.201664i | ||||||||
| \(288\) | 0 | 0 | ||||||||
| \(289\) | 17.0000 | 1.00000 | ||||||||
| \(290\) | 0 | 0 | ||||||||
| \(291\) | 0 | 0 | ||||||||
| \(292\) | 0 | 0 | ||||||||
| \(293\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(294\) | 0 | 0 | ||||||||
| \(295\) | 0 | 0 | ||||||||
| \(296\) | 0 | 0 | ||||||||
| \(297\) | 0 | 0 | ||||||||
| \(298\) | 0 | 0 | ||||||||
| \(299\) | 0 | 0 | ||||||||
| \(300\) | 0 | 0 | ||||||||
| \(301\) | −8.58359 | −0.494750 | ||||||||
| \(302\) | 0 | 0 | ||||||||
| \(303\) | 0 | 0 | ||||||||
| \(304\) | 0 | 0 | ||||||||
| \(305\) | 30.0000 | 1.71780 | ||||||||
| \(306\) | 0 | 0 | ||||||||
| \(307\) | − 27.5967i | − 1.57503i | −0.616296 | − | 0.787515i | \(-0.711367\pi\) | ||||
| 0.616296 | − | 0.787515i | \(-0.288633\pi\) | |||||||
| \(308\) | 0 | 0 | ||||||||
| \(309\) | 0 | 0 | ||||||||
| \(310\) | 0 | 0 | ||||||||
| \(311\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(312\) | 0 | 0 | ||||||||
| \(313\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(314\) | 0 | 0 | ||||||||
| \(315\) | 0 | 0 | ||||||||
| \(316\) | 0 | 0 | ||||||||
| \(317\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(318\) | 0 | 0 | ||||||||
| \(319\) | 0 | 0 | ||||||||
| \(320\) | 0 | 0 | ||||||||
| \(321\) | 0 | 0 | ||||||||
| \(322\) | 0 | 0 | ||||||||
| \(323\) | 0 | 0 | ||||||||
| \(324\) | 0 | 0 | ||||||||
| \(325\) | 0 | 0 | ||||||||
| \(326\) | 0 | 0 | ||||||||
| \(327\) | 0 | 0 | ||||||||
| \(328\) | 0 | 0 | ||||||||
| \(329\) | 10.4721 | 0.577348 | ||||||||
| \(330\) | 0 | 0 | ||||||||
| \(331\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(332\) | 0 | 0 | ||||||||
| \(333\) | 0 | 0 | ||||||||
| \(334\) | 0 | 0 | ||||||||
| \(335\) | 18.2918i | 0.999388i | ||||||||
| \(336\) | 0 | 0 | ||||||||
| \(337\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(338\) | 0 | 0 | ||||||||
| \(339\) | 0 | 0 | ||||||||
| \(340\) | 0 | 0 | ||||||||
| \(341\) | 0 | 0 | ||||||||
| \(342\) | 0 | 0 | ||||||||
| \(343\) | 10.2492i | 0.553406i | ||||||||
| \(344\) | 0 | 0 | ||||||||
| \(345\) | 0 | 0 | ||||||||
| \(346\) | 0 | 0 | ||||||||
| \(347\) | − 37.1246i | − 1.99295i | −0.0838690 | − | 0.996477i | \(-0.526728\pi\) | ||||
| 0.0838690 | − | 0.996477i | \(-0.473272\pi\) | |||||||
| \(348\) | 0 | 0 | ||||||||
| \(349\) | 26.0000 | 1.39175 | 0.695874 | − | 0.718164i | \(-0.255017\pi\) | ||||
| 0.695874 | + | 0.718164i | \(0.255017\pi\) | |||||||
| \(350\) | 0 | 0 | ||||||||
| \(351\) | 0 | 0 | ||||||||
| \(352\) | 0 | 0 | ||||||||
| \(353\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(354\) | 0 | 0 | ||||||||
| \(355\) | 0 | 0 | ||||||||
| \(356\) | 0 | 0 | ||||||||
| \(357\) | 0 | 0 | ||||||||
| \(358\) | 0 | 0 | ||||||||
| \(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(360\) | 0 | 0 | ||||||||
| \(361\) | −19.0000 | −1.00000 | ||||||||
| \(362\) | 0 | 0 | ||||||||
| \(363\) | 0 | 0 | ||||||||
| \(364\) | 0 | 0 | ||||||||
| \(365\) | 0 | 0 | ||||||||
| \(366\) | 0 | 0 | ||||||||
| \(367\) | 24.7639i | 1.29267i | 0.763055 | + | 0.646333i | \(0.223698\pi\) | ||||
| −0.763055 | + | 0.646333i | \(0.776302\pi\) | |||||||
| \(368\) | 0 | 0 | ||||||||
| \(369\) | 0 | 0 | ||||||||
| \(370\) | 0 | 0 | ||||||||
| \(371\) | 0 | 0 | ||||||||
| \(372\) | 0 | 0 | ||||||||
| \(373\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(374\) | 0 | 0 | ||||||||
| \(375\) | 0 | 0 | ||||||||
| \(376\) | 0 | 0 | ||||||||
| \(377\) | 0 | 0 | ||||||||
| \(378\) | 0 | 0 | ||||||||
| \(379\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(380\) | 0 | 0 | ||||||||
| \(381\) | 0 | 0 | ||||||||
| \(382\) | 0 | 0 | ||||||||
