Properties

Label 2808.2.q.g.937.4
Level $2808$
Weight $2$
Character 2808.937
Analytic conductor $22.422$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2808,2,Mod(937,2808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2808.937"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2808.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,0,3,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4219928876\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 936)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 937.4
Character \(\chi\) \(=\) 2808.937
Dual form 2808.2.q.g.1873.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.618351 - 1.07102i) q^{5} +(2.31092 - 4.00263i) q^{7} +(0.517400 - 0.896163i) q^{11} +(-0.500000 - 0.866025i) q^{13} -7.43820 q^{17} +4.41618 q^{19} +(-2.42822 - 4.20580i) q^{23} +(1.73528 - 3.00560i) q^{25} +(3.04612 - 5.27603i) q^{29} +(3.58751 + 6.21374i) q^{31} -5.71584 q^{35} -8.61130 q^{37} +(0.532259 + 0.921899i) q^{41} +(1.34187 - 2.32419i) q^{43} +(-4.00605 + 6.93867i) q^{47} +(-7.18071 - 12.4374i) q^{49} +10.4399 q^{53} -1.27974 q^{55} +(-4.04267 - 7.00211i) q^{59} +(-5.92025 + 10.2542i) q^{61} +(-0.618351 + 1.07102i) q^{65} +(-0.406963 - 0.704881i) q^{67} -10.3144 q^{71} +8.15391 q^{73} +(-2.39134 - 4.14192i) q^{77} +(-3.78968 + 6.56392i) q^{79} +(-2.56200 + 4.43752i) q^{83} +(4.59942 + 7.96643i) q^{85} +3.37420 q^{89} -4.62184 q^{91} +(-2.73075 - 4.72980i) q^{95} +(4.96536 - 8.60025i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q + 3 q^{5} - 4 q^{7} - 5 q^{11} - 11 q^{13} - 8 q^{17} + 10 q^{19} - 9 q^{23} - 24 q^{25} + 16 q^{29} - q^{31} + 18 q^{37} + 6 q^{41} - 7 q^{43} - 21 q^{47} - 27 q^{49} - 32 q^{53} + 34 q^{55} - 11 q^{59}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2808\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(1081\) \(1405\) \(2081\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.618351 1.07102i −0.276535 0.478973i 0.693986 0.719988i \(-0.255853\pi\)
−0.970521 + 0.241016i \(0.922519\pi\)
\(6\) 0 0
\(7\) 2.31092 4.00263i 0.873446 1.51285i 0.0150373 0.999887i \(-0.495213\pi\)
0.858409 0.512966i \(-0.171453\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.517400 0.896163i 0.156002 0.270203i −0.777422 0.628980i \(-0.783473\pi\)
0.933423 + 0.358777i \(0.116806\pi\)
\(12\) 0 0
\(13\) −0.500000 0.866025i −0.138675 0.240192i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −7.43820 −1.80403 −0.902015 0.431705i \(-0.857912\pi\)
−0.902015 + 0.431705i \(0.857912\pi\)
\(18\) 0 0
\(19\) 4.41618 1.01314 0.506571 0.862198i \(-0.330913\pi\)
0.506571 + 0.862198i \(0.330913\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.42822 4.20580i −0.506318 0.876969i −0.999973 0.00731127i \(-0.997673\pi\)
0.493655 0.869658i \(-0.335661\pi\)
\(24\) 0 0
\(25\) 1.73528 3.00560i 0.347057 0.601120i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.04612 5.27603i 0.565650 0.979734i −0.431339 0.902190i \(-0.641959\pi\)
0.996989 0.0775442i \(-0.0247079\pi\)
\(30\) 0 0
\(31\) 3.58751 + 6.21374i 0.644335 + 1.11602i 0.984455 + 0.175639i \(0.0561992\pi\)
−0.340119 + 0.940382i \(0.610467\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.71584 −0.966154
\(36\) 0 0
\(37\) −8.61130 −1.41569 −0.707844 0.706368i \(-0.750332\pi\)
−0.707844 + 0.706368i \(0.750332\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.532259 + 0.921899i 0.0831249 + 0.143976i 0.904591 0.426281i \(-0.140177\pi\)
−0.821466 + 0.570258i \(0.806843\pi\)
\(42\) 0 0
\(43\) 1.34187 2.32419i 0.204634 0.354436i −0.745382 0.666637i \(-0.767733\pi\)
0.950016 + 0.312201i \(0.101066\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.00605 + 6.93867i −0.584342 + 1.01211i 0.410615 + 0.911809i \(0.365314\pi\)
−0.994957 + 0.100301i \(0.968019\pi\)
\(48\) 0 0
\(49\) −7.18071 12.4374i −1.02582 1.77677i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.4399 1.43403 0.717017 0.697056i \(-0.245507\pi\)
