Properties

Label 2816.1.h.b
Level $2816$
Weight $1$
Character orbit 2816.h
Self dual yes
Analytic conductor $1.405$
Analytic rank $0$
Dimension $1$
Projective image $D_{2}$
CM/RM discs -8, -11, 88
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2816,1,Mod(769,2816)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2816.769"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2816, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 2816 = 2^{8} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2816.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.40536707557\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 704)
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(\sqrt{-2}, \sqrt{-11})\)
Artin image: $D_4$
Artin field: Galois closure of 4.0.22528.2
Stark unit: Root of $x^{4} - 8431268x^{3} + 7462086x^{2} - 8431268x + 1$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{3} + 3 q^{9} - q^{11} - q^{25} + 4 q^{27} - 2 q^{33} + q^{49} - 2 q^{59} - 2 q^{67} - 2 q^{75} + 5 q^{81} - 2 q^{89} + 2 q^{97} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2816\mathbb{Z}\right)^\times\).

\(n\) \(1025\) \(1541\) \(2047\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
769.1
0
0 2.00000 0 0 0 0 0 3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
88.g even 2 1 RM by \(\Q(\sqrt{22}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2816.1.h.b 1
4.b odd 2 1 2816.1.h.a 1
8.b even 2 1 2816.1.h.a 1
8.d odd 2 1 CM 2816.1.h.b 1
11.b odd 2 1 CM 2816.1.h.b 1
16.e even 4 2 704.1.b.a 2
16.f odd 4 2 704.1.b.a 2
44.c even 2 1 2816.1.h.a 1
88.b odd 2 1 2816.1.h.a 1
88.g even 2 1 RM 2816.1.h.b 1
176.i even 4 2 704.1.b.a 2
176.l odd 4 2 704.1.b.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
704.1.b.a 2 16.e even 4 2
704.1.b.a 2 16.f odd 4 2
704.1.b.a 2 176.i even 4 2
704.1.b.a 2 176.l odd 4 2
2816.1.h.a 1 4.b odd 2 1
2816.1.h.a 1 8.b even 2 1
2816.1.h.a 1 44.c even 2 1
2816.1.h.a 1 88.b odd 2 1
2816.1.h.b 1 1.a even 1 1 trivial
2816.1.h.b 1 8.d odd 2 1 CM
2816.1.h.b 1 11.b odd 2 1 CM
2816.1.h.b 1 88.g even 2 1 RM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 2 \) acting on \(S_{1}^{\mathrm{new}}(2816, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 2 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 1 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T + 2 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T + 2 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 2 \) Copy content Toggle raw display
$97$ \( T - 2 \) Copy content Toggle raw display
show more
show less