Defining parameters
Level: | \( N \) | \(=\) | \( 288 = 2^{5} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 288.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(288, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 64 | 6 | 58 |
Cusp forms | 32 | 4 | 28 |
Eisenstein series | 32 | 2 | 30 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(288, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
288.2.d.a | $2$ | $2.300$ | \(\Q(\sqrt{-2}) \) | \(\Q(\sqrt{-6}) \) | \(0\) | \(0\) | \(0\) | \(-4\) | \(q+\beta q^{5}-2q^{7}+2\beta q^{11}-3q^{25}+\beta q^{29}+\cdots\) |
288.2.d.b | $2$ | $2.300$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(4\) | \(q+\beta q^{5}+2 q^{7}+2\beta q^{13}+2 q^{17}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(288, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(288, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)