0.717017 + 0.697056i \(0.245507\pi\)
\(54\) 0 0
\(55\) −1.27974 −0.172560
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.04267 7.00211i −0.526311 0.911597i −0.999530 0.0306521i \(-0.990242\pi\)
0.473220 0.880945i \(-0.343092\pi\)
\(60\) 0 0
\(61\) −5.92025 + 10.2542i −0.758011 + 1.31291i 0.185853 + 0.982578i \(0.440495\pi\)
−0.943864 + 0.330335i \(0.892838\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.618351 + 1.07102i −0.0766970 + 0.132843i
\(66\) 0 0
\(67\) −0.406963 0.704881i −0.0497185 0.0861149i 0.840095 0.542439i \(-0.182499\pi\)
−0.889814 + 0.456324i \(0.849166\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −10.3144 −1.22409 −0.612044 0.790824i \(-0.709653\pi\)
−0.612044 + 0.790824i \(0.709653\pi\)
\(72\) 0 0
\(73\) 8.15391 0.954343 0.477171 0.878810i \(-0.341662\pi\)
0.477171 + 0.878810i \(0.341662\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.39134 4.14192i −0.272518 0.472016i
\(78\) 0 0
\(79\) −3.78968 + 6.56392i −0.426373 + 0.738499i −0.996548 0.0830244i \(-0.973542\pi\)
0.570175 + 0.821523i \(0.306875\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.56200 + 4.43752i −0.281216 + 0.487081i −0.971685 0.236282i \(-0.924071\pi\)
0.690468 + 0.723363i \(0.257405\pi\)
\(84\) 0 0
\(85\) 4.59942 + 7.96643i 0.498877 + 0.864081i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.37420 0.357665 0.178832 0.983880i \(-0.442768\pi\)
0.178832 + 0.983880i \(0.442768\pi\)
\(90\) 0 0
\(91\) −4.62184 −0.484501
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.73075 4.72980i −0.280169 0.485267i
\(96\) 0 0
\(97\) 4.96536 8.60025i 0.504156 0.873223i −0.495833 0.868418i \(-0.665137\pi\)
0.999988 0.00480529i \(-0.00152958\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.98103 + 5.16330i −0.296624 + 0.513768i −0.975361 0.220613i \(-0.929194\pi\)
0.678737 + 0.734381i \(0.262527\pi\)
\(102\) 0 0
\(103\) −2.65513 4.59883i −0.261618 0.453136i 0.705054 0.709154i \(-0.250923\pi\)
−0.966672 + 0.256018i \(0.917589\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.79266 0.269977 0.134988 0.990847i \(-0.456900\pi\)
0.134988 + 0.990847i \(0.456900\pi\)
\(108\) 0 0
\(109\) −11.3696 −1.08901 −0.544507 0.838756i \(-0.683283\pi\)
−0.544507 + 0.838756i \(0.683283\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.99219 + 15.5749i 0.845914 + 1.46517i 0.884825 + 0.465924i \(0.154278\pi\)
−0.0389108 + 0.999243i \(0.512389\pi\)
\(114\) 0 0
\(115\) −3.00298 + 5.20132i −0.280029 + 0.485025i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −17.1891 + 29.7724i −1.57572 + 2.72923i
\(120\) 0 0
\(121\) 4.96460 + 8.59893i 0.451327 + 0.781721i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −10.4756 −0.936963
\(126\) 0 0
\(127\) −8.20363 −0.727954 −0.363977 0.931408i \(-0.618581\pi\)
−0.363977 + 0.931408i \(0.618581\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.73112 9.92658i −0.500730 0.867290i −1.00000 0.000843000i \(-0.999732\pi\)
0.499270 0.866447i \(-0.333602\pi\)
\(132\) 0 0
\(133\) 10.2055 17.6764i 0.884925 1.53274i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.5319 18.2418i 0.899800 1.55850i 0.0720520 0.997401i \(-0.477045\pi\)
0.827749 0.561099i \(-0.189621\pi\)
\(138\) 0 0
\(139\) −11.7804 20.4042i −0.999200 1.73067i −0.534227 0.845341i \(-0.679397\pi\)
−0.464973 0.885325i \(-0.653936\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.03480 −0.0865343
\(144\) 0 0
\(145\) −7.53428 −0.625688
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.17486 2.03492i −0.0962485 0.166707i 0.813880 0.581032i \(-0.197351\pi\)
−0.910129 + 0.414325i \(0.864018\pi\)
\(150\) 0 0
\(151\) 0.914469 1.58391i 0.0744184 0.128896i −0.826415 0.563062i \(-0.809623\pi\)
0.900833 + 0.434165i \(0.142957\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.43668 7.68455i 0.356363 0.617238i