| \(383\) | 1.12461i | 0.0574650i | 0.999587 | + | 0.0287325i | \(0.00914709\pi\) | ||||
| −0.999587 | + | 0.0287325i | \(0.990853\pi\) | |||||||
| \(384\) | 0 | 0 | ||||||||
| \(385\) | 0 | 0 | ||||||||
| \(386\) | 0 | 0 | ||||||||
| \(387\) | 0 | 0 | ||||||||
| \(388\) | 0 | 0 | ||||||||
| \(389\) | −31.3050 | −1.58722 | −0.793612 | − | 0.608424i | \(-0.791802\pi\) | ||||
| −0.793612 | + | 0.608424i | \(0.791802\pi\) | |||||||
| \(390\) | 0 | 0 | ||||||||
| \(391\) | 0 | 0 | ||||||||
| \(392\) | 0 | 0 | ||||||||
| \(393\) | 0 | 0 | ||||||||
| \(394\) | 0 | 0 | ||||||||
| \(395\) | 0 | 0 | ||||||||
| \(396\) | 0 | 0 | ||||||||
| \(397\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(398\) | 0 | 0 | ||||||||
| \(399\) | 0 | 0 | ||||||||
| \(400\) | 0 | 0 | ||||||||
| \(401\) | −18.0000 | −0.898877 | −0.449439 | − | 0.893311i | \(-0.648376\pi\) | ||||
| −0.449439 | + | 0.893311i | \(0.648376\pi\) | |||||||
| \(402\) | 0 | 0 | ||||||||
| \(403\) | 0 | 0 | ||||||||
| \(404\) | 0 | 0 | ||||||||
| \(405\) | 0 | 0 | ||||||||
| \(406\) | 0 | 0 | ||||||||
| \(407\) | 0 | 0 | ||||||||
| \(408\) | 0 | 0 | ||||||||
| \(409\) | −40.2492 | −1.99020 | −0.995098 | − | 0.0988936i | \(-0.968470\pi\) | ||||
| −0.995098 | + | 0.0988936i | \(0.968470\pi\) | |||||||
| \(410\) | 0 | 0 | ||||||||
| \(411\) | 0 | 0 | ||||||||
| \(412\) | 0 | 0 | ||||||||
| \(413\) | 0 | 0 | ||||||||
| \(414\) | 0 | 0 | ||||||||
| \(415\) | 39.5967i | 1.94373i | ||||||||
| \(416\) | 0 | 0 | ||||||||
| \(417\) | 0 | 0 | ||||||||
| \(418\) | 0 | 0 | ||||||||
| \(419\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(420\) | 0 | 0 | ||||||||
| \(421\) | −40.2492 | −1.96163 | −0.980814 | − | 0.194948i | \(-0.937546\pi\) | ||||
| −0.980814 | + | 0.194948i | \(0.937546\pi\) | |||||||
| \(422\) | 0 | 0 | ||||||||
| \(423\) | 0 | 0 | ||||||||
| \(424\) | 0 | 0 | ||||||||
| \(425\) | 0 | 0 | ||||||||
| \(426\) | 0 | 0 | ||||||||
| \(427\) | 10.2492i | 0.495995i | ||||||||
| \(428\) | 0 | 0 | ||||||||
| \(429\) | 0 | 0 | ||||||||
| \(430\) | 0 | 0 | ||||||||
| \(431\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(432\) | 0 | 0 | ||||||||
| \(433\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(434\) | 0 | 0 | ||||||||
| \(435\) | 0 | 0 | ||||||||
| \(436\) | 0 | 0 | ||||||||
| \(437\) | 0 | 0 | ||||||||
| \(438\) | 0 | 0 | ||||||||
| \(439\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(440\) | 0 | 0 | ||||||||
| \(441\) | 0 | 0 | ||||||||
| \(442\) | 0 | 0 | ||||||||
| \(443\) | − 22.2918i | − 1.05912i | −0.848274 | − | 0.529558i | \(-0.822358\pi\) | ||||
| 0.848274 | − | 0.529558i | \(-0.177642\pi\) | |||||||
| \(444\) | 0 | 0 | ||||||||
| \(445\) | 13.4164 | 0.635999 | ||||||||
| \(446\) | 0 | 0 | ||||||||
| \(447\) | 0 | 0 | ||||||||
| \(448\) | 0 | 0 | ||||||||
| \(449\) | 22.3607 | 1.05527 | 0.527633 | − | 0.849473i | \(-0.323080\pi\) | ||||
| 0.527633 | + | 0.849473i | \(0.323080\pi\) | |||||||
| \(450\) | 0 | 0 | ||||||||
| \(451\) | 0 | 0 | ||||||||
| \(452\) | 0 | 0 | ||||||||
| \(453\) | 0 | 0 | ||||||||
| \(454\) | 0 | 0 | ||||||||
| \(455\) | 0 | 0 | ||||||||
| \(456\) | 0 | 0 | ||||||||
| \(457\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(458\) | 0 | 0 | ||||||||
| \(459\) | 0 | 0 | ||||||||
| \(460\) | 0 | 0 | ||||||||
| \(461\) | −42.0000 | −1.95614 | −0.978068 | − | 0.208288i | \(-0.933211\pi\) | ||||
| −0.978068 | + | 0.208288i | \(0.933211\pi\) | |||||||
| \(462\) | 0 | 0 | ||||||||
| \(463\) | − 38.0689i | − 1.76921i | −0.466340 | − | 0.884606i | \(-0.654428\pi\) | ||||
| 0.466340 | − | 0.884606i | \(-0.345572\pi\) | |||||||
| \(464\) | 0 | 0 | ||||||||
