Properties

Label 288.5.t.b.79.4
Level $288$
Weight $5$
Character 288.79
Analytic conductor $29.771$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [288,5,Mod(79,288)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("288.79"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(288, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 4])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 288.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [88] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.7705493681\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(44\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 79.4
Character \(\chi\) \(=\) 288.79
Dual form 288.5.t.b.175.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-8.90483 - 1.30534i) q^{3} +(23.2381 - 13.4165i) q^{5} +(52.2165 + 30.1472i) q^{7} +(77.5922 + 23.2478i) q^{9} +(-92.8475 + 160.817i) q^{11} +(166.026 - 95.8552i) q^{13} +(-224.444 + 89.1381i) q^{15} -425.178 q^{17} +114.203 q^{19} +(-425.627 - 336.616i) q^{21} +(239.080 - 138.033i) q^{23} +(47.5051 - 82.2813i) q^{25} +(-660.599 - 308.302i) q^{27} +(757.999 + 437.631i) q^{29} +(-910.769 + 525.833i) q^{31} +(1036.71 - 1310.85i) q^{33} +1617.88 q^{35} +194.549i q^{37} +(-1603.56 + 636.853i) q^{39} +(1420.33 + 2460.08i) q^{41} +(449.077 - 777.825i) q^{43} +(2115.00 - 500.783i) q^{45} +(-348.382 - 201.138i) q^{47} +(617.208 + 1069.03i) q^{49} +(3786.14 + 555.004i) q^{51} +4662.79i q^{53} +4982.75i q^{55} +(-1016.96 - 149.074i) q^{57} +(1769.31 + 3064.53i) q^{59} +(1797.64 + 1037.87i) q^{61} +(3350.73 + 3553.10i) q^{63} +(2572.08 - 4454.98i) q^{65} +(-1465.53 - 2538.37i) q^{67} +(-2309.14 + 917.077i) q^{69} -3035.73i q^{71} +5570.78 q^{73} +(-530.431 + 670.691i) q^{75} +(-9696.34 + 5598.18i) q^{77} +(9323.76 + 5383.08i) q^{79} +(5480.08 + 3607.69i) q^{81} +(1407.36 - 2437.61i) q^{83} +(-9880.31 + 5704.40i) q^{85} +(-6178.59 - 4886.48i) q^{87} -1868.54 q^{89} +11559.1 q^{91} +(8796.64 - 3493.58i) q^{93} +(2653.85 - 1532.20i) q^{95} +(1255.93 - 2175.33i) q^{97} +(-10942.9 + 10319.6i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 18 q^{3} + 30 q^{9} - 44 q^{11} - 1156 q^{17} - 860 q^{19} + 5998 q^{25} - 504 q^{27} - 3204 q^{33} + 2508 q^{35} + 2348 q^{41} - 3500 q^{43} + 16462 q^{49} + 12378 q^{51} - 6522 q^{57} + 3508 q^{59}+ \cdots + 11742 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/288\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −8.90483 1.30534i −0.989426 0.145038i
\(4\) 0 0
\(5\) 23.2381 13.4165i 0.929523 0.536660i 0.0428621 0.999081i \(-0.486352\pi\)
0.886661 + 0.462421i \(0.153019\pi\)
\(6\) 0 0
\(7\) 52.2165 + 30.1472i 1.06564 + 0.615249i 0.926988 0.375092i \(-0.122389\pi\)
0.138655 + 0.990341i \(0.455722\pi\)
\(8\) 0 0
\(9\) 77.5922 + 23.2478i 0.957928 + 0.287009i
\(10\) 0 0
\(11\) −92.8475 + 160.817i −0.767335 + 1.32906i 0.171669 + 0.985155i \(0.445084\pi\)
−0.939003 + 0.343908i \(0.888249\pi\)
\(12\) 0 0
\(13\) 166.026 95.8552i 0.982402 0.567190i 0.0794078 0.996842i \(-0.474697\pi\)
0.902995 + 0.429652i \(0.141364\pi\)
\(14\) 0 0
\(15\) −224.444 + 89.1381i −0.997530 + 0.396169i
\(16\) 0 0
\(17\) −425.178 −1.47120 −0.735602 0.677414i \(-0.763101\pi\)
−0.735602 + 0.677414i \(0.763101\pi\)
\(18\) 0 0
\(19\) 114.203 0.316351 0.158175 0.987411i \(-0.449439\pi\)
0.158175 + 0.987411i \(0.449439\pi\)
\(20\) 0 0
\(21\) −425.627 336.616i −0.965140 0.763302i
\(22\) 0 0
\(23\) 239.080 138.033i 0.451946 0.260931i −0.256705 0.966490i \(-0.582637\pi\)
0.708652 + 0.705558i \(0.249304\pi\)
\(24\) 0 0
\(25\) 47.5051 82.2813i 0.0760082 0.131650i
\(26\) 0 0
\(27\) −660.599 308.302i −0.906171 0.422911i
\(28\) 0 0
\(29\) 757.999 + 437.631i 0.901306 + 0.520369i 0.877624 0.479350i \(-0.159128\pi\)
0.0236825 + 0.999720i \(0.492461\pi\)
\(30\) 0 0
\(31\) −910.769 + 525.833i −0.947730 + 0.547172i −0.892375 0.451294i \(-0.850962\pi\)
−0.0553551 + 0.998467i \(0.517629\pi\)
\(32\) 0 0
\(33\) 1036.71 1310.85i 0.951986 1.20372i
\(34\) 0 0
\(35\) 1617.88 1.32072
\(36\) 0 0
\(37\) 194.549i 0.142110i 0.997472 + 0.0710551i \(0.0226366\pi\)
−0.997472 + 0.0710551i \(0.977363\pi\)
\(38\) 0 0
\(39\) −1603.56 + 636.853i −1.05428 + 0.418707i
\(40\) 0 0
\(41\) 1420.33 + 2460.08i 0.844930 + 1.46346i 0.885682 + 0.464292i \(0.153691\pi\)
−0.0407524 + 0.999169i \(0.512975\pi\)
\(42\) 0 0
\(43\) 449.077 777.825i 0.242876 0.420673i −0.718656 0.695365i \(-0.755243\pi\)
0.961532 + 0.274692i \(0.0885759\pi\)
\(44\) 0 0
\(45\) 2115.00 500.783i 1.04444 0.247300i
\(46\) 0 0
\(47\) −348.382 201.138i −0.157710 0.0910540i 0.419068 0.907955i \(-0.362357\pi\)
−0.576778 + 0.816901i \(0.695690\pi\)
\(48\) 0 0
\(49\) 617.208 + 1069.03i 0.257063 + 0.445246i
\(50\) 0 0
\(51\) 3786.14 + 555.004i 1.45565 + 0.213381i
\(52\) 0 0
\(53\) 4662.79i 1.65995i 0.557802 + 0.829974i \(0.311645\pi\)
−0.557802 + 0.829974i \(0.688355\pi\)
\(54\) 0 0
\(55\) 4982.75i 1.64719i
\(56\) 0 0
\(57\) −1016.96 149.074i −0.313006 0.0458830i
\(58\) 0 0
\(59\) 1769.31 + 3064.53i 0.508276 + 0.880359i 0.999954 + 0.00958239i \(0.00305022\pi\)
−0.491678 + 0.870777i \(0.663616\pi\)
\(60\) 0 0
\(61\) 1797.64 + 1037.87i 0.483107 + 0.278922i 0.721710 0.692195i \(-0.243356\pi\)
−0.238604 + 0.971117i \(0.576690\pi\)
\(62\) 0 0
\(63\) 3350.73 + 3553.10i 0.844226 + 0.895213i
\(64\) 0 0
\(65\) 2572.08 4454.98i 0.608777 1.05443i
\(66\) 0 0
\(67\) −1465.53 2538.37i −0.326471 0.565465i 0.655338 0.755336i \(-0.272526\pi\)