\(156\) 0 0
\(157\) −9.53466 16.5145i −0.760948 1.31800i −0.942362 0.334594i \(-0.891401\pi\)
0.181414 0.983407i \(-0.441933\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −22.4457 −1.76897
\(162\) 0 0
\(163\) 5.40033 0.422986 0.211493 0.977379i \(-0.432167\pi\)
0.211493 + 0.977379i \(0.432167\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.80911 8.32963i −0.372140 0.644566i 0.617754 0.786371i \(-0.288043\pi\)
−0.989895 + 0.141805i \(0.954709\pi\)
\(168\) 0 0
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.182732 0.316501i 0.0138929 0.0240632i −0.858995 0.511983i \(-0.828911\pi\)
0.872888 + 0.487920i \(0.162244\pi\)
\(174\) 0 0
\(175\) −8.02021 13.8914i −0.606271 1.05009i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3.94330 −0.294736 −0.147368 0.989082i \(-0.547080\pi\)
−0.147368 + 0.989082i \(0.547080\pi\)
\(180\) 0 0
\(181\) 5.11469 0.380172 0.190086 0.981767i \(-0.439123\pi\)
0.190086 + 0.981767i \(0.439123\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.32481 + 9.22283i 0.391487 + 0.678076i
\(186\) 0 0
\(187\) −3.84852 + 6.66584i −0.281432 + 0.487454i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.217758 0.377168i 0.0157564 0.0272909i −0.858040 0.513583i \(-0.828318\pi\)
0.873796 + 0.486292i \(0.161651\pi\)
\(192\) 0 0
\(193\) −8.14261 14.1034i −0.586118 1.01519i −0.994735 0.102480i \(-0.967322\pi\)
0.408617 0.912706i \(-0.366011\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 15.9126 1.13373 0.566863 0.823812i \(-0.308157\pi\)
0.566863 + 0.823812i \(0.308157\pi\)
\(198\) 0 0
\(199\) 13.8785 0.983822 0.491911 0.870646i \(-0.336299\pi\)
0.491911 + 0.870646i \(0.336299\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −14.0787 24.3850i −0.988129 1.71149i
\(204\) 0 0
\(205\) 0.658245 1.14011i 0.0459739 0.0796291i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.28493 3.95762i 0.158052 0.273754i
\(210\) 0 0
\(211\) −4.72422 8.18259i −0.325229 0.563313i 0.656330 0.754474i \(-0.272108\pi\)
−0.981559 + 0.191161i \(0.938775\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.31899 −0.226353
\(216\) 0 0
\(217\) 33.1618 2.25117
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.71910 + 6.44167i 0.250174 + 0.433314i
\(222\) 0 0
\(223\) −4.44932 + 7.70644i −0.297948 + 0.516062i −0.975666 0.219260i \(-0.929636\pi\)
0.677718 + 0.735322i \(0.262969\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.10801 + 15.7755i −0.604520 + 1.04706i 0.387607 + 0.921825i \(0.373302\pi\)
−0.992127 + 0.125235i \(0.960032\pi\)
\(228\) 0 0
\(229\) −11.8921 20.5977i −0.785852 1.36113i −0.928489 0.371360i \(-0.878892\pi\)
0.142638 0.989775i \(-0.454442\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.70410 0.570225 0.285112 0.958494i \(-0.407969\pi\)
0.285112 + 0.958494i \(0.407969\pi\)
\(234\) 0 0
\(235\) 9.90857 0.646364
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.28917 + 14.3573i 0.536182 + 0.928694i 0.999105 + 0.0422959i \(0.0134672\pi\)
−0.462923 + 0.886398i \(0.653199\pi\)
\(240\) 0 0
\(241\) −5.97432 + 10.3478i −0.384839 + 0.666562i −0.991747 0.128211i \(-0.959077\pi\)
0.606907 + 0.794773i \(0.292410\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −8.88040 + 15.3813i −0.567348 + 0.982676i
\(246\) 0 0
\(247\) −2.20809 3.82453i −0.140498 0.243349i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.09870 0.0693495 0.0346748 0.999399i \(-0.488960\pi\)
0.0346748 + 0.999399i \(0.488960\pi\)
\(252\) 0 0
\(253\) −5.02544 −0.315946
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5.63626 + 9.76229i 0.351580 + 0.608955i 0.986526 0.163602i \(-0.0523112\pi\)
−0.634946 + 0.772556i \(0.718978\pi\)
\(258\) 0 0
\(259\) −19.9000 + 34.4679i −1.23653 + 2.14173i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 9.05973 15.6919i 0.558647 0.967605i −0.438963 0.898505i \(-0.644654\pi\)
0.997610 0.0690994i \(-0.0220126\pi\)