| \(465\) | 0 | 0 | ||||||||
| \(466\) | 0 | 0 | ||||||||
| \(467\) | 2.87539i | 0.133057i | 0.997785 | + | 0.0665285i | \(0.0211923\pi\) | ||||
| −0.997785 | + | 0.0665285i | \(0.978808\pi\) | |||||||
| \(468\) | 0 | 0 | ||||||||
| \(469\) | −6.24922 | −0.288562 | ||||||||
| \(470\) | 0 | 0 | ||||||||
| \(471\) | 0 | 0 | ||||||||
| \(472\) | 0 | 0 | ||||||||
| \(473\) | 0 | 0 | ||||||||
| \(474\) | 0 | 0 | ||||||||
| \(475\) | 0 | 0 | ||||||||
| \(476\) | 0 | 0 | ||||||||
| \(477\) | 0 | 0 | ||||||||
| \(478\) | 0 | 0 | ||||||||
| \(479\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(480\) | 0 | 0 | ||||||||
| \(481\) | 0 | 0 | ||||||||
| \(482\) | 0 | 0 | ||||||||
| \(483\) | 0 | 0 | ||||||||
| \(484\) | 0 | 0 | ||||||||
| \(485\) | 0 | 0 | ||||||||
| \(486\) | 0 | 0 | ||||||||
| \(487\) | 42.6525i | 1.93277i | 0.257103 | + | 0.966384i | \(0.417232\pi\) | ||||
| −0.257103 | + | 0.966384i | \(0.582768\pi\) | |||||||
| \(488\) | 0 | 0 | ||||||||
| \(489\) | 0 | 0 | ||||||||
| \(490\) | 0 | 0 | ||||||||
| \(491\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(492\) | 0 | 0 | ||||||||
| \(493\) | 0 | 0 | ||||||||
| \(494\) | 0 | 0 | ||||||||
| \(495\) | 0 | 0 | ||||||||
| \(496\) | 0 | 0 | ||||||||
| \(497\) | 0 | 0 | ||||||||
| \(498\) | 0 | 0 | ||||||||
| \(499\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(500\) | 0 | 0 | ||||||||
| \(501\) | 0 | 0 | ||||||||
| \(502\) | 0 | 0 | ||||||||
| \(503\) | − 37.7082i | − 1.68133i | −0.541559 | − | 0.840663i | \(-0.682166\pi\) | ||||
| 0.541559 | − | 0.840663i | \(-0.317834\pi\) | |||||||
| \(504\) | 0 | 0 | ||||||||
| \(505\) | −40.2492 | −1.79107 | ||||||||
| \(506\) | 0 | 0 | ||||||||
| \(507\) | 0 | 0 | ||||||||
| \(508\) | 0 | 0 | ||||||||
| \(509\) | 6.00000 | 0.265945 | 0.132973 | − | 0.991120i | \(-0.457548\pi\) | ||||
| 0.132973 | + | 0.991120i | \(0.457548\pi\) | |||||||
| \(510\) | 0 | 0 | ||||||||
| \(511\) | 0 | 0 | ||||||||
| \(512\) | 0 | 0 | ||||||||
| \(513\) | 0 | 0 | ||||||||
| \(514\) | 0 | 0 | ||||||||
| \(515\) | − 45.1246i | − 1.98843i | ||||||||
| \(516\) | 0 | 0 | ||||||||
| \(517\) | 0 | 0 | ||||||||
| \(518\) | 0 | 0 | ||||||||
| \(519\) | 0 | 0 | ||||||||
| \(520\) | 0 | 0 | ||||||||
| \(521\) | −42.0000 | −1.84005 | −0.920027 | − | 0.391856i | \(-0.871833\pi\) | ||||
| −0.920027 | + | 0.391856i | \(0.871833\pi\) | |||||||
| \(522\) | 0 | 0 | ||||||||
| \(523\) | − 3.59675i | − 0.157275i | −0.996903 | − | 0.0786374i | \(-0.974943\pi\) | ||||
| 0.996903 | − | 0.0786374i | \(-0.0250569\pi\) | |||||||
| \(524\) | 0 | 0 | ||||||||
| \(525\) | 0 | 0 | ||||||||
| \(526\) | 0 | 0 | ||||||||
| \(527\) | 0 | 0 | ||||||||
| \(528\) | 0 | 0 | ||||||||
| \(529\) | −9.58359 | −0.416678 | ||||||||
| \(530\) | 0 | 0 | ||||||||
| \(531\) | 0 | 0 | ||||||||
| \(532\) | 0 | 0 | ||||||||
| \(533\) | 0 | 0 | ||||||||
| \(534\) | 0 | 0 | ||||||||
| \(535\) | − 14.0689i | − 0.608251i | ||||||||
| \(536\) | 0 | 0 | ||||||||
| \(537\) | 0 | 0 | ||||||||
| \(538\) | 0 | 0 | ||||||||
| \(539\) | 0 | 0 | ||||||||
| \(540\) | 0 | 0 | ||||||||
| \(541\) | −38.0000 | −1.63375 | −0.816874 | − | 0.576816i | \(-0.804295\pi\) | ||||
| −0.816874 | + | 0.576816i | \(0.804295\pi\) | |||||||
| \(542\) | 0 | 0 | ||||||||
| \(543\) | 0 | 0 | ||||||||
| \(544\) | 0 | 0 | ||||||||
| \(545\) | 30.0000 | 1.28506 | ||||||||
| \(546\) | 0 | 0 | ||||||||
| \(547\) | 35.2361i | 1.50659i | 0.657685 | + | 0.753293i | \(0.271536\pi\) | ||||
| −0.657685 | + | 0.753293i | \(0.728464\pi\) | |||||||
| \(548\) | 0 | 0 | ||||||||
| \(549\) | 0 | 0 | ||||||||
| \(550\) | 0 | 0 | ||||||||
| \(551\) | 0 | 0 | ||||||||