−0.981809 + 0.189871i \(0.939193\pi\)
\(68\) 0 0
\(69\) −2309.14 + 917.077i −0.485013 + 0.192623i
\(70\) 0 0
\(71\) 3035.73i 0.602208i −0.953591 0.301104i \(-0.902645\pi\)
0.953591 0.301104i \(-0.0973551\pi\)
\(72\) 0 0
\(73\) 5570.78 1.04537 0.522685 0.852526i \(-0.324930\pi\)
0.522685 + 0.852526i \(0.324930\pi\)
\(74\) 0 0
\(75\) −530.431 + 670.691i −0.0942988 + 0.119234i
\(76\) 0 0
\(77\) −9696.34 + 5598.18i −1.63541 + 0.944204i
\(78\) 0 0
\(79\) 9323.76 + 5383.08i 1.49395 + 0.862535i 0.999976 0.00694001i \(-0.00220909\pi\)
0.493978 + 0.869475i \(0.335542\pi\)
\(80\) 0 0
\(81\) 5480.08 + 3607.69i 0.835251 + 0.549868i
\(82\) 0 0
\(83\) 1407.36 2437.61i 0.204291 0.353842i −0.745616 0.666376i \(-0.767845\pi\)
0.949906 + 0.312534i \(0.101178\pi\)
\(84\) 0 0
\(85\) −9880.31 + 5704.40i −1.36752 + 0.789537i
\(86\) 0 0
\(87\) −6178.59 4886.48i −0.816302 0.645591i
\(88\) 0 0
\(89\) −1868.54 −0.235897 −0.117949 0.993020i \(-0.537632\pi\)
−0.117949 + 0.993020i \(0.537632\pi\)
\(90\) 0 0
\(91\) 11559.1 1.39585
\(92\) 0 0
\(93\) 8796.64 3493.58i 1.01707 0.403929i
\(94\) 0 0
\(95\) 2653.85 1532.20i 0.294055 0.169773i
\(96\) 0 0
\(97\) 1255.93 2175.33i 0.133481 0.231197i −0.791535 0.611124i \(-0.790718\pi\)
0.925016 + 0.379927i \(0.124051\pi\)
\(98\) 0 0
\(99\) −10942.9 + 10319.6i −1.11650 + 1.05291i
\(100\) 0 0
\(101\) −4729.31 2730.47i −0.463612 0.267667i 0.249950 0.968259i \(-0.419586\pi\)
−0.713562 + 0.700592i \(0.752919\pi\)
\(102\) 0 0
\(103\) 9762.25 5636.24i 0.920186 0.531270i 0.0364916 0.999334i \(-0.488382\pi\)
0.883694 + 0.468064i \(0.155048\pi\)
\(104\) 0 0
\(105\) −14407.0 2111.89i −1.30675 0.191555i
\(106\) 0 0
\(107\) −4850.33 −0.423647 −0.211823 0.977308i \(-0.567940\pi\)
−0.211823 + 0.977308i \(0.567940\pi\)
\(108\) 0 0
\(109\) 17364.2i 1.46151i −0.682639 0.730756i \(-0.739168\pi\)
0.682639 0.730756i \(-0.260832\pi\)
\(110\) 0 0
\(111\) 253.953 1732.43i 0.0206114 0.140608i
\(112\) 0 0
\(113\) 6670.25 + 11553.2i 0.522378 + 0.904786i 0.999661 + 0.0260362i \(0.00828850\pi\)
−0.477283 + 0.878750i \(0.658378\pi\)
\(114\) 0 0
\(115\) 3703.83 6415.23i 0.280063 0.485083i
\(116\) 0 0
\(117\) 15110.7 3577.88i 1.10386 0.261369i
\(118\) 0 0
\(119\) −22201.3 12817.9i −1.56778 0.905157i
\(120\) 0 0
\(121\) −9920.81 17183.3i −0.677605 1.17365i
\(122\) 0 0
\(123\) −9436.53 23760.6i −0.623738 1.57053i
\(124\) 0 0
\(125\) 14221.2i 0.910158i
\(126\) 0 0
\(127\) 1492.37i 0.0925269i 0.998929 + 0.0462634i \(0.0147314\pi\)
−0.998929 + 0.0462634i \(0.985269\pi\)
\(128\) 0 0
\(129\) −5014.29 + 6340.20i −0.301321 + 0.380999i
\(130\) 0 0
\(131\) 3213.86 + 5566.56i 0.187277 + 0.324373i 0.944341 0.328967i \(-0.106701\pi\)
−0.757065 + 0.653340i \(0.773367\pi\)
\(132\) 0 0
\(133\) 5963.26 + 3442.89i 0.337117 + 0.194635i
\(134\) 0 0
\(135\) −19487.4 + 1698.59i −1.06927 + 0.0932010i
\(136\) 0 0
\(137\) −10678.8 + 18496.2i −0.568959 + 0.985466i 0.427710 + 0.903916i \(0.359320\pi\)
−0.996669 + 0.0815500i \(0.974013\pi\)
\(138\) 0 0
\(139\) 10328.6 + 17889.6i 0.534578 + 0.925916i 0.999184 + 0.0403986i \(0.0128628\pi\)
−0.464606 + 0.885518i \(0.653804\pi\)
\(140\) 0 0
\(141\) 2839.73 + 2245.86i 0.142836 + 0.112965i
\(142\) 0 0
\(143\) 35599.6i 1.74090i
\(144\) 0 0
\(145\) 23485.9 1.11705
\(146\) 0 0
\(147\) −4100.67 10325.2i −0.189767 0.477822i
\(148\) 0 0
\(149\) 4499.97 2598.06i 0.202692 0.117025i −0.395218 0.918587i \(-0.629331\pi\)
0.597911 + 0.801563i \(0.295998\pi\)
\(150\) 0 0
\(151\) 17647.9 + 10189.0i 0.773998 + 0.446868i 0.834299 0.551313i \(-0.185873\pi\)
−0.0603013 + 0.998180i \(0.519206\pi\)
\(152\) 0 0
\(153\) −32990.5 9884.43i −1.40931 0.422249i
\(154\) 0 0
\(155\) −14109.7 + 24438.7i −0.587291 + 1.01722i
\(156\) 0 0
\(157\) 7737.56 4467.28i 0.313910 0.181236i −0.334765 0.942302i \(-0.608657\pi\)
0.648675 + 0.761066i \(0.275324\pi\)
\(158\) 0 0
\(159\) 6086.55 41521.4i 0.240756 1.64240i
\(160\) 0 0
\(161\) 16645.2 0.642151
\(162\) 0 0
\(163\) −38000.8 −1.43027 −0.715134 0.698987i \(-0.753634\pi\)
−0.715134 + 0.698987i \(0.753634\pi\)
\(164\) 0 0
\(165\) 6504.21 44370.6i 0.238906 1.62977i
\(166\) 0 0
\(167\) 11942.4 6894.97i 0.428213 0.247229i −0.270372 0.962756i \(-0.587147\pi\)
0.698585 + 0.715527i \(0.253813\pi\)
\(168\) 0 0
\(169\) 4095.92 7094.35i 0.143410 0.248393i
\(170\) 0 0
\(171\) 8861.23 + 2654.96i 0.303041 + 0.0907956i
\(172\) 0 0
\(173\) −9687.10 5592.85i −0.323669 0.186871i 0.329358 0.944205i \(-0.393168\pi\)
−0.653027 + 0.757335i \(0.726501\pi\)
\(174\) 0 0
\(175\) 4961.10 2864.29i 0.161995 0.0935279i
\(176\) 0 0
\(177\) −11755.1 29598.7i −0.375215 0.944770i
\(178\) 0 0
\(179\) −7133.34 −0.222632 −0.111316 0.993785i \(-0.535507\pi\)
−0.111316 + 0.993785i \(0.535507\pi\)
\(180\) 0 0
\(181\) 26104.7i 0.796822i 0.917207 + 0.398411i \(0.130438\pi\)
−0.917207 + 0.398411i \(0.869562\pi\)
\(182\) 0 0
\(183\) −14652.9 11588.6i −0.437544 0.346041i
\(184\) 0 0
\(185\) 2610.17 + 4520.94i 0.0762649 + 0.132095i
\(186\) 0 0
\(187\) 39476.7 68375.7i 1.12891 1.95532i
\(188\) 0 0
\(189\) −25199.7 36013.7i −0.705459 1.00819i
\(190\) 0 0
\(191\) −39532.9 22824.3i −1.08366 0.625649i −0.151776 0.988415i \(-0.548499\pi\)
−0.931880 + 0.362766i \(0.881832\pi\)
\(192\) 0 0
\(193\) −6039.50 10460.7i −0.162139 0.280832i 0.773497 0.633800i \(-0.218506\pi\)
−0.935635 + 0.352968i \(0.885173\pi\)
\(194\) 0 0
\(195\) −28719.2 + 36313.4i −0.755273 + 0.954987i
\(196\) 0 0