\(264\) 0 0
\(265\) −6.45554 11.1813i −0.396561 0.686863i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −8.69587 −0.530197 −0.265098 0.964221i \(-0.585404\pi\)
−0.265098 + 0.964221i \(0.585404\pi\)
\(270\) 0 0
\(271\) −2.47019 −0.150053 −0.0750266 0.997182i \(-0.523904\pi\)
−0.0750266 + 0.997182i \(0.523904\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.79567 3.11019i −0.108283 0.187552i
\(276\) 0 0
\(277\) 16.0775 27.8470i 0.966002 1.67316i 0.259103 0.965850i \(-0.416573\pi\)
0.706899 0.707315i \(-0.250094\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.02312 10.4323i 0.359309 0.622342i −0.628536 0.777780i \(-0.716346\pi\)
0.987846 + 0.155438i \(0.0496790\pi\)
\(282\) 0 0
\(283\) −8.39750 14.5449i −0.499180 0.864605i 0.500820 0.865552i \(-0.333032\pi\)
−1.00000 0.000946989i \(0.999699\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.92003 0.290420
\(288\) 0 0
\(289\) 38.3269 2.25452
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5.95928 10.3218i −0.348145 0.603004i 0.637775 0.770223i \(-0.279855\pi\)
−0.985920 + 0.167218i \(0.946522\pi\)
\(294\) 0 0
\(295\) −4.99958 + 8.65952i −0.291087 + 0.504177i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.42822 + 4.20580i −0.140427 + 0.243227i
\(300\) 0 0
\(301\) −6.20192 10.7420i −0.357473 0.619161i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 14.6432 0.838466
\(306\) 0 0
\(307\) 2.39507 0.136694 0.0683469 0.997662i \(-0.478228\pi\)
0.0683469 + 0.997662i \(0.478228\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 12.2622 + 21.2388i 0.695327 + 1.20434i 0.970070 + 0.242824i \(0.0780737\pi\)
−0.274743 + 0.961518i \(0.588593\pi\)
\(312\) 0 0
\(313\) 4.17269 7.22731i 0.235854 0.408512i −0.723666 0.690150i \(-0.757545\pi\)
0.959521 + 0.281638i \(0.0908779\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.35033 4.07089i 0.132008 0.228644i −0.792443 0.609946i \(-0.791191\pi\)
0.924450 + 0.381302i \(0.124524\pi\)
\(318\) 0 0
\(319\) −3.15212 5.45963i −0.176485 0.305681i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −32.8485 −1.82774
\(324\) 0 0
\(325\) −3.47057 −0.192512
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 18.5153 + 32.0695i 1.02078 + 1.76805i
\(330\) 0 0
\(331\) −7.41963 + 12.8512i −0.407820 + 0.706364i −0.994645 0.103349i \(-0.967044\pi\)
0.586826 + 0.809713i \(0.300377\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.503292 + 0.871727i −0.0274978 + 0.0476276i
\(336\) 0 0
\(337\) 14.4755 + 25.0722i 0.788529 + 1.36577i 0.926868 + 0.375387i \(0.122490\pi\)
−0.138339 + 0.990385i \(0.544176\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.42470 0.402070
\(342\) 0 0
\(343\) −34.0234 −1.83709
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.47367 + 4.28452i 0.132793 + 0.230005i 0.924752 0.380569i \(-0.124272\pi\)
−0.791959 + 0.610574i \(0.790939\pi\)
\(348\) 0 0
\(349\) −13.0836 + 22.6615i −0.700351 + 1.21304i 0.267993 + 0.963421i \(0.413640\pi\)
−0.968343 + 0.249622i \(0.919694\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 17.0625 29.5531i 0.908143 1.57295i 0.0915021 0.995805i \(-0.470833\pi\)
0.816641 0.577146i \(-0.195833\pi\)
\(354\) 0 0
\(355\) 6.37789 + 11.0468i 0.338503 + 0.586305i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 31.0572 1.63914 0.819569 0.572980i \(-0.194213\pi\)
0.819569 + 0.572980i \(0.194213\pi\)
\(360\) 0 0
\(361\) 0.502686 0.0264572
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −5.04198 8.73296i −0.263909 0.457104i
\(366\) 0 0
\(367\) −13.3961 + 23.2027i −0.699271 + 1.21117i 0.269449 + 0.963015i \(0.413158\pi\)
−0.968720 + 0.248158i \(0.920175\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 24.1258 41.7872i 1.25255 2.16948i
\(372\) 0 0
\(373\) −9.69162 16.7864i −0.501813 0.869166i −0.999998 0.00209477i \(-0.999333\pi\)
0.498185 0.867071i \(-0.334000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6.09223 −0.313766