| \(552\) | 0 | 0 | ||||||||
| \(553\) | 0 | 0 | ||||||||
| \(554\) | 0 | 0 | ||||||||
| \(555\) | 0 | 0 | ||||||||
| \(556\) | 0 | 0 | ||||||||
| \(557\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(558\) | 0 | 0 | ||||||||
| \(559\) | 0 | 0 | ||||||||
| \(560\) | 0 | 0 | ||||||||
| \(561\) | 0 | 0 | ||||||||
| \(562\) | 0 | 0 | ||||||||
| \(563\) | 32.5410i | 1.37144i | 0.727865 | + | 0.685720i | \(0.240513\pi\) | ||||
| −0.727865 | + | 0.685720i | \(0.759487\pi\) | |||||||
| \(564\) | 0 | 0 | ||||||||
| \(565\) | 0 | 0 | ||||||||
| \(566\) | 0 | 0 | ||||||||
| \(567\) | 0 | 0 | ||||||||
| \(568\) | 0 | 0 | ||||||||
| \(569\) | −31.3050 | −1.31237 | −0.656186 | − | 0.754599i | \(-0.727831\pi\) | ||||
| −0.656186 | + | 0.754599i | \(0.727831\pi\) | |||||||
| \(570\) | 0 | 0 | ||||||||
| \(571\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(572\) | 0 | 0 | ||||||||
| \(573\) | 0 | 0 | ||||||||
| \(574\) | 0 | 0 | ||||||||
| \(575\) | − 28.5410i | − 1.19024i | ||||||||
| \(576\) | 0 | 0 | ||||||||
| \(577\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(578\) | 0 | 0 | ||||||||
| \(579\) | 0 | 0 | ||||||||
| \(580\) | 0 | 0 | ||||||||
| \(581\) | −13.5279 | −0.561230 | ||||||||
| \(582\) | 0 | 0 | ||||||||
| \(583\) | 0 | 0 | ||||||||
| \(584\) | 0 | 0 | ||||||||
| \(585\) | 0 | 0 | ||||||||
| \(586\) | 0 | 0 | ||||||||
| \(587\) | 40.5410i | 1.67331i | 0.547733 | + | 0.836653i | \(0.315491\pi\) | ||||
| −0.547733 | + | 0.836653i | \(0.684509\pi\) | |||||||
| \(588\) | 0 | 0 | ||||||||
| \(589\) | 0 | 0 | ||||||||
| \(590\) | 0 | 0 | ||||||||
| \(591\) | 0 | 0 | ||||||||
| \(592\) | 0 | 0 | ||||||||
| \(593\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(594\) | 0 | 0 | ||||||||
| \(595\) | 0 | 0 | ||||||||
| \(596\) | 0 | 0 | ||||||||
| \(597\) | 0 | 0 | ||||||||
| \(598\) | 0 | 0 | ||||||||
| \(599\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(600\) | 0 | 0 | ||||||||
| \(601\) | −40.2492 | −1.64180 | −0.820900 | − | 0.571072i | \(-0.806528\pi\) | ||||
| −0.820900 | + | 0.571072i | \(0.806528\pi\) | |||||||
| \(602\) | 0 | 0 | ||||||||
| \(603\) | 0 | 0 | ||||||||
| \(604\) | 0 | 0 | ||||||||
| \(605\) | −24.5967 | −1.00000 | ||||||||
| \(606\) | 0 | 0 | ||||||||
| \(607\) | − 44.1803i | − 1.79322i | −0.442816 | − | 0.896612i | \(-0.646021\pi\) | ||||
| 0.442816 | − | 0.896612i | \(-0.353979\pi\) | |||||||
| \(608\) | 0 | 0 | ||||||||
| \(609\) | 0 | 0 | ||||||||
| \(610\) | 0 | 0 | ||||||||
| \(611\) | 0 | 0 | ||||||||
| \(612\) | 0 | 0 | ||||||||
| \(613\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(614\) | 0 | 0 | ||||||||
| \(615\) | 0 | 0 | ||||||||
| \(616\) | 0 | 0 | ||||||||
| \(617\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(618\) | 0 | 0 | ||||||||
| \(619\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(620\) | 0 | 0 | ||||||||
| \(621\) | 0 | 0 | ||||||||
| \(622\) | 0 | 0 | ||||||||
| \(623\) | 4.58359i | 0.183638i | ||||||||
| \(624\) | 0 | 0 | ||||||||
| \(625\) | 25.0000 | 1.00000 | ||||||||
| \(626\) | 0 | 0 | ||||||||
| \(627\) | 0 | 0 | ||||||||
| \(628\) | 0 | 0 | ||||||||
| \(629\) | 0 | 0 | ||||||||
| \(630\) | 0 | 0 | ||||||||
| \(631\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(632\) | 0 | 0 | ||||||||
| \(633\) | 0 | 0 | ||||||||
| \(634\) | 0 | 0 | ||||||||
| \(635\) | 41.7082i | 1.65514i | ||||||||
| \(636\) | 0 | 0 | ||||||||
| \(637\) | 0 | 0 | ||||||||
| \(638\) | 0 | 0 | ||||||||
| \(639\) | 0 | 0 | ||||||||
| \(640\) | 0 | 0 | ||||||||
| \(641\) | −49.1935 | −1.94303 | −0.971513 | − | 0.236986i | \(-0.923841\pi\) | ||||
| −0.971513 | + | 0.236986i | \(0.923841\pi\) | |||||||