\(197\) 70123.2i 1.80688i −0.428714 0.903440i \(-0.641033\pi\)
0.428714 0.903440i \(-0.358967\pi\)
\(198\) 0 0
\(199\) 53477.1i 1.35040i 0.737636 + 0.675198i \(0.235942\pi\)
−0.737636 + 0.675198i \(0.764058\pi\)
\(200\) 0 0
\(201\) 9736.85 + 24516.8i 0.241005 + 0.606837i
\(202\) 0 0
\(203\) 26386.7 + 45703.1i 0.640314 + 1.10906i
\(204\) 0 0
\(205\) 66011.3 + 38111.6i 1.57076 + 0.906880i
\(206\) 0 0
\(207\) 21759.7 5152.19i 0.507822 0.120241i
\(208\) 0 0
\(209\) −10603.4 + 18365.7i −0.242747 + 0.420450i
\(210\) 0 0
\(211\) −16582.5 28721.8i −0.372465 0.645128i 0.617479 0.786587i \(-0.288154\pi\)
−0.989944 + 0.141459i \(0.954821\pi\)
\(212\) 0 0
\(213\) −3962.67 + 27032.7i −0.0873431 + 0.595840i
\(214\) 0 0
\(215\) 24100.2i 0.521367i
\(216\) 0 0
\(217\) −63409.5 −1.34659
\(218\) 0 0
\(219\) −49606.9 7271.79i −1.03432 0.151619i
\(220\) 0 0
\(221\) −70590.6 + 40755.5i −1.44531 + 0.834453i
\(222\) 0 0
\(223\) −53609.6 30951.5i −1.07804 0.622404i −0.147669 0.989037i \(-0.547177\pi\)
−0.930366 + 0.366633i \(0.880510\pi\)
\(224\) 0 0
\(225\) 5598.88 5280.00i 0.110595 0.104296i
\(226\) 0 0
\(227\) 121.231 209.978i 0.00235268 0.00407496i −0.864847 0.502036i \(-0.832584\pi\)
0.867199 + 0.497961i \(0.165918\pi\)
\(228\) 0 0
\(229\) 10175.3 5874.70i 0.194033 0.112025i −0.399836 0.916587i \(-0.630933\pi\)
0.593869 + 0.804562i \(0.297600\pi\)
\(230\) 0 0
\(231\) 93651.8 37193.8i 1.75506 0.697023i
\(232\) 0 0
\(233\) −34752.2 −0.640134 −0.320067 0.947395i \(-0.603705\pi\)
−0.320067 + 0.947395i \(0.603705\pi\)
\(234\) 0 0
\(235\) −10794.3 −0.195460
\(236\) 0 0
\(237\) −75999.8 60106.1i −1.35306 1.07009i
\(238\) 0 0
\(239\) −41098.0 + 23728.0i −0.719491 + 0.415398i −0.814565 0.580072i \(-0.803024\pi\)
0.0950746 + 0.995470i \(0.469691\pi\)
\(240\) 0 0
\(241\) 34530.8 59809.0i 0.594527 1.02975i −0.399086 0.916914i \(-0.630672\pi\)
0.993613 0.112838i \(-0.0359942\pi\)
\(242\) 0 0
\(243\) −44090.0 39279.2i −0.746667 0.665198i
\(244\) 0 0
\(245\) 28685.4 + 16561.5i 0.477891 + 0.275911i
\(246\) 0 0
\(247\) 18960.6 10946.9i 0.310784 0.179431i
\(248\) 0 0
\(249\) −15714.2 + 19869.5i −0.253451 + 0.320470i
\(250\) 0 0
\(251\) 59187.9 0.939475 0.469738 0.882806i \(-0.344348\pi\)
0.469738 + 0.882806i \(0.344348\pi\)
\(252\) 0 0
\(253\) 51263.9i 0.800887i
\(254\) 0 0
\(255\) 95428.8 37899.5i 1.46757 0.582846i
\(256\) 0 0
\(257\) 26280.3 + 45518.9i 0.397891 + 0.689168i 0.993466 0.114132i \(-0.0364087\pi\)
−0.595574 + 0.803300i \(0.703075\pi\)
\(258\) 0 0
\(259\) −5865.11 + 10158.7i −0.0874332 + 0.151439i
\(260\) 0 0
\(261\) 48640.8 + 51578.5i 0.714035 + 0.757160i
\(262\) 0 0
\(263\) 37110.2 + 21425.6i 0.536515 + 0.309757i 0.743665 0.668552i \(-0.233086\pi\)
−0.207150 + 0.978309i \(0.566419\pi\)
\(264\) 0 0
\(265\) 62558.4 + 108354.i 0.890828 + 1.54296i
\(266\) 0 0
\(267\) 16639.0 + 2439.09i 0.233403 + 0.0342141i
\(268\) 0 0
\(269\) 10584.0i 0.146267i −0.997322 0.0731333i \(-0.976700\pi\)
0.997322 0.0731333i \(-0.0232998\pi\)
\(270\) 0 0
\(271\) 93339.2i 1.27094i −0.772125 0.635471i \(-0.780806\pi\)
0.772125 0.635471i \(-0.219194\pi\)
\(272\) 0 0
\(273\) −102932. 15088.6i −1.38109 0.202452i
\(274\) 0 0
\(275\) 8821.46 + 15279.2i 0.116647 + 0.202039i
\(276\) 0 0
\(277\) 20273.5 + 11704.9i 0.264222 + 0.152549i 0.626259 0.779615i \(-0.284585\pi\)
−0.362037 + 0.932164i \(0.617919\pi\)
\(278\) 0 0
\(279\) −82892.9 + 19627.2i −1.06490 + 0.252144i
\(280\) 0 0
\(281\) −3736.40 + 6471.63i −0.0473195 + 0.0819598i −0.888715 0.458460i \(-0.848401\pi\)
0.841396 + 0.540420i \(0.181735\pi\)
\(282\) 0 0
\(283\) 45059.8 + 78045.9i 0.562622 + 0.974490i 0.997267 + 0.0738877i \(0.0235407\pi\)
−0.434645 + 0.900602i \(0.643126\pi\)
\(284\) 0 0
\(285\) −25632.1 + 10179.8i −0.315569 + 0.125328i
\(286\) 0 0
\(287\) 171276.i 2.07937i
\(288\) 0 0
\(289\) 97255.3 1.16444
\(290\) 0 0
\(291\) −14023.4 + 17731.5i −0.165602 + 0.209392i
\(292\) 0 0
\(293\) −118256. + 68274.9i −1.37748 + 0.795290i −0.991856 0.127365i \(-0.959348\pi\)
−0.385627 + 0.922655i \(0.626015\pi\)
\(294\) 0 0
\(295\) 82230.6 + 47475.8i 0.944907 + 0.545543i
\(296\) 0 0
\(297\) 110915. 77610.2i 1.25741 0.879844i
\(298\) 0 0
\(299\) 26462.3 45834.0i 0.295995 0.512679i
\(300\) 0 0
\(301\) 46898.5 27076.9i 0.517638 0.298858i
\(302\) 0 0
\(303\) 38549.5 + 30487.7i 0.419888 + 0.332078i
\(304\) 0 0
\(305\) 55698.2 0.598745
\(306\) 0 0
\(307\) 168794. 1.79094 0.895468 0.445126i \(-0.146841\pi\)
0.895468 + 0.445126i \(0.146841\pi\)
\(308\) 0 0
\(309\) −94288.5 + 37446.7i −0.987510 + 0.392190i
\(310\) 0 0
\(311\) −68907.1 + 39783.5i −0.712431 + 0.411323i −0.811961 0.583712i \(-0.801600\pi\)
0.0995292 + 0.995035i \(0.468266\pi\)
\(312\) 0 0
\(313\) 93373.0 161727.i 0.953087 1.65080i 0.214401 0.976746i \(-0.431220\pi\)
0.738686 0.674049i \(-0.235446\pi\)
\(314\) 0 0
\(315\) 125535. + 37612.1i 1.26515 + 0.379059i
\(316\) 0 0
\(317\) 95810.6 + 55316.3i 0.953443 + 0.550471i 0.894149 0.447770i \(-0.147782\pi\)
0.0592945 + 0.998241i \(0.481115\pi\)
\(318\) 0 0
\(319\) −140757. + 81265.8i −1.38321 + 0.798595i
\(320\) 0 0
\(321\) 43191.4 + 6331.36i 0.419167 + 0.0614450i
\(322\) 0 0
\(323\) −48556.4 −0.465417
\(324\) 0 0
\(325\) 18214.4i 0.172444i
\(326\) 0 0
\(327\) −22666.3 + 154626.i −0.211975 + 1.44606i
\(328\) 0 0
\(329\) −12127.5 21005.5i −0.112042 0.194062i
\(330\) 0 0
\(331\) 35525.1 61531.2i 0.324249 0.561616i −0.657111 0.753794i \(-0.728222\pi\)
0.981360 + 0.192178i \(0.0615550\pi\)