\(378\) 0 0
\(379\) 9.40917 0.483317 0.241658 0.970361i \(-0.422309\pi\)
0.241658 + 0.970361i \(0.422309\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6.66805 + 11.5494i 0.340721 + 0.590147i 0.984567 0.175009i \(-0.0559954\pi\)
−0.643845 + 0.765156i \(0.722662\pi\)
\(384\) 0 0
\(385\) −2.95737 + 5.12232i −0.150722 + 0.261058i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.51890 2.63081i 0.0770112 0.133387i −0.824948 0.565209i \(-0.808796\pi\)
0.901959 + 0.431821i \(0.142129\pi\)
\(390\) 0 0
\(391\) 18.0616 + 31.2836i 0.913413 + 1.58208i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 9.37341 0.471628
\(396\) 0 0
\(397\) 26.4484 1.32741 0.663703 0.747997i \(-0.268984\pi\)
0.663703 + 0.747997i \(0.268984\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.85782 10.1460i −0.292525 0.506669i 0.681881 0.731463i \(-0.261162\pi\)
−0.974406 + 0.224794i \(0.927829\pi\)
\(402\) 0 0
\(403\) 3.58751 6.21374i 0.178706 0.309529i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.45548 + 7.71712i −0.220850 + 0.382524i
\(408\) 0 0
\(409\) −1.53325 2.65567i −0.0758144 0.131314i 0.825626 0.564218i \(-0.190822\pi\)
−0.901440 + 0.432904i \(0.857489\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −37.3692 −1.83882
\(414\) 0 0
\(415\) 6.33687 0.311065
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.61427 + 4.52805i 0.127715 + 0.221209i 0.922791 0.385301i \(-0.125902\pi\)
−0.795076 + 0.606510i \(0.792569\pi\)
\(420\) 0 0
\(421\) −18.4928 + 32.0304i −0.901283 + 1.56107i −0.0754524 + 0.997149i \(0.524040\pi\)
−0.825831 + 0.563918i \(0.809293\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −12.9074 + 22.3563i −0.626101 + 1.08444i
\(426\) 0 0
\(427\) 27.3625 + 47.3932i 1.32416 + 2.29352i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −0.273718 −0.0131845 −0.00659227 0.999978i \(-0.502098\pi\)
−0.00659227 + 0.999978i \(0.502098\pi\)
\(432\) 0 0
\(433\) −14.2228 −0.683504 −0.341752 0.939790i \(-0.611020\pi\)
−0.341752 + 0.939790i \(0.611020\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.7235 18.5736i −0.512973 0.888494i
\(438\) 0 0
\(439\) 1.86696 3.23366i 0.0891049 0.154334i −0.818028 0.575178i \(-0.804933\pi\)
0.907133 + 0.420844i \(0.138266\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −19.2608 + 33.3606i −0.915107 + 1.58501i −0.108363 + 0.994111i \(0.534561\pi\)
−0.806744 + 0.590901i \(0.798772\pi\)
\(444\) 0 0
\(445\) −2.08644 3.61382i −0.0989068 0.171312i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 11.4384 0.539813 0.269907 0.962887i \(-0.413007\pi\)
0.269907 + 0.962887i \(0.413007\pi\)
\(450\) 0 0
\(451\) 1.10156 0.0518705
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.85792 + 4.95006i 0.133981 + 0.232063i
\(456\) 0 0
\(457\) 11.8697 20.5589i 0.555240 0.961704i −0.442644 0.896697i \(-0.645960\pi\)
0.997885 0.0650072i \(-0.0207070\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7.04097 12.1953i 0.327931 0.567993i −0.654170 0.756347i \(-0.726982\pi\)
0.982101 + 0.188355i \(0.0603154\pi\)
\(462\) 0 0
\(463\) −5.80139 10.0483i −0.269613 0.466984i 0.699149 0.714976i \(-0.253563\pi\)
−0.968762 + 0.247992i \(0.920229\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15.2384 0.705150 0.352575 0.935784i \(-0.385306\pi\)
0.352575 + 0.935784i \(0.385306\pi\)
\(468\) 0 0
\(469\) −3.76184 −0.173706
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.38857 2.40507i −0.0638465 0.110585i
\(474\) 0 0
\(475\) 7.66333 13.2733i 0.351618 0.609020i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3.21975 + 5.57676i −0.147114 + 0.254809i −0.930160 0.367155i \(-0.880332\pi\)
0.783046 + 0.621964i \(0.213665\pi\)
\(480\) 0 0
\(481\) 4.30565 + 7.45760i 0.196321 + 0.340037i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12.2813 −0.557667
\(486\) 0 0