| \(642\) | 0 | 0 | ||||||||
| \(643\) | 50.0689i | 1.97452i | 0.159103 | + | 0.987262i | \(0.449140\pi\) | ||||
| −0.159103 | + | 0.987262i | \(0.550860\pi\) | |||||||
| \(644\) | 0 | 0 | ||||||||
| \(645\) | 0 | 0 | ||||||||
| \(646\) | 0 | 0 | ||||||||
| \(647\) | − 20.5410i | − 0.807551i | −0.914858 | − | 0.403775i | \(-0.867698\pi\) | ||||
| 0.914858 | − | 0.403775i | \(-0.132302\pi\) | |||||||
| \(648\) | 0 | 0 | ||||||||
| \(649\) | 0 | 0 | ||||||||
| \(650\) | 0 | 0 | ||||||||
| \(651\) | 0 | 0 | ||||||||
| \(652\) | 0 | 0 | ||||||||
| \(653\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(654\) | 0 | 0 | ||||||||
| \(655\) | 0 | 0 | ||||||||
| \(656\) | 0 | 0 | ||||||||
| \(657\) | 0 | 0 | ||||||||
| \(658\) | 0 | 0 | ||||||||
| \(659\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(660\) | 0 | 0 | ||||||||
| \(661\) | −40.2492 | −1.56551 | −0.782757 | − | 0.622328i | \(-0.786187\pi\) | ||||
| −0.782757 | + | 0.622328i | \(0.786187\pi\) | |||||||
| \(662\) | 0 | 0 | ||||||||
| \(663\) | 0 | 0 | ||||||||
| \(664\) | 0 | 0 | ||||||||
| \(665\) | 0 | 0 | ||||||||
| \(666\) | 0 | 0 | ||||||||
| \(667\) | − 34.2492i | − 1.32614i | ||||||||
| \(668\) | 0 | 0 | ||||||||
| \(669\) | 0 | 0 | ||||||||
| \(670\) | 0 | 0 | ||||||||
| \(671\) | 0 | 0 | ||||||||
| \(672\) | 0 | 0 | ||||||||
| \(673\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(674\) | 0 | 0 | ||||||||
| \(675\) | 0 | 0 | ||||||||
| \(676\) | 0 | 0 | ||||||||
| \(677\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(678\) | 0 | 0 | ||||||||
| \(679\) | 0 | 0 | ||||||||
| \(680\) | 0 | 0 | ||||||||
| \(681\) | 0 | 0 | ||||||||
| \(682\) | 0 | 0 | ||||||||
| \(683\) | 10.8754i | 0.416135i | 0.978114 | + | 0.208068i | \(0.0667174\pi\) | ||||
| −0.978114 | + | 0.208068i | \(0.933283\pi\) | |||||||
| \(684\) | 0 | 0 | ||||||||
| \(685\) | 0 | 0 | ||||||||
| \(686\) | 0 | 0 | ||||||||
| \(687\) | 0 | 0 | ||||||||
| \(688\) | 0 | 0 | ||||||||
| \(689\) | 0 | 0 | ||||||||
| \(690\) | 0 | 0 | ||||||||
| \(691\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(692\) | 0 | 0 | ||||||||
| \(693\) | 0 | 0 | ||||||||
| \(694\) | 0 | 0 | ||||||||
| \(695\) | 0 | 0 | ||||||||
| \(696\) | 0 | 0 | ||||||||
| \(697\) | 0 | 0 | ||||||||
| \(698\) | 0 | 0 | ||||||||
| \(699\) | 0 | 0 | ||||||||
| \(700\) | 0 | 0 | ||||||||
| \(701\) | 22.3607 | 0.844551 | 0.422276 | − | 0.906467i | \(-0.361231\pi\) | ||||
| 0.422276 | + | 0.906467i | \(0.361231\pi\) | |||||||
| \(702\) | 0 | 0 | ||||||||
| \(703\) | 0 | 0 | ||||||||
| \(704\) | 0 | 0 | ||||||||
| \(705\) | 0 | 0 | ||||||||
| \(706\) | 0 | 0 | ||||||||
| \(707\) | − 13.7508i | − 0.517151i | ||||||||
| \(708\) | 0 | 0 | ||||||||
| \(709\) | −46.0000 | −1.72757 | −0.863783 | − | 0.503864i | \(-0.831911\pi\) | ||||
| −0.863783 | + | 0.503864i | \(0.831911\pi\) | |||||||
| \(710\) | 0 | 0 | ||||||||
| \(711\) | 0 | 0 | ||||||||
| \(712\) | 0 | 0 | ||||||||
| \(713\) | 0 | 0 | ||||||||
| \(714\) | 0 | 0 | ||||||||
| \(715\) | 0 | 0 | ||||||||
| \(716\) | 0 | 0 | ||||||||
| \(717\) | 0 | 0 | ||||||||
| \(718\) | 0 | 0 | ||||||||
| \(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(720\) | 0 | 0 | ||||||||
| \(721\) | 15.4164 | 0.574137 | ||||||||
| \(722\) | 0 | 0 | ||||||||
| \(723\) | 0 | 0 | ||||||||
| \(724\) | 0 | 0 | ||||||||
| \(725\) | 30.0000 | 1.11417 | ||||||||
| \(726\) | 0 | 0 | ||||||||
| \(727\) | − 35.0132i | − 1.29857i | −0.760547 | − | 0.649283i | \(-0.775069\pi\) | ||||
| 0.760547 | − | 0.649283i | \(-0.224931\pi\) | |||||||
| \(728\) | 0 | 0 | ||||||||
| \(729\) | 0 | 0 | ||||||||
| \(730\) | 0 | 0 | ||||||||