\(332\) 0 0
\(333\) −4522.83 + 15095.5i −0.0407870 + 0.136131i
\(334\) 0 0
\(335\) −68112.2 39324.6i −0.606925 0.350408i
\(336\) 0 0
\(337\) −3370.32 5837.57i −0.0296764 0.0514011i 0.850806 0.525480i \(-0.176114\pi\)
−0.880482 + 0.474079i \(0.842781\pi\)
\(338\) 0 0
\(339\) −44316.6 111586.i −0.385626 0.970984i
\(340\) 0 0
\(341\) 195289.i 1.67946i
\(342\) 0 0
\(343\) 70338.5i 0.597868i
\(344\) 0 0
\(345\) −41356.1 + 52291.7i −0.347457 + 0.439334i
\(346\) 0 0
\(347\) −43353.9 75091.2i −0.360055 0.623634i 0.627914 0.778283i \(-0.283909\pi\)
−0.987970 + 0.154648i \(0.950576\pi\)
\(348\) 0 0
\(349\) 108745. + 62783.7i 0.892805 + 0.515461i 0.874859 0.484378i \(-0.160954\pi\)
0.0179461 + 0.999839i \(0.494287\pi\)
\(350\) 0 0
\(351\) −139229. + 12135.7i −1.13010 + 0.0985031i
\(352\) 0 0
\(353\) 24176.0 41874.1i 0.194015 0.336044i −0.752562 0.658521i \(-0.771182\pi\)
0.946577 + 0.322477i \(0.104516\pi\)
\(354\) 0 0
\(355\) −40728.9 70544.5i −0.323181 0.559766i
\(356\) 0 0
\(357\) 180967. + 143122.i 1.41992 + 1.12297i
\(358\) 0 0
\(359\) 59745.2i 0.463568i 0.972767 + 0.231784i \(0.0744563\pi\)
−0.972767 + 0.231784i \(0.925544\pi\)
\(360\) 0 0
\(361\) −117279. −0.899922
\(362\) 0 0
\(363\) 65913.0 + 165965.i 0.500216 + 1.25951i
\(364\) 0 0
\(365\) 129454. 74740.4i 0.971696 0.561009i
\(366\) 0 0
\(367\) 145654. + 84093.5i 1.08141 + 0.624353i 0.931277 0.364312i \(-0.118696\pi\)
0.150135 + 0.988666i \(0.452029\pi\)
\(368\) 0 0
\(369\) 53014.9 + 223902.i 0.389355 + 1.64439i
\(370\) 0 0
\(371\) −140570. + 243475.i −1.02128 + 1.76891i
\(372\) 0 0
\(373\) −233844. + 135010.i −1.68077 + 0.970393i −0.719620 + 0.694368i \(0.755684\pi\)
−0.961150 + 0.276026i \(0.910983\pi\)
\(374\) 0 0
\(375\) 18563.6 126638.i 0.132008 0.900534i
\(376\) 0 0
\(377\) 167797. 1.18059
\(378\) 0 0
\(379\) −110475. −0.769102 −0.384551 0.923104i \(-0.625644\pi\)
−0.384551 + 0.923104i \(0.625644\pi\)
\(380\) 0 0
\(381\) 1948.05 13289.3i 0.0134199 0.0915485i
\(382\) 0 0
\(383\) 174715. 100872.i 1.19106 0.687659i 0.232513 0.972593i \(-0.425305\pi\)
0.958547 + 0.284934i \(0.0919718\pi\)
\(384\) 0 0
\(385\) −150216. + 260182.i −1.01343 + 1.75532i
\(386\) 0 0
\(387\) 52927.6 49913.1i 0.353395 0.333267i
\(388\) 0 0
\(389\) 28286.6 + 16331.2i 0.186931 + 0.107925i 0.590545 0.807005i \(-0.298913\pi\)
−0.403614 + 0.914929i \(0.632246\pi\)
\(390\) 0 0
\(391\) −101651. + 58688.5i −0.664905 + 0.383883i
\(392\) 0 0
\(393\) −21352.6 53764.5i −0.138250 0.348105i
\(394\) 0 0
\(395\) 288888. 1.85155
\(396\) 0 0
\(397\) 157999.i 1.00247i −0.865310 0.501237i \(-0.832878\pi\)
0.865310 0.501237i \(-0.167122\pi\)
\(398\) 0 0
\(399\) −48607.7 38442.5i −0.305323 0.241471i
\(400\) 0 0
\(401\) −71882.8 124505.i −0.447029 0.774277i 0.551162 0.834398i \(-0.314185\pi\)
−0.998191 + 0.0601210i \(0.980851\pi\)
\(402\) 0 0
\(403\) −100808. + 174604.i −0.620702 + 1.07509i
\(404\) 0 0
\(405\) 175749. + 10312.1i 1.07148 + 0.0628690i
\(406\) 0 0
\(407\) −31286.7 18063.4i −0.188873 0.109046i
\(408\) 0 0
\(409\) −6867.24 11894.4i −0.0410521 0.0711044i 0.844769 0.535131i \(-0.179738\pi\)
−0.885821 + 0.464026i \(0.846404\pi\)
\(410\) 0 0
\(411\) 119237. 150766.i 0.705873 0.892525i
\(412\) 0 0
\(413\) 213359.i 1.25086i
\(414\) 0 0
\(415\) 75527.3i 0.438538i
\(416\) 0 0
\(417\) −68622.2 172787.i −0.394632 0.993660i
\(418\) 0 0
\(419\) −135489. 234673.i −0.771748 1.33671i −0.936604 0.350389i \(-0.886049\pi\)
0.164857 0.986318i \(-0.447284\pi\)
\(420\) 0 0
\(421\) −206716. 119347.i −1.16630 0.673362i −0.213493 0.976945i \(-0.568484\pi\)
−0.952805 + 0.303582i \(0.901817\pi\)
\(422\) 0 0
\(423\) −22355.7 23705.8i −0.124942 0.132487i
\(424\) 0 0
\(425\) −20198.1 + 34984.2i −0.111824 + 0.193684i
\(426\) 0 0
\(427\) 62577.6 + 108388.i 0.343213 + 0.594462i
\(428\) 0 0
\(429\) 46469.8 317009.i 0.252497 1.72249i
\(430\) 0 0
\(431\) 208255.i 1.12109i −0.828124 0.560545i \(-0.810592\pi\)
0.828124 0.560545i \(-0.189408\pi\)
\(432\) 0 0
\(433\) −275527. −1.46957 −0.734783 0.678303i \(-0.762716\pi\)
−0.734783 + 0.678303i \(0.762716\pi\)
\(434\) 0 0
\(435\) −209138. 30657.2i −1.10523 0.162014i
\(436\) 0 0
\(437\) 27303.5 15763.7i 0.142974 0.0825458i
\(438\) 0 0
\(439\) 5755.89 + 3323.16i 0.0298664 + 0.0172434i 0.514859 0.857275i \(-0.327844\pi\)
−0.484992 + 0.874518i \(0.661178\pi\)
\(440\) 0 0
\(441\) 23037.8 + 97297.4i 0.118458 + 0.500293i
\(442\) 0 0
\(443\) 122953. 212960.i 0.626514 1.08515i −0.361732 0.932282i \(-0.617814\pi\)
0.988246 0.152872i \(-0.0488523\pi\)
\(444\) 0 0
\(445\) −43421.3 + 25069.3i −0.219272 + 0.126597i
\(446\) 0 0
\(447\) −43462.9 + 17261.3i −0.217522 + 0.0863890i
\(448\) 0 0
\(449\) −282931. −1.40342 −0.701711 0.712462i \(-0.747580\pi\)
−0.701711 + 0.712462i \(0.747580\pi\)
\(450\) 0 0
\(451\) −527495. −2.59338
\(452\) 0 0
\(453\) −143852. 113768.i −0.701000 0.554402i
\(454\) 0 0
\(455\) 268610. 155082.i 1.29748 0.749099i
\(456\) 0 0
\(457\) 108539. 187995.i 0.519702 0.900150i −0.480036 0.877249i \(-0.659376\pi\)
0.999738 0.0229008i \(-0.00729020\pi\)
\(458\) 0 0
\(459\) 280872. + 131083.i 1.33316 + 0.622188i
\(460\) 0 0
\(461\) −86601.0 49999.1i −0.407494 0.235267i 0.282219 0.959350i \(-0.408930\pi\)
−0.689712 + 0.724084i \(0.742263\pi\)
\(462\) 0 0
\(463\) 6135.09 3542.10i 0.0286193 0.0165234i −0.485622 0.874169i \(-0.661407\pi\)
0.514241 + 0.857645i \(0.328074\pi\)
\(464\) 0 0
\(465\) 157545. 199204.i 0.728617 0.921282i
\(466\) 0 0