\(487\) 11.6913 0.529783 0.264891 0.964278i \(-0.414664\pi\)
0.264891 + 0.964278i \(0.414664\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6.94879 + 12.0357i 0.313595 + 0.543162i 0.979138 0.203198i \(-0.0651334\pi\)
−0.665543 + 0.746359i \(0.731800\pi\)
\(492\) 0 0
\(493\) −22.6576 + 39.2442i −1.02045 + 1.76747i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −23.8357 + 41.2846i −1.06918 + 1.85187i
\(498\) 0 0
\(499\) −2.21828 3.84217i −0.0993036 0.171999i 0.812093 0.583528i \(-0.198328\pi\)
−0.911397 + 0.411529i \(0.864995\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18.6182 0.830144 0.415072 0.909788i \(-0.363756\pi\)
0.415072 + 0.909788i \(0.363756\pi\)
\(504\) 0 0
\(505\) 7.37330 0.328107
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −6.60765 11.4448i −0.292879 0.507281i 0.681610 0.731715i \(-0.261280\pi\)
−0.974489 + 0.224434i \(0.927947\pi\)
\(510\) 0 0
\(511\) 18.8430 32.6371i 0.833567 1.44378i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.28361 + 5.68738i −0.144693 + 0.250616i
\(516\) 0 0
\(517\) 4.14545 + 7.18014i 0.182317 + 0.315782i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 24.3997 1.06897 0.534486 0.845177i \(-0.320505\pi\)
0.534486 + 0.845177i \(0.320505\pi\)
\(522\) 0 0
\(523\) 29.2553 1.27924 0.639622 0.768690i \(-0.279091\pi\)
0.639622 + 0.768690i \(0.279091\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −26.6846 46.2191i −1.16240 2.01334i
\(528\) 0 0
\(529\) −0.292482 + 0.506593i −0.0127166 + 0.0220258i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.532259 0.921899i 0.0230547 0.0399319i
\(534\) 0 0
\(535\) −1.72685 2.99099i −0.0746581 0.129312i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −14.8612 −0.640117
\(540\) 0 0
\(541\) 29.9138 1.28609 0.643047 0.765827i \(-0.277670\pi\)
0.643047 + 0.765827i \(0.277670\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.03043 + 12.1771i 0.301150 + 0.521608i
\(546\) 0 0
\(547\) −10.4275 + 18.0610i −0.445848 + 0.772231i −0.998111 0.0614391i \(-0.980431\pi\)
0.552263 + 0.833670i \(0.313764\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 13.4522 23.2999i 0.573084 0.992610i
\(552\) 0 0
\(553\) 17.5153 + 30.3374i 0.744827 + 1.29008i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 21.9289 0.929158 0.464579 0.885532i \(-0.346206\pi\)
0.464579 + 0.885532i \(0.346206\pi\)
\(558\) 0 0
\(559\) −2.68374 −0.113510
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9.14597 15.8413i −0.385457 0.667631i 0.606376 0.795178i \(-0.292623\pi\)
−0.991832 + 0.127548i \(0.959289\pi\)
\(564\) 0 0
\(565\) 11.1207 19.2615i 0.467850 0.810339i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 16.9632 29.3811i 0.711135 1.23172i −0.253297 0.967389i \(-0.581515\pi\)
0.964432 0.264333i \(-0.0851517\pi\)
\(570\) 0 0
\(571\) −2.01975 3.49830i −0.0845237 0.146399i 0.820664 0.571410i \(-0.193604\pi\)
−0.905188 + 0.425011i \(0.860270\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −16.8546 −0.702885
\(576\) 0 0
\(577\) 25.7179 1.07065 0.535325 0.844646i \(-0.320189\pi\)
0.535325 + 0.844646i \(0.320189\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 11.8412 + 20.5095i 0.491255 + 0.850878i
\(582\) 0 0
\(583\) 5.40161 9.35587i 0.223712 0.387481i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.65906 8.06972i 0.192300 0.333073i −0.753712 0.657205i \(-0.771739\pi\)
0.946012 + 0.324132i \(0.105072\pi\)
\(588\) 0 0
\(589\) 15.8431 + 27.4410i 0.652803 + 1.13069i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −21.3998 −0.878786 −0.439393 0.898295i \(-0.644806\pi\)
−0.439393 + 0.898295i \(0.644806\pi\)
\(594\) 0 0
\(595\) 42.5156 1.74297
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −10.5949 18.3510i −0.432898 0.749801i 0.564224 0.825622i \(-0.309175\pi\)
−0.997121 + 0.0758212i \(0.975842\pi\)
\(600\) 0 0
\(601\) −11.7940 + 20.4278i −0.481088 + 0.833268i −0.999764 0.0217021i \(-0.993091\pi\)