| \(731\) | 0 | 0 | ||||||||
| \(732\) | 0 | 0 | ||||||||
| \(733\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(734\) | 0 | 0 | ||||||||
| \(735\) | 0 | 0 | ||||||||
| \(736\) | 0 | 0 | ||||||||
| \(737\) | 0 | 0 | ||||||||
| \(738\) | 0 | 0 | ||||||||
| \(739\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(740\) | 0 | 0 | ||||||||
| \(741\) | 0 | 0 | ||||||||
| \(742\) | 0 | 0 | ||||||||
| \(743\) | − 52.5410i | − 1.92754i | −0.266729 | − | 0.963772i | \(-0.585943\pi\) | ||||
| 0.266729 | − | 0.963772i | \(-0.414057\pi\) | |||||||
| \(744\) | 0 | 0 | ||||||||
| \(745\) | 10.0000 | 0.366372 | ||||||||
| \(746\) | 0 | 0 | ||||||||
| \(747\) | 0 | 0 | ||||||||
| \(748\) | 0 | 0 | ||||||||
| \(749\) | 4.80650 | 0.175626 | ||||||||
| \(750\) | 0 | 0 | ||||||||
| \(751\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(752\) | 0 | 0 | ||||||||
| \(753\) | 0 | 0 | ||||||||
| \(754\) | 0 | 0 | ||||||||
| \(755\) | 0 | 0 | ||||||||
| \(756\) | 0 | 0 | ||||||||
| \(757\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(758\) | 0 | 0 | ||||||||
| \(759\) | 0 | 0 | ||||||||
| \(760\) | 0 | 0 | ||||||||
| \(761\) | −42.0000 | −1.52250 | −0.761249 | − | 0.648459i | \(-0.775414\pi\) | ||||
| −0.761249 | + | 0.648459i | \(0.775414\pi\) | |||||||
| \(762\) | 0 | 0 | ||||||||
| \(763\) | 10.2492i | 0.371047i | ||||||||
| \(764\) | 0 | 0 | ||||||||
| \(765\) | 0 | 0 | ||||||||
| \(766\) | 0 | 0 | ||||||||
| \(767\) | 0 | 0 | ||||||||
| \(768\) | 0 | 0 | ||||||||
| \(769\) | −14.0000 | −0.504853 | −0.252426 | − | 0.967616i | \(-0.581229\pi\) | ||||
| −0.252426 | + | 0.967616i | \(0.581229\pi\) | |||||||
| \(770\) | 0 | 0 | ||||||||
| \(771\) | 0 | 0 | ||||||||
| \(772\) | 0 | 0 | ||||||||
| \(773\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(774\) | 0 | 0 | ||||||||
| \(775\) | 0 | 0 | ||||||||
| \(776\) | 0 | 0 | ||||||||
| \(777\) | 0 | 0 | ||||||||
| \(778\) | 0 | 0 | ||||||||
| \(779\) | 0 | 0 | ||||||||
| \(780\) | 0 | 0 | ||||||||
| \(781\) | 0 | 0 | ||||||||
| \(782\) | 0 | 0 | ||||||||
| \(783\) | 0 | 0 | ||||||||
| \(784\) | 0 | 0 | ||||||||
| \(785\) | 0 | 0 | ||||||||
| \(786\) | 0 | 0 | ||||||||
| \(787\) | 2.06888i | 0.0737477i | 0.999320 | + | 0.0368739i | \(0.0117400\pi\) | ||||
| −0.999320 | + | 0.0368739i | \(0.988260\pi\) | |||||||
| \(788\) | 0 | 0 | ||||||||
| \(789\) | 0 | 0 | ||||||||
| \(790\) | 0 | 0 | ||||||||
| \(791\) | 0 | 0 | ||||||||
| \(792\) | 0 | 0 | ||||||||
| \(793\) | 0 | 0 | ||||||||
| \(794\) | 0 | 0 | ||||||||
| \(795\) | 0 | 0 | ||||||||
| \(796\) | 0 | 0 | ||||||||
| \(797\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(798\) | 0 | 0 | ||||||||
| \(799\) | 0 | 0 | ||||||||
| \(800\) | 0 | 0 | ||||||||
| \(801\) | 0 | 0 | ||||||||
| \(802\) | 0 | 0 | ||||||||
| \(803\) | 0 | 0 | ||||||||
| \(804\) | 0 | 0 | ||||||||
| \(805\) | 9.75078 | 0.343670 | ||||||||
| \(806\) | 0 | 0 | ||||||||
| \(807\) | 0 | 0 | ||||||||
| \(808\) | 0 | 0 | ||||||||
| \(809\) | 54.0000 | 1.89854 | 0.949269 | − | 0.314464i | \(-0.101825\pi\) | ||||
| 0.949269 | + | 0.314464i | \(0.101825\pi\) | |||||||
| \(810\) | 0 | 0 | ||||||||
| \(811\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(812\) | 0 | 0 | ||||||||
| \(813\) | 0 | 0 | ||||||||
| \(814\) | 0 | 0 | ||||||||
| \(815\) | − 14.8754i | − 0.521062i | ||||||||
| \(816\) | 0 | 0 | ||||||||
| \(817\) | 0 | 0 | ||||||||
| \(818\) | 0 | 0 | ||||||||
| \(819\) | 0 | 0 | ||||||||
| \(820\) | 0 | 0 | ||||||||
| \(821\) | −31.3050 | −1.09255 | −0.546275 | − | 0.837606i | \(-0.683955\pi\) | ||||
| −0.546275 | + | 0.837606i | \(0.683955\pi\) | |||||||
| \(822\) | 0 | 0 | ||||||||