\(467\) −429771. −1.97062 −0.985312 0.170765i \(-0.945376\pi\)
−0.985312 + 0.170765i \(0.945376\pi\)
\(468\) 0 0
\(469\) 176727.i 0.803445i
\(470\) 0 0
\(471\) −74733.0 + 29680.2i −0.336876 + 0.133790i
\(472\) 0 0
\(473\) 83391.4 + 144438.i 0.372734 + 0.645594i
\(474\) 0 0
\(475\) 5425.21 9396.74i 0.0240453 0.0416476i
\(476\) 0 0
\(477\) −108399. + 361796.i −0.476420 + 1.59011i
\(478\) 0 0
\(479\) 49730.6 + 28712.0i 0.216747 + 0.125139i 0.604443 0.796648i \(-0.293396\pi\)
−0.387696 + 0.921787i \(0.626729\pi\)
\(480\) 0 0
\(481\) 18648.5 + 32300.2i 0.0806036 + 0.139609i
\(482\) 0 0
\(483\) −148223. 21727.7i −0.635361 0.0931365i
\(484\) 0 0
\(485\) 67400.6i 0.286537i
\(486\) 0 0
\(487\) 265572.i 1.11976i −0.828574 0.559879i \(-0.810848\pi\)
0.828574 0.559879i \(-0.189152\pi\)
\(488\) 0 0
\(489\) 338391. + 49604.1i 1.41514 + 0.207444i
\(490\) 0 0
\(491\) 77229.5 + 133765.i 0.320347 + 0.554857i 0.980560 0.196222i \(-0.0628673\pi\)
−0.660213 + 0.751079i \(0.729534\pi\)
\(492\) 0 0
\(493\) −322284. 186071.i −1.32601 0.765570i
\(494\) 0 0
\(495\) −115838. + 386623.i −0.472759 + 1.57789i
\(496\) 0 0
\(497\) 91518.7 158515.i 0.370508 0.641738i
\(498\) 0 0
\(499\) 98724.4 + 170996.i 0.396482 + 0.686727i 0.993289 0.115658i \(-0.0368976\pi\)
−0.596807 + 0.802385i \(0.703564\pi\)
\(500\) 0 0
\(501\) −115346. + 45809.6i −0.459543 + 0.182507i
\(502\) 0 0
\(503\) 343592.i 1.35802i −0.734127 0.679012i \(-0.762408\pi\)
0.734127 0.679012i \(-0.237592\pi\)
\(504\) 0 0
\(505\) −146533. −0.574584
\(506\) 0 0
\(507\) −45734.1 + 57827.4i −0.177920 + 0.224966i
\(508\) 0 0
\(509\) −73009.5 + 42152.1i −0.281802 + 0.162698i −0.634239 0.773137i \(-0.718686\pi\)
0.352437 + 0.935836i \(0.385353\pi\)
\(510\) 0 0
\(511\) 290887. + 167943.i 1.11399 + 0.643163i
\(512\) 0 0
\(513\) −75442.1 35208.9i −0.286668 0.133788i
\(514\) 0 0
\(515\) 151237. 261951.i 0.570222 0.987654i
\(516\) 0 0
\(517\) 64692.7 37350.4i 0.242033 0.139738i
\(518\) 0 0
\(519\) 78961.4 + 62448.4i 0.293143 + 0.231839i
\(520\) 0 0
\(521\) −397536. −1.46454 −0.732270 0.681015i \(-0.761539\pi\)
−0.732270 + 0.681015i \(0.761539\pi\)
\(522\) 0 0
\(523\) 286663. 1.04802 0.524008 0.851714i \(-0.324436\pi\)
0.524008 + 0.851714i \(0.324436\pi\)
\(524\) 0 0
\(525\) −47916.7 + 19030.1i −0.173847 + 0.0690435i
\(526\) 0 0
\(527\) 387239. 223572.i 1.39430 0.805002i
\(528\) 0 0
\(529\) −101814. + 176348.i −0.363830 + 0.630171i
\(530\) 0 0
\(531\) 66040.9 + 278916.i 0.234220 + 0.989200i
\(532\) 0 0
\(533\) 471622. + 272291.i 1.66012 + 0.958472i
\(534\) 0 0
\(535\) −112712. + 65074.5i −0.393789 + 0.227354i
\(536\) 0 0
\(537\) 63521.2 + 9311.47i 0.220278 + 0.0322901i
\(538\) 0 0
\(539\) −229225. −0.789012
\(540\) 0 0
\(541\) 412153.i 1.40820i −0.710101 0.704100i \(-0.751351\pi\)
0.710101 0.704100i \(-0.248649\pi\)
\(542\) 0 0
\(543\) 34075.6 232458.i 0.115570 0.788397i
\(544\) 0 0
\(545\) −232967. 403511.i −0.784335 1.35851i
\(546\) 0 0
\(547\) 168911. 292563.i 0.564527 0.977789i −0.432567 0.901602i \(-0.642392\pi\)
0.997094 0.0761869i \(-0.0242746\pi\)
\(548\) 0 0
\(549\) 115355. + 122322.i 0.382728 + 0.405843i
\(550\) 0 0
\(551\) 86565.4 + 49978.6i 0.285129 + 0.164619i
\(552\) 0 0
\(553\) 324569. + 562171.i 1.06135 + 1.83831i
\(554\) 0 0
\(555\) −17341.7 43665.4i −0.0562997 0.141759i
\(556\) 0 0
\(557\) 251395.i 0.810302i 0.914250 + 0.405151i \(0.132781\pi\)
−0.914250 + 0.405151i \(0.867219\pi\)
\(558\) 0 0
\(559\) 172186.i 0.551027i
\(560\) 0 0
\(561\) −440787. + 557343.i −1.40057 + 1.77091i
\(562\) 0 0
\(563\) 32923.4 + 57025.0i 0.103870 + 0.179907i 0.913276 0.407342i \(-0.133544\pi\)
−0.809406 + 0.587249i \(0.800211\pi\)
\(564\) 0 0
\(565\) 310007. + 178983.i 0.971125 + 0.560679i
\(566\) 0 0
\(567\) 177389. + 353590.i 0.551773 + 1.09985i
\(568\) 0 0
\(569\) 59792.5 103564.i 0.184681 0.319877i −0.758788 0.651338i \(-0.774208\pi\)
0.943469 + 0.331461i \(0.107541\pi\)
\(570\) 0 0
\(571\) −14325.3 24812.2i −0.0439372 0.0761014i 0.843220 0.537568i \(-0.180657\pi\)
−0.887158 + 0.461466i \(0.847323\pi\)
\(572\) 0 0
\(573\) 322240. + 254851.i 0.981454 + 0.776205i
\(574\) 0 0
\(575\) 26229.0i 0.0793317i
\(576\) 0 0
\(577\) −101252. −0.304126 −0.152063 0.988371i \(-0.548592\pi\)
−0.152063 + 0.988371i \(0.548592\pi\)
\(578\) 0 0
\(579\) 40125.9 + 101035.i 0.119693 + 0.301379i
\(580\) 0 0
\(581\) 146975. 84855.8i 0.435401 0.251379i
\(582\) 0 0
\(583\) −749854. 432929.i −2.20617 1.27374i
\(584\) 0 0
\(585\) 303142. 285876.i 0.885796 0.835346i
\(586\) 0 0
\(587\) 36792.0 63725.7i 0.106777 0.184943i −0.807686 0.589613i \(-0.799280\pi\)
0.914463 + 0.404670i \(0.132614\pi\)
\(588\) 0 0
\(589\) −104012. + 60051.5i −0.299815 + 0.173098i
\(590\) 0 0
\(591\) −91535.0 + 624436.i −0.262067 + 1.78778i
\(592\) 0 0
\(593\) 295880. 0.841407 0.420704 0.907198i \(-0.361783\pi\)
0.420704 + 0.907198i \(0.361783\pi\)
\(594\) 0 0
\(595\) −687887. −1.94305
\(596\) 0 0
\(597\) 69806.0 476204.i 0.195859 1.33612i
\(598\) 0 0
\(599\) −528443. + 305097.i −1.47280 + 0.850323i −0.999532 0.0305942i \(-0.990260\pi\)
−0.473271 + 0.880917i \(0.656927\pi\)
\(600\) 0 0
\(601\) 56375.3 97644.9i 0.156077 0.270334i −0.777373 0.629039i \(-0.783448\pi\)
0.933451 + 0.358705i \(0.116782\pi\)
\(602\) 0 0
\(603\) −54702.2 231028.i −0.150442 0.635375i
\(604\) 0 0
\(605\) −461081. 266205.i −1.25970 0.727287i
\(606\) 0 0
\(607\) −121995. + 70434.1i −0.331105 + 0.191164i −0.656332 0.754472i \(-0.727893\pi\)