0.518677 + 0.854970i \(0.326425\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 6.13972 10.6343i 0.249615 0.432346i
\(606\) 0 0
\(607\) 7.90602 + 13.6936i 0.320895 + 0.555807i 0.980673 0.195654i \(-0.0626829\pi\)
−0.659778 + 0.751461i \(0.729350\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.01209 0.324134
\(612\) 0 0
\(613\) −1.30853 −0.0528510 −0.0264255 0.999651i \(-0.508412\pi\)
−0.0264255 + 0.999651i \(0.508412\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.543935 + 0.942123i 0.0218980 + 0.0379285i 0.876767 0.480916i \(-0.159696\pi\)
−0.854869 + 0.518844i \(0.826362\pi\)
\(618\) 0 0
\(619\) −7.24611 + 12.5506i −0.291246 + 0.504453i −0.974105 0.226098i \(-0.927403\pi\)
0.682859 + 0.730550i \(0.260736\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 7.79751 13.5057i 0.312401 0.541094i
\(624\) 0 0
\(625\) −2.19884 3.80851i −0.0879537 0.152340i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 64.0526 2.55394
\(630\) 0 0
\(631\) −41.4115 −1.64856 −0.824282 0.566179i \(-0.808421\pi\)
−0.824282 + 0.566179i \(0.808421\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 5.07272 + 8.78621i 0.201305 + 0.348670i
\(636\) 0 0
\(637\) −7.18071 + 12.4374i −0.284510 + 0.492786i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −12.0907 + 20.9416i −0.477553 + 0.827145i −0.999669 0.0257289i \(-0.991809\pi\)
0.522116 + 0.852874i \(0.325143\pi\)
\(642\) 0 0
\(643\) 18.6005 + 32.2169i 0.733530 + 1.27051i 0.955365 + 0.295428i \(0.0954621\pi\)
−0.221835 + 0.975084i \(0.571205\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9.31675 −0.366279 −0.183140 0.983087i \(-0.558626\pi\)
−0.183140 + 0.983087i \(0.558626\pi\)
\(648\) 0 0
\(649\) −8.36670 −0.328422
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9.51790 16.4855i −0.372464 0.645127i 0.617480 0.786587i \(-0.288154\pi\)
−0.989944 + 0.141460i \(0.954820\pi\)
\(654\) 0 0
\(655\) −7.08768 + 12.2762i −0.276939 + 0.479672i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 20.1576 34.9140i 0.785228 1.36006i −0.143634 0.989631i \(-0.545879\pi\)
0.928863 0.370424i \(-0.120788\pi\)
\(660\) 0 0
\(661\) −2.06589 3.57822i −0.0803537 0.139177i 0.823048 0.567972i \(-0.192272\pi\)
−0.903402 + 0.428795i \(0.858938\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −25.2422 −0.978851
\(666\) 0 0
\(667\) −29.5865 −1.14560
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6.12627 + 10.6110i 0.236502 + 0.409634i
\(672\) 0 0
\(673\) 6.07150 10.5162i 0.234039 0.405368i −0.724954 0.688798i \(-0.758139\pi\)
0.958993 + 0.283430i \(0.0914722\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 20.5796 35.6449i 0.790937 1.36994i −0.134450 0.990920i \(-0.542927\pi\)
0.925387 0.379023i \(-0.123740\pi\)
\(678\) 0 0
\(679\) −22.9491 39.7490i −0.880706 1.52543i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.71255 −0.0655290 −0.0327645 0.999463i \(-0.510431\pi\)
−0.0327645 + 0.999463i \(0.510431\pi\)
\(684\) 0 0
\(685\) −26.0496 −0.995305
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5.21996 9.04124i −0.198865 0.344444i
\(690\) 0 0
\(691\) 15.6971 27.1881i 0.597145 1.03429i −0.396095 0.918209i \(-0.629635\pi\)
0.993240 0.116076i \(-0.0370317\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −14.5688 + 25.2340i −0.552628 + 0.957179i
\(696\) 0 0
\(697\) −3.95905 6.85727i −0.149960 0.259738i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −5.17150 −0.195325 −0.0976625 0.995220i \(-0.531137\pi\)
−0.0976625 + 0.995220i \(0.531137\pi\)
\(702\) 0 0
\(703\) −38.0291 −1.43429
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 13.7779 + 23.8640i 0.518170 + 0.897497i
\(708\) 0 0
\(709\) 12.3700 21.4255i 0.464565 0.804650i −0.534617 0.845095i \(-0.679544\pi\)
0.999182 + 0.0404443i \(0.0128773\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 17.4225 30.1766i 0.652478 1.13012i