| \(823\) | 27.8197i | 0.969732i | 0.874588 | + | 0.484866i | \(0.161132\pi\) | ||||
| −0.874588 | + | 0.484866i | \(0.838868\pi\) | |||||||
| \(824\) | 0 | 0 | ||||||||
| \(825\) | 0 | 0 | ||||||||
| \(826\) | 0 | 0 | ||||||||
| \(827\) | 56.5410i | 1.96612i | 0.183274 | + | 0.983062i | \(0.441331\pi\) | ||||
| −0.183274 | + | 0.983062i | \(0.558669\pi\) | |||||||
| \(828\) | 0 | 0 | ||||||||
| \(829\) | 13.4164 | 0.465971 | 0.232986 | − | 0.972480i | \(-0.425151\pi\) | ||||
| 0.232986 | + | 0.972480i | \(0.425151\pi\) | |||||||
| \(830\) | 0 | 0 | ||||||||
| \(831\) | 0 | 0 | ||||||||
| \(832\) | 0 | 0 | ||||||||
| \(833\) | 0 | 0 | ||||||||
| \(834\) | 0 | 0 | ||||||||
| \(835\) | 23.0132i | 0.796403i | ||||||||
| \(836\) | 0 | 0 | ||||||||
| \(837\) | 0 | 0 | ||||||||
| \(838\) | 0 | 0 | ||||||||
| \(839\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(840\) | 0 | 0 | ||||||||
| \(841\) | 7.00000 | 0.241379 | ||||||||
| \(842\) | 0 | 0 | ||||||||
| \(843\) | 0 | 0 | ||||||||
| \(844\) | 0 | 0 | ||||||||
| \(845\) | 29.0689 | 1.00000 | ||||||||
| \(846\) | 0 | 0 | ||||||||
| \(847\) | − 8.40325i | − 0.288739i | ||||||||
| \(848\) | 0 | 0 | ||||||||
| \(849\) | 0 | 0 | ||||||||
| \(850\) | 0 | 0 | ||||||||
| \(851\) | 0 | 0 | ||||||||
| \(852\) | 0 | 0 | ||||||||
| \(853\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(854\) | 0 | 0 | ||||||||
| \(855\) | 0 | 0 | ||||||||
| \(856\) | 0 | 0 | ||||||||
| \(857\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(858\) | 0 | 0 | ||||||||
| \(859\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(860\) | 0 | 0 | ||||||||
| \(861\) | 0 | 0 | ||||||||
| \(862\) | 0 | 0 | ||||||||
| \(863\) | 34.2918i | 1.16731i | 0.812003 | + | 0.583653i | \(0.198377\pi\) | ||||
| −0.812003 | + | 0.583653i | \(0.801623\pi\) | |||||||
| \(864\) | 0 | 0 | ||||||||
| \(865\) | 0 | 0 | ||||||||
| \(866\) | 0 | 0 | ||||||||
| \(867\) | 0 | 0 | ||||||||
| \(868\) | 0 | 0 | ||||||||
| \(869\) | 0 | 0 | ||||||||
| \(870\) | 0 | 0 | ||||||||
| \(871\) | 0 | 0 | ||||||||
| \(872\) | 0 | 0 | ||||||||
| \(873\) | 0 | 0 | ||||||||
| \(874\) | 0 | 0 | ||||||||
| \(875\) | 8.54102i | 0.288739i | ||||||||
| \(876\) | 0 | 0 | ||||||||
| \(877\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(878\) | 0 | 0 | ||||||||
| \(879\) | 0 | 0 | ||||||||
| \(880\) | 0 | 0 | ||||||||
| \(881\) | 58.1378 | 1.95871 | 0.979356 | − | 0.202145i | \(-0.0647913\pi\) | ||||
| 0.979356 | + | 0.202145i | \(0.0647913\pi\) | |||||||
| \(882\) | 0 | 0 | ||||||||
| \(883\) | − 54.6525i | − 1.83920i | −0.392853 | − | 0.919601i | \(-0.628512\pi\) | ||||
| 0.392853 | − | 0.919601i | \(-0.371488\pi\) | |||||||
| \(884\) | 0 | 0 | ||||||||
| \(885\) | 0 | 0 | ||||||||
| \(886\) | 0 | 0 | ||||||||
| \(887\) | 57.1246i | 1.91806i | 0.283310 | + | 0.959028i | \(0.408567\pi\) | ||||
| −0.283310 | + | 0.959028i | \(0.591433\pi\) | |||||||
| \(888\) | 0 | 0 | ||||||||
| \(889\) | −14.2492 | −0.477904 | ||||||||
| \(890\) | 0 | 0 | ||||||||
| \(891\) | 0 | 0 | ||||||||
| \(892\) | 0 | 0 | ||||||||
| \(893\) | 0 | 0 | ||||||||
| \(894\) | 0 | 0 | ||||||||
| \(895\) | 0 | 0 | ||||||||
| \(896\) | 0 | 0 | ||||||||
| \(897\) | 0 | 0 | ||||||||
| \(898\) | 0 | 0 | ||||||||
| \(899\) | 0 | 0 | ||||||||
| \(900\) | 0 | 0 | ||||||||
| \(901\) | 0 | 0 | ||||||||
| \(902\) | 0 | 0 | ||||||||
| \(903\) | 0 | 0 | ||||||||
| \(904\) | 0 | 0 | ||||||||
| \(905\) | 4.47214 | 0.148659 | ||||||||
| \(906\) | 0 | 0 | ||||||||
| \(907\) | − 45.4853i | − 1.51031i | −0.655544 | − | 0.755157i | \(-0.727561\pi\) | ||||
| 0.655544 | − | 0.755157i | \(-0.272439\pi\) | |||||||
| \(908\) | 0 | 0 | ||||||||