0.325226 + 0.945636i \(0.394560\pi\)
\(608\) 0 0
\(609\) −175311. 441422.i −0.472687 1.19020i
\(610\) 0 0
\(611\) −77120.6 −0.206580
\(612\) 0 0
\(613\) 471219.i 1.25401i −0.779014 0.627006i \(-0.784280\pi\)
0.779014 0.627006i \(-0.215720\pi\)
\(614\) 0 0
\(615\) −538071. 425545.i −1.42262 1.12511i
\(616\) 0 0
\(617\) −189422. 328089.i −0.497577 0.861828i 0.502419 0.864624i \(-0.332443\pi\)
−0.999996 + 0.00279589i \(0.999110\pi\)
\(618\) 0 0
\(619\) −90319.8 + 156439.i −0.235723 + 0.408284i −0.959483 0.281768i \(-0.909079\pi\)
0.723760 + 0.690052i \(0.242412\pi\)
\(620\) 0 0
\(621\) −200491. + 17475.5i −0.519892 + 0.0453156i
\(622\) 0 0
\(623\) −97568.6 56331.3i −0.251382 0.145135i
\(624\) 0 0
\(625\) 220490. + 381899.i 0.564454 + 0.977663i
\(626\) 0 0
\(627\) 118395. 149702.i 0.301161 0.380797i
\(628\) 0 0
\(629\) 82717.9i 0.209073i
\(630\) 0 0
\(631\) 115341.i 0.289685i 0.989455 + 0.144842i \(0.0462675\pi\)
−0.989455 + 0.144842i \(0.953733\pi\)
\(632\) 0 0
\(633\) 110173. + 277408.i 0.274958 + 0.692328i
\(634\) 0 0
\(635\) 20022.3 + 34679.7i 0.0496555 + 0.0860058i
\(636\) 0 0
\(637\) 204945. + 118325.i 0.505078 + 0.291607i
\(638\) 0 0
\(639\) 70573.9 235549.i 0.172839 0.576871i
\(640\) 0 0
\(641\) 71144.9 123227.i 0.173152 0.299908i −0.766368 0.642402i \(-0.777938\pi\)
0.939520 + 0.342493i \(0.111271\pi\)
\(642\) 0 0
\(643\) 150535. + 260734.i 0.364095 + 0.630631i 0.988630 0.150365i \(-0.0480450\pi\)
−0.624535 + 0.780996i \(0.714712\pi\)
\(644\) 0 0
\(645\) −31459.1 + 214608.i −0.0756182 + 0.515854i
\(646\) 0 0
\(647\) 562947.i 1.34480i 0.740186 + 0.672402i \(0.234737\pi\)
−0.740186 + 0.672402i \(0.765263\pi\)
\(648\) 0 0
\(649\) −657103. −1.56007
\(650\) 0 0
\(651\) 564651. + 82771.3i 1.33235 + 0.195307i
\(652\) 0 0
\(653\) 658714. 380308.i 1.54479 0.891887i 0.546267 0.837611i \(-0.316048\pi\)
0.998526 0.0542753i \(-0.0172848\pi\)
\(654\) 0 0
\(655\) 149368. + 86237.4i 0.348156 + 0.201008i
\(656\) 0 0
\(657\) 432249. + 129508.i 1.00139 + 0.300031i
\(658\) 0 0
\(659\) 207982. 360235.i 0.478911 0.829497i −0.520797 0.853681i \(-0.674365\pi\)
0.999708 + 0.0241831i \(0.00769847\pi\)
\(660\) 0 0
\(661\) −317798. + 183481.i −0.727358 + 0.419940i −0.817455 0.575993i \(-0.804616\pi\)
0.0900969 + 0.995933i \(0.471282\pi\)
\(662\) 0 0
\(663\) 681798. 270776.i 1.55106 0.616003i
\(664\) 0 0
\(665\) 184766. 0.417810
\(666\) 0 0
\(667\) 241629. 0.543123
\(668\) 0 0
\(669\) 436982. + 345597.i 0.976364 + 0.772179i
\(670\) 0 0
\(671\) −333813. + 192727.i −0.741409 + 0.428053i
\(672\) 0 0
\(673\) 208572. 361257.i 0.460496 0.797602i −0.538490 0.842632i \(-0.681005\pi\)
0.998986 + 0.0450300i \(0.0143383\pi\)
\(674\) 0 0
\(675\) −56749.3 + 39709.0i −0.124553 + 0.0871528i
\(676\) 0 0
\(677\) −270633. 156250.i −0.590477 0.340912i 0.174809 0.984602i \(-0.444069\pi\)
−0.765286 + 0.643690i \(0.777403\pi\)
\(678\) 0 0
\(679\) 131160. 75725.3i 0.284487 0.164249i
\(680\) 0 0
\(681\) −1353.64 + 1711.57i −0.00291882 + 0.00369064i
\(682\) 0 0
\(683\) 140348. 0.300860 0.150430 0.988621i \(-0.451934\pi\)
0.150430 + 0.988621i \(0.451934\pi\)
\(684\) 0 0
\(685\) 573088.i 1.22135i
\(686\) 0 0
\(687\) −98277.7 + 39031.0i −0.208229 + 0.0826982i
\(688\) 0 0
\(689\) 446953. + 774145.i 0.941506 + 1.63074i
\(690\) 0 0
\(691\) −6583.82 + 11403.5i −0.0137887 + 0.0238827i −0.872837 0.488011i \(-0.837723\pi\)
0.859049 + 0.511894i \(0.171056\pi\)
\(692\) 0 0
\(693\) −882505. + 208957.i −1.83760 + 0.435101i
\(694\) 0 0
\(695\) 480033. + 277147.i 0.993805 + 0.573773i
\(696\) 0 0
\(697\) −603892. 1.04597e6i −1.24306 2.15305i
\(698\) 0 0
\(699\) 309463. + 45363.6i 0.633365 + 0.0928439i
\(700\) 0 0
\(701\) 143500.i 0.292022i −0.989283 0.146011i \(-0.953357\pi\)
0.989283 0.146011i \(-0.0466434\pi\)
\(702\) 0 0
\(703\) 22218.0i 0.0449567i
\(704\) 0 0
\(705\) 96121.3 + 14090.3i 0.193393 + 0.0283492i
\(706\) 0 0
\(707\) −164632. 285151.i −0.329363 0.570474i
\(708\) 0 0
\(709\) 386361. + 223066.i 0.768602 + 0.443752i 0.832376 0.554212i \(-0.186980\pi\)
−0.0637739 + 0.997964i \(0.520314\pi\)
\(710\) 0 0
\(711\) 598306. + 634441.i 1.18354 + 1.25502i
\(712\) 0 0
\(713\) −145164. + 251432.i −0.285549 + 0.494585i
\(714\) 0 0
\(715\) 477623. + 827267.i 0.934271 + 1.61820i
\(716\) 0 0
\(717\) 396944. 157646.i 0.772131 0.306652i
\(718\) 0 0
\(719\) 316954.i 0.613110i −0.951853 0.306555i \(-0.900824\pi\)
0.951853 0.306555i \(-0.0991763\pi\)
\(720\) 0 0
\(721\) 679667. 1.30745
\(722\) 0 0
\(723\) −385562. + 487515.i −0.737594 + 0.932634i
\(724\) 0 0
\(725\) 72017.6 41579.4i 0.137013 0.0791047i
\(726\) 0 0
\(727\) 429578. + 248017.i 0.812779 + 0.469258i 0.847920 0.530124i \(-0.177855\pi\)
−0.0351407 + 0.999382i \(0.511188\pi\)
\(728\) 0 0
\(729\) 341341. + 407328.i 0.642293 + 0.766459i
\(730\) 0 0
\(731\) −190938. + 330714.i −0.357320 + 0.618896i
\(732\) 0 0
\(733\) −607822. + 350926.i −1.13128 + 0.653143i −0.944256 0.329213i \(-0.893217\pi\)
−0.187021 + 0.982356i \(0.559883\pi\)
\(734\) 0 0
\(735\) −233820. 184922.i −0.432820 0.342306i
\(736\) 0 0
\(737\) 544283. 1.00205
\(738\) 0 0
\(739\) −591401. −1.08291 −0.541456 0.840729i \(-0.682127\pi\)
−0.541456 + 0.840729i \(0.682127\pi\)
\(740\) 0 0
\(741\) −183131. + 72730.3i −0.333522 + 0.132458i
\(742\) 0 0
\(743\) 76816.9 44350.2i 0.139149 0.0803375i −0.428810 0.903395i \(-0.641067\pi\)
0.567958 + 0.823057i \(0.307734\pi\)
\(744\) 0 0
\(745\) 69713.8 120748.i 0.125605 0.217554i
