Properties

Label 2856.1.bd.a
Level $2856$
Weight $1$
Character orbit 2856.bd
Self dual yes
Analytic conductor $1.425$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -2856
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2856,1,Mod(1427,2856)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2856, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2856.1427"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2856 = 2^{3} \cdot 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2856.bd (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-1,-1,1,-1,1,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.42532967608\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.2856.1
Artin image: $D_6$
Artin field: Galois closure of 6.0.415993536.1
Stark unit: Root of $x^{6} - 10x^{5} - 21x^{4} - 164x^{3} - 21x^{2} - 10x + 1$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{7} - q^{8} + q^{9} + q^{10} - q^{11} - q^{12} - q^{13} + q^{14} + q^{15} + q^{16} - q^{17} - q^{18} - q^{20} + q^{21} + q^{22} + q^{24}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2856\mathbb{Z}\right)^\times\).

\(n\) \(409\) \(953\) \(1429\) \(2143\) \(2689\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1427.1
0
−1.00000 −1.00000 1.00000 −1.00000 1.00000 −1.00000 −1.00000 1.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
2856.bd odd 2 1 CM by \(\Q(\sqrt{-714}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2856.1.bd.a 1
3.b odd 2 1 2856.1.bd.e yes 1
7.b odd 2 1 2856.1.bd.c yes 1
8.d odd 2 1 2856.1.bd.f yes 1
17.b even 2 1 2856.1.bd.d yes 1
21.c even 2 1 2856.1.bd.g yes 1
24.f even 2 1 2856.1.bd.b yes 1
51.c odd 2 1 2856.1.bd.h yes 1
56.e even 2 1 2856.1.bd.h yes 1
119.d odd 2 1 2856.1.bd.b yes 1
136.e odd 2 1 2856.1.bd.g yes 1
168.e odd 2 1 2856.1.bd.d yes 1
357.c even 2 1 2856.1.bd.f yes 1
408.h even 2 1 2856.1.bd.c yes 1
952.k even 2 1 2856.1.bd.e yes 1
2856.bd odd 2 1 CM 2856.1.bd.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2856.1.bd.a 1 1.a even 1 1 trivial
2856.1.bd.a 1 2856.bd odd 2 1 CM
2856.1.bd.b yes 1 24.f even 2 1
2856.1.bd.b yes 1 119.d odd 2 1
2856.1.bd.c yes 1 7.b odd 2 1
2856.1.bd.c yes 1 408.h even 2 1
2856.1.bd.d yes 1 17.b even 2 1
2856.1.bd.d yes 1 168.e odd 2 1
2856.1.bd.e yes 1 3.b odd 2 1
2856.1.bd.e yes 1 952.k even 2 1
2856.1.bd.f yes 1 8.d odd 2 1
2856.1.bd.f yes 1 357.c even 2 1
2856.1.bd.g yes 1 21.c even 2 1
2856.1.bd.g yes 1 136.e odd 2 1
2856.1.bd.h yes 1 51.c odd 2 1
2856.1.bd.h yes 1 56.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(2856, [\chi])\):

\( T_{5} + 1 \) Copy content Toggle raw display
\( T_{11} + 1 \) Copy content Toggle raw display
\( T_{37} - 1 \) Copy content Toggle raw display
\( T_{53} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T + 1 \) Copy content Toggle raw display
$11$ \( T + 1 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T + 1 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T - 1 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T + 1 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T - 1 \) Copy content Toggle raw display
$59$ \( T + 2 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T + 1 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T - 1 \) Copy content Toggle raw display
$79$ \( T - 1 \) Copy content Toggle raw display
$83$ \( T - 1 \) Copy content Toggle raw display
$89$ \( T - 1 \) Copy content Toggle raw display
$97$ \( T - 1 \) Copy content Toggle raw display
show more
show less