Properties

Label 2856.1.bd.i
Level $2856$
Weight $1$
Character orbit 2856.bd
Analytic conductor $1.425$
Analytic rank $0$
Dimension $2$
Projective image $D_{2}$
CM/RM discs -119, -168, 408
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2856,1,Mod(1427,2856)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2856, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2856.1427"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2856 = 2^{3} \cdot 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2856.bd (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,2,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.42532967608\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(\sqrt{-42}, \sqrt{102})\)
Artin image: $D_4:C_2$
Artin field: Galois closure of 8.0.115507538496.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - q^{2} - i q^{3} + q^{4} + i q^{6} + i q^{7} - q^{8} - q^{9} - i q^{12} - i q^{14} + q^{16} - i q^{17} + q^{18} + q^{21} + i q^{24} - q^{25} + i q^{27} + i q^{28} - 2 i q^{31} - q^{32} + i q^{34} + \cdots + q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{8} - 2 q^{9} + 2 q^{16} + 2 q^{18} + 2 q^{21} - 2 q^{25} - 2 q^{32} - 2 q^{36} - 2 q^{42} + 4 q^{43} - 2 q^{49} + 2 q^{50} - 2 q^{51} + 4 q^{53} + 2 q^{64} + 4 q^{67} + 2 q^{72}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2856\mathbb{Z}\right)^\times\).

\(n\) \(409\) \(953\) \(1429\) \(2143\) \(2689\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1427.1
1.00000i
1.00000i
−1.00000 1.00000i 1.00000 0 1.00000i 1.00000i −1.00000 −1.00000 0
1427.2 −1.00000 1.00000i 1.00000 0 1.00000i 1.00000i −1.00000 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
119.d odd 2 1 CM by \(\Q(\sqrt{-119}) \)
168.e odd 2 1 CM by \(\Q(\sqrt{-42}) \)
408.h even 2 1 RM by \(\Q(\sqrt{102}) \)
7.b odd 2 1 inner
17.b even 2 1 inner
24.f even 2 1 inner
2856.bd odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2856.1.bd.i 2
3.b odd 2 1 2856.1.bd.j yes 2
7.b odd 2 1 inner 2856.1.bd.i 2
8.d odd 2 1 2856.1.bd.j yes 2
17.b even 2 1 inner 2856.1.bd.i 2
21.c even 2 1 2856.1.bd.j yes 2
24.f even 2 1 inner 2856.1.bd.i 2
51.c odd 2 1 2856.1.bd.j yes 2
56.e even 2 1 2856.1.bd.j yes 2
119.d odd 2 1 CM 2856.1.bd.i 2
136.e odd 2 1 2856.1.bd.j yes 2
168.e odd 2 1 CM 2856.1.bd.i 2
357.c even 2 1 2856.1.bd.j yes 2
408.h even 2 1 RM 2856.1.bd.i 2
952.k even 2 1 2856.1.bd.j yes 2
2856.bd odd 2 1 inner 2856.1.bd.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2856.1.bd.i 2 1.a even 1 1 trivial
2856.1.bd.i 2 7.b odd 2 1 inner
2856.1.bd.i 2 17.b even 2 1 inner
2856.1.bd.i 2 24.f even 2 1 inner
2856.1.bd.i 2 119.d odd 2 1 CM
2856.1.bd.i 2 168.e odd 2 1 CM
2856.1.bd.i 2 408.h even 2 1 RM
2856.1.bd.i 2 2856.bd odd 2 1 inner
2856.1.bd.j yes 2 3.b odd 2 1
2856.1.bd.j yes 2 8.d odd 2 1
2856.1.bd.j yes 2 21.c even 2 1
2856.1.bd.j yes 2 51.c odd 2 1
2856.1.bd.j yes 2 56.e even 2 1
2856.1.bd.j yes 2 136.e odd 2 1
2856.1.bd.j yes 2 357.c even 2 1
2856.1.bd.j yes 2 952.k even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2856, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{37} \) Copy content Toggle raw display
\( T_{53} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 1 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 4 \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 4 \) Copy content Toggle raw display
$43$ \( (T - 2)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( (T - 2)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 4 \) Copy content Toggle raw display
$67$ \( (T - 2)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less