\(746\) 0 0
\(747\) 165869. 156422.i 0.297251 0.280321i
\(748\) 0 0
\(749\) −253267. 146224.i −0.451456 0.260648i
\(750\) 0 0
\(751\) −692048. + 399554.i −1.22703 + 0.708428i −0.966408 0.257011i \(-0.917262\pi\)
−0.260626 + 0.965440i \(0.583929\pi\)
\(752\) 0 0
\(753\) −527058. 77260.6i −0.929541 0.136260i
\(754\) 0 0
\(755\) 546805. 0.959264
\(756\) 0 0
\(757\) 1.07119e6i 1.86927i 0.355603 + 0.934637i \(0.384275\pi\)
−0.355603 + 0.934637i \(0.615725\pi\)
\(758\) 0 0
\(759\) 66917.1 456497.i 0.116159 0.792418i
\(760\) 0 0
\(761\) 173781. + 300998.i 0.300078 + 0.519750i 0.976153 0.217082i \(-0.0696540\pi\)
−0.676075 + 0.736832i \(0.736321\pi\)
\(762\) 0 0
\(763\) 523483. 906699.i 0.899194 1.55745i
\(764\) 0 0
\(765\) −899249. + 212922.i −1.53659 + 0.363829i
\(766\) 0 0
\(767\) 587502. + 339195.i 0.998662 + 0.576578i
\(768\) 0 0
\(769\) 307338. + 532324.i 0.519712 + 0.900168i 0.999737 + 0.0229135i \(0.00729422\pi\)
−0.480025 + 0.877255i \(0.659372\pi\)
\(770\) 0 0
\(771\) −174604. 439643.i −0.293728 0.739590i
\(772\) 0 0
\(773\) 558543.i 0.934755i 0.884058 + 0.467378i \(0.154801\pi\)
−0.884058 + 0.467378i \(0.845199\pi\)
\(774\) 0 0
\(775\) 99919.0i 0.166358i
\(776\) 0 0
\(777\) 65488.4 82805.2i 0.108473 0.137156i
\(778\) 0 0
\(779\) 162205. + 280947.i 0.267294 + 0.462967i
\(780\) 0 0
\(781\) 488195. + 281860.i 0.800371 + 0.462095i
\(782\) 0 0
\(783\) −365811. 522791.i −0.596668 0.852716i
\(784\) 0 0
\(785\) 119871. 207622.i 0.194524 0.336925i
\(786\) 0 0
\(787\) −171055. 296276.i −0.276176 0.478351i 0.694255 0.719729i \(-0.255734\pi\)
−0.970431 + 0.241378i \(0.922401\pi\)
\(788\) 0 0
\(789\) −302492. 239233.i −0.485915 0.384297i
\(790\) 0 0
\(791\) 804358.i 1.28557i
\(792\) 0 0
\(793\) 397940. 0.632807
\(794\) 0 0
\(795\) −415632. 1.04654e6i −0.657620 1.65585i
\(796\) 0 0
\(797\) 639205. 369045.i 1.00629 0.580982i 0.0961872 0.995363i \(-0.469335\pi\)
0.910103 + 0.414381i \(0.136002\pi\)
\(798\) 0 0
\(799\) 148124. + 85519.6i 0.232024 + 0.133959i
\(800\) 0 0
\(801\) −144984. 43439.4i −0.225972 0.0677047i
\(802\) 0 0
\(803\) −517233. + 895874.i −0.802149 + 1.38936i
\(804\) 0 0
\(805\) 386802. 223320.i 0.596894 0.344617i
\(806\) 0 0
\(807\) −13815.8 + 94248.7i −0.0212142 + 0.144720i
\(808\) 0 0
\(809\) −869283. −1.32820 −0.664101 0.747643i \(-0.731185\pi\)
−0.664101 + 0.747643i \(0.731185\pi\)
\(810\) 0 0
\(811\) 524099. 0.796841 0.398420 0.917203i \(-0.369559\pi\)
0.398420 + 0.917203i \(0.369559\pi\)
\(812\) 0 0
\(813\) −121840. + 831170.i −0.184335 + 1.25750i
\(814\) 0 0
\(815\) −883065. + 509838.i −1.32947 + 0.767568i
\(816\) 0 0
\(817\) 51285.8 88829.7i 0.0768340 0.133080i
\(818\) 0 0
\(819\) 896892. + 268722.i 1.33713 + 0.400623i
\(820\) 0 0
\(821\) −176424. 101858.i −0.261741 0.151116i 0.363388 0.931638i \(-0.381620\pi\)
−0.625128 + 0.780522i \(0.714953\pi\)
\(822\) 0 0
\(823\) 840341. 485171.i 1.24067 0.716300i 0.271438 0.962456i \(-0.412501\pi\)
0.969230 + 0.246156i \(0.0791675\pi\)
\(824\) 0 0
\(825\) −58609.0 147574.i −0.0861106 0.216821i
\(826\) 0 0
\(827\) 876265. 1.28122 0.640611 0.767865i \(-0.278681\pi\)
0.640611 + 0.767865i \(0.278681\pi\)
\(828\) 0 0
\(829\) 728747.i 1.06040i −0.847874 0.530198i \(-0.822118\pi\)
0.847874 0.530198i \(-0.177882\pi\)
\(830\) 0 0
\(831\) −165253. 130694.i −0.239303 0.189258i
\(832\) 0 0
\(833\) −262423. 454530.i −0.378192 0.655047i
\(834\) 0 0
\(835\) 185013. 320451.i 0.265356 0.459610i
\(836\) 0 0
\(837\) 763768. 66572.7i 1.09021 0.0950266i
\(838\) 0 0
\(839\) −261880. 151197.i −0.372031 0.214792i 0.302314 0.953208i \(-0.402241\pi\)
−0.674345 + 0.738416i \(0.735574\pi\)
\(840\) 0 0
\(841\) 29400.8 + 50923.6i 0.0415687 + 0.0719991i
\(842\) 0 0
\(843\) 41719.7 52751.5i 0.0587065 0.0742300i
\(844\) 0 0
\(845\) 219812.i 0.307849i
\(846\) 0 0
\(847\) 1.19634e6i 1.66758i
\(848\) 0 0
\(849\) −299374. 753805.i −0.415334 1.04579i
\(850\) 0 0
\(851\) 26854.1 + 46512.7i 0.0370810 + 0.0642262i
\(852\) 0 0
\(853\) 613667. + 354301.i 0.843402 + 0.486938i 0.858419 0.512949i \(-0.171447\pi\)
−0.0150171 + 0.999887i \(0.504780\pi\)
\(854\) 0 0
\(855\) 241538. 57190.7i 0.330410 0.0782336i
\(856\) 0 0
\(857\) −506749. + 877715.i −0.689972 + 1.19507i 0.281875 + 0.959451i \(0.409044\pi\)
−0.971847 + 0.235615i \(0.924290\pi\)
\(858\) 0 0
\(859\) −187918. 325483.i −0.254672 0.441105i 0.710134 0.704066i \(-0.248634\pi\)
−0.964806 + 0.262961i \(0.915301\pi\)
\(860\) 0 0
\(861\) 223574. 1.52518e6i 0.301588 2.05738i
\(862\) 0 0
\(863\) 771077.i 1.03532i −0.855585 0.517662i \(-0.826802\pi\)
0.855585 0.517662i \(-0.173198\pi\)
\(864\) 0 0
\(865\) −300146. −0.401144
\(866\) 0 0
\(867\) −866042. 126952.i −1.15213 0.168889i
\(868\) 0 0
\(869\) −1.73138e6 + 999610.i −2.29272 + 1.32371i
\(870\) 0 0
\(871\) −486632. 280957.i −0.641453 0.370343i
\(872\) 0 0
\(873\) 148022. 139591.i 0.194221 0.183159i
\(874\) 0 0
\(875\) −428730. + 742582.i −0.559974 + 0.969903i
\(876\) 0 0
\(877\) −121036. + 69880.4i −0.157368 + 0.0908566i −0.576616 0.817015i \(-0.695627\pi\)
0.419248 + 0.907872i \(0.362294\pi\)
\(878\) 0 0
\(879\) 1.14217e6 453612.i 1.47827 0.587093i
\(880\) 0 0
\(881\) 764399. 0.984846 0.492423 0.870356i \(-0.336111\pi\)
0.492423 + 0.870356i \(0.336111\pi\)
\(882\) 0 0
\(883\) 276974. 0.355237 0.177618 0.984099i \(-0.443161\pi\)
0.177618 + 0.984099i \(0.443161\pi\)
\(884\) 0 0
\(885\) −670277. 530104.i −0.855791 0.676822i
\(886\) 0 0