| \(909\) | 0 | 0 | ||||||||
| \(910\) | 0 | 0 | ||||||||
| \(911\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(912\) | 0 | 0 | ||||||||
| \(913\) | 0 | 0 | ||||||||
| \(914\) | 0 | 0 | ||||||||
| \(915\) | 0 | 0 | ||||||||
| \(916\) | 0 | 0 | ||||||||
| \(917\) | 0 | 0 | ||||||||
| \(918\) | 0 | 0 | ||||||||
| \(919\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(920\) | 0 | 0 | ||||||||
| \(921\) | 0 | 0 | ||||||||
| \(922\) | 0 | 0 | ||||||||
| \(923\) | 0 | 0 | ||||||||
| \(924\) | 0 | 0 | ||||||||
| \(925\) | 0 | 0 | ||||||||
| \(926\) | 0 | 0 | ||||||||
| \(927\) | 0 | 0 | ||||||||
| \(928\) | 0 | 0 | ||||||||
| \(929\) | −49.1935 | −1.61399 | −0.806993 | − | 0.590561i | \(-0.798907\pi\) | ||||
| −0.806993 | + | 0.590561i | \(0.798907\pi\) | |||||||
| \(930\) | 0 | 0 | ||||||||
| \(931\) | 0 | 0 | ||||||||
| \(932\) | 0 | 0 | ||||||||
| \(933\) | 0 | 0 | ||||||||
| \(934\) | 0 | 0 | ||||||||
| \(935\) | 0 | 0 | ||||||||
| \(936\) | 0 | 0 | ||||||||
| \(937\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(938\) | 0 | 0 | ||||||||
| \(939\) | 0 | 0 | ||||||||
| \(940\) | 0 | 0 | ||||||||
| \(941\) | −42.0000 | −1.36916 | −0.684580 | − | 0.728937i | \(-0.740015\pi\) | ||||
| −0.684580 | + | 0.728937i | \(0.740015\pi\) | |||||||
| \(942\) | 0 | 0 | ||||||||
| \(943\) | − 25.5279i | − 0.831302i | ||||||||
| \(944\) | 0 | 0 | ||||||||
| \(945\) | 0 | 0 | ||||||||
| \(946\) | 0 | 0 | ||||||||
| \(947\) | 49.7082i | 1.61530i | 0.589662 | + | 0.807650i | \(0.299261\pi\) | ||||
| −0.589662 | + | 0.807650i | \(0.700739\pi\) | |||||||
| \(948\) | 0 | 0 | ||||||||
| \(949\) | 0 | 0 | ||||||||
| \(950\) | 0 | 0 | ||||||||
| \(951\) | 0 | 0 | ||||||||
| \(952\) | 0 | 0 | ||||||||
| \(953\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(954\) | 0 | 0 | ||||||||
| \(955\) | 0 | 0 | ||||||||
| \(956\) | 0 | 0 | ||||||||
| \(957\) | 0 | 0 | ||||||||
| \(958\) | 0 | 0 | ||||||||
| \(959\) | 0 | 0 | ||||||||
| \(960\) | 0 | 0 | ||||||||
| \(961\) | −31.0000 | −1.00000 | ||||||||
| \(962\) | 0 | 0 | ||||||||
| \(963\) | 0 | 0 | ||||||||
| \(964\) | 0 | 0 | ||||||||
| \(965\) | 0 | 0 | ||||||||
| \(966\) | 0 | 0 | ||||||||
| \(967\) | − 62.0689i | − 1.99600i | −0.0632081 | − | 0.998000i | \(-0.520133\pi\) | ||||
| 0.0632081 | − | 0.998000i | \(-0.479867\pi\) | |||||||
| \(968\) | 0 | 0 | ||||||||
| \(969\) | 0 | 0 | ||||||||
| \(970\) | 0 | 0 | ||||||||
| \(971\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(972\) | 0 | 0 | ||||||||
| \(973\) | 0 | 0 | ||||||||
| \(974\) | 0 | 0 | ||||||||
| \(975\) | 0 | 0 | ||||||||
| \(976\) | 0 | 0 | ||||||||
| \(977\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(978\) | 0 | 0 | ||||||||
| \(979\) | 0 | 0 | ||||||||
| \(980\) | 0 | 0 | ||||||||
| \(981\) | 0 | 0 | ||||||||
| \(982\) | 0 | 0 | ||||||||
| \(983\) | − 4.54102i | − 0.144836i | −0.997374 | − | 0.0724180i | \(-0.976928\pi\) | ||||
| 0.997374 | − | 0.0724180i | \(-0.0230716\pi\) | |||||||
| \(984\) | 0 | 0 | ||||||||
| \(985\) | 0 | 0 | ||||||||
| \(986\) | 0 | 0 | ||||||||
| \(987\) | 0 | 0 | ||||||||
| \(988\) | 0 | 0 | ||||||||
| \(989\) | 64.1378 | 2.03946 | ||||||||
| \(990\) | 0 | 0 | ||||||||
| \(991\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
| 1.00000i | \(0.5\pi\) | |||||||||
| \(992\) | 0 | 0 | ||||||||
| \(993\) | 0 | 0 | ||||||||
| \(994\) | 0 | 0 | ||||||||
| \(995\) | 0 | 0 | ||||||||
| \(996\) | 0 | 0 | ||||||||
| \(997\) | 0 | 0 | 1.00000 | \(0\) | ||||||
| −1.00000 | \(\pi\) | |||||||||
| \(998\) | 0 | 0 | ||||||||
| \(999\) | 0 | 0 | ||||||||
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))