\(887\) −284311. + 164147.i −0.361365 + 0.208634i −0.669679 0.742650i \(-0.733568\pi\)
0.308314 + 0.951285i \(0.400235\pi\)
\(888\) 0 0
\(889\) −44990.7 + 77926.1i −0.0569271 + 0.0986006i
\(890\) 0 0
\(891\) −1.08899e6 + 546324.i −1.37173 + 0.688168i
\(892\) 0 0
\(893\) −39786.1 22970.5i −0.0498917 0.0288050i
\(894\) 0 0
\(895\) −165765. + 95704.5i −0.206941 + 0.119478i
\(896\) 0 0
\(897\) −295472. + 373602.i −0.367224 + 0.464327i
\(898\) 0 0
\(899\) −920482. −1.13893
\(900\) 0 0
\(901\) 1.98252e6i 2.44212i
\(902\) 0 0
\(903\) −452968. + 179896.i −0.555510 + 0.220621i
\(904\) 0 0
\(905\) 350234. + 606623.i 0.427623 + 0.740664i
\(906\) 0 0
\(907\) −2523.63 + 4371.06i −0.00306769 + 0.00531339i −0.867555 0.497341i \(-0.834310\pi\)
0.864487 + 0.502654i \(0.167643\pi\)
\(908\) 0 0
\(909\) −303480. 321809.i −0.367284 0.389466i
\(910\) 0 0
\(911\) 124609. + 71943.0i 0.150145 + 0.0866865i 0.573191 0.819422i \(-0.305705\pi\)
−0.423045 + 0.906109i \(0.639039\pi\)
\(912\) 0 0
\(913\) 261339. + 452653.i 0.313518 + 0.543030i
\(914\) 0 0
\(915\) −495984. 72705.4i −0.592414 0.0868409i
\(916\) 0 0
\(917\) 387555.i 0.460887i
\(918\) 0 0
\(919\) 1.50889e6i 1.78660i 0.449466 + 0.893298i \(0.351614\pi\)
−0.449466 + 0.893298i \(0.648386\pi\)
\(920\) 0 0
\(921\) −1.50308e6 220334.i −1.77200 0.259754i
\(922\) 0 0
\(923\) −290990. 504010.i −0.341566 0.591610i
\(924\) 0 0
\(925\) 16007.7 + 9242.07i 0.0187088 + 0.0108015i
\(926\) 0 0
\(927\) 888504. 210377.i 1.03395 0.244816i
\(928\) 0 0
\(929\) 489589. 847994.i 0.567284 0.982565i −0.429549 0.903043i \(-0.641328\pi\)
0.996833 0.0795211i \(-0.0253391\pi\)
\(930\) 0 0
\(931\) 70486.7 + 122087.i 0.0813220 + 0.140854i
\(932\) 0 0
\(933\) 665537. 264318.i 0.764556 0.303643i
\(934\) 0 0
\(935\) 2.11856e6i 2.42335i
\(936\) 0 0
\(937\) 75553.9 0.0860553 0.0430276 0.999074i \(-0.486300\pi\)
0.0430276 + 0.999074i \(0.486300\pi\)
\(938\) 0 0
\(939\) −1.04258e6 + 1.31827e6i −1.18244 + 1.49511i
\(940\) 0 0
\(941\) 33992.9 19625.8i 0.0383892 0.0221640i −0.480683 0.876895i \(-0.659611\pi\)
0.519072 + 0.854731i \(0.326278\pi\)
\(942\) 0 0
\(943\) 679142. + 392103.i 0.763726 + 0.440937i
\(944\) 0 0
\(945\) −1.06877e6 498796.i −1.19680 0.558546i
\(946\) 0 0
\(947\) 313680. 543310.i 0.349773 0.605825i −0.636436 0.771330i \(-0.719592\pi\)
0.986209 + 0.165504i \(0.0529252\pi\)
\(948\) 0 0
\(949\) 924894. 533988.i 1.02697 0.592924i
\(950\) 0 0
\(951\) −780971. 617648.i −0.863522 0.682936i
\(952\) 0 0
\(953\) −884152. −0.973512 −0.486756 0.873538i \(-0.661820\pi\)
−0.486756 + 0.873538i \(0.661820\pi\)
\(954\) 0 0
\(955\) −1.22489e6 −1.34304
\(956\) 0 0
\(957\) 1.35949e6 539923.i 1.48441 0.589533i
\(958\) 0 0
\(959\) −1.11522e6 + 643871.i −1.21261 + 0.700103i
\(960\) 0 0
\(961\) 91239.2 158031.i 0.0987949 0.171118i
\(962\) 0 0
\(963\) −376348. 112759.i −0.405823 0.121591i
\(964\) 0 0
\(965\) −280693. 162058.i −0.301423 0.174027i
\(966\) 0 0
\(967\) −415020. + 239612.i −0.443829 + 0.256245i −0.705220 0.708988i \(-0.749152\pi\)
0.261391 + 0.965233i \(0.415819\pi\)
\(968\) 0 0
\(969\) 432387. + 63382.9i 0.460495 + 0.0675032i
\(970\) 0 0
\(971\) −37374.6 −0.0396404 −0.0198202 0.999804i \(-0.506309\pi\)
−0.0198202 + 0.999804i \(0.506309\pi\)
\(972\) 0 0
\(973\) 1.24551e6i 1.31559i
\(974\) 0 0
\(975\) −23776.1 + 162197.i −0.0250110 + 0.170621i
\(976\) 0 0
\(977\) −380919. 659770.i −0.399064 0.691200i 0.594546 0.804061i \(-0.297332\pi\)
−0.993611 + 0.112861i \(0.963998\pi\)
\(978\) 0 0
\(979\) 173489. 300492.i 0.181012 0.313522i
\(980\) 0 0
\(981\) 403679. 1.34733e6i 0.419467 1.40002i
\(982\) 0 0
\(983\) −958351. 553304.i −0.991785 0.572607i −0.0859774 0.996297i \(-0.527401\pi\)
−0.905807 + 0.423690i \(0.860735\pi\)
\(984\) 0 0
\(985\) −940809. 1.62953e6i −0.969681 1.67954i
\(986\) 0 0
\(987\) 80574.1 + 202881.i 0.0827106 + 0.208260i
\(988\) 0 0
\(989\) 247949.i 0.253496i
\(990\) 0 0
\(991\) 306890.i 0.312489i −0.987718 0.156245i \(-0.950061\pi\)
0.987718 0.156245i \(-0.0499388\pi\)
\(992\) 0 0
\(993\) −396664. + 501553.i −0.402277 + 0.508649i
\(994\) 0 0
\(995\) 717475. + 1.24270e6i 0.724704 + 1.25522i
\(996\) 0 0
\(997\) −13764.4 7946.86i −0.0138473 0.00799476i 0.493060 0.869995i \(-0.335878\pi\)
−0.506908 + 0.862000i \(0.669212\pi\)
\(998\) 0 0
\(999\) 59979.8 128519.i 0.0601000 0.128776i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 288.5.t.b.79.4 88
3.2 odd 2 864.5.t.b.559.9 88
4.3 odd 2 72.5.p.b.43.18 88
8.3 odd 2 inner 288.5.t.b.79.3 88
8.5 even 2 72.5.p.b.43.40 yes 88
9.4 even 3 inner 288.5.t.b.175.3 88
9.5 odd 6 864.5.t.b.847.36 88
12.11 even 2 216.5.p.b.19.27 88
24.5 odd 2 216.5.p.b.19.5 88
24.11 even 2 864.5.t.b.559.36 88
36.23 even 6 216.5.p.b.91.5 88
36.31 odd 6 72.5.p.b.67.40 yes 88
72.5 odd 6 216.5.p.b.91.27 88
72.13 even 6 72.5.p.b.67.18 yes 88
72.59 even 6 864.5.t.b.847.9 88
72.67 odd 6 inner 288.5.t.b.175.4 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.5.p.b.43.18 88 4.3 odd 2
72.5.p.b.43.40 yes 88 8.5 even 2
72.5.p.b.67.18 yes 88 72.13 even 6
72.5.p.b.67.40 yes 88 36.31 odd 6
216.5.p.b.19.5 88 24.5 odd 2
216.5.p.b.19.27 88 12.11 even 2
216.5.p.b.91.5 88 36.23 even 6
216.5.p.b.91.27 88 72.5 odd 6
288.5.t.b.79.3 88 8.3 odd 2 inner
288.5.t.b.79.4 88 1.1 even 1 trivial
288.5.t.b.175.3 88 9.4 even 3 inner
288.5.t.b.175.4 88 72.67 odd 6 inner
864.5.t.b.559.9 88 3.2 odd 2
864.5.t.b.559.36 88 24.11 even 2
864.5.t.b.847.9 88 72.59 even 6
864.5.t.b.847.36 88 9.5 odd 6