\(714\) 0 0
\(715\) 0.639869 + 1.10829i 0.0239298 + 0.0414475i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 48.5746 1.81153 0.905764 0.423783i \(-0.139298\pi\)
0.905764 + 0.423783i \(0.139298\pi\)
\(720\) 0 0
\(721\) −24.5432 −0.914037
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −10.5718 18.3108i −0.392625 0.680047i
\(726\) 0 0
\(727\) −15.1119 + 26.1745i −0.560469 + 0.970760i 0.436987 + 0.899468i \(0.356046\pi\)
−0.997455 + 0.0712923i \(0.977288\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9.98112 + 17.2878i −0.369165 + 0.639413i
\(732\) 0 0
\(733\) 6.25615 + 10.8360i 0.231076 + 0.400236i 0.958125 0.286350i \(-0.0924420\pi\)
−0.727049 + 0.686586i \(0.759109\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.842250 −0.0310247
\(738\) 0 0
\(739\) 1.67848 0.0617439 0.0308720 0.999523i \(-0.490172\pi\)
0.0308720 + 0.999523i \(0.490172\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −5.53968 9.59501i −0.203231 0.352007i 0.746337 0.665569i \(-0.231811\pi\)
−0.949568 + 0.313562i \(0.898478\pi\)
\(744\) 0 0
\(745\) −1.45296 + 2.51659i −0.0532322 + 0.0922008i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 6.45363 11.1780i 0.235810 0.408435i
\(750\) 0 0
\(751\) −4.76341 8.25046i −0.173819 0.301064i 0.765933 0.642921i \(-0.222277\pi\)
−0.939752 + 0.341857i \(0.888944\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −2.26185 −0.0823172
\(756\) 0 0
\(757\) 20.1215 0.731329 0.365664 0.930747i \(-0.380842\pi\)
0.365664 + 0.930747i \(0.380842\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 25.5920 + 44.3267i 0.927711 + 1.60684i 0.787142 + 0.616772i \(0.211560\pi\)
0.140569 + 0.990071i \(0.455107\pi\)
\(762\) 0 0
\(763\) −26.2743 + 45.5085i −0.951195 + 1.64752i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.04267 + 7.00211i −0.145972 + 0.252831i
\(768\) 0 0
\(769\) 4.27904 + 7.41152i 0.154306 + 0.267266i 0.932806 0.360378i \(-0.117352\pi\)
−0.778500 + 0.627645i \(0.784019\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −19.6620 −0.707194 −0.353597 0.935398i \(-0.615041\pi\)
−0.353597 + 0.935398i \(0.615041\pi\)
\(774\) 0 0
\(775\) 24.9014 0.894484
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.35055 + 4.07128i 0.0842173 + 0.145869i
\(780\) 0 0
\(781\) −5.33664 + 9.24333i −0.190960 + 0.330753i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −11.7915 + 20.4235i −0.420858 + 0.728947i
\(786\) 0 0
\(787\) 6.31421 + 10.9365i 0.225077 + 0.389845i 0.956343 0.292248i \(-0.0944032\pi\)
−0.731265 + 0.682093i \(0.761070\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 83.1210 2.95544
\(792\) 0 0
\(793\) 11.8405 0.420469
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 21.8643 + 37.8700i 0.774472 + 1.34142i 0.935091 + 0.354408i \(0.115318\pi\)
−0.160619 + 0.987016i \(0.551349\pi\)
\(798\) 0 0
\(799\) 29.7978 51.6113i 1.05417 1.82588i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.21883 7.30723i 0.148879 0.257866i
\(804\) 0 0
\(805\) 13.8793 + 24.0397i 0.489181 + 0.847287i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 30.7778 1.08209 0.541044 0.840994i \(-0.318029\pi\)
0.541044 + 0.840994i \(0.318029\pi\)
\(810\) 0 0
\(811\) 0.698137 0.0245149 0.0122575 0.999925i \(-0.496098\pi\)
0.0122575 + 0.999925i \(0.496098\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3.33930 5.78384i −0.116971 0.202599i
\(816\) 0 0
\(817\) 5.92596 10.2641i 0.207323 0.359094i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −9.75886 + 16.9028i −0.340586 + 0.589913i −0.984542 0.175150i \(-0.943959\pi\)
0.643955 + 0.765063i \(0.277292\pi\)
\(822\) 0 0
\(823\) −21.2528 36.8109i −0.740825 1.28315i −0.952120 0.305725i \(-0.901101\pi\)
0.211295 0.977422i \(-0.432232\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −32.1362 −1.11749 −0.558743 0.829341i \(-0.688716\pi\)
−0.558743 + 0.829341i \(0.688716\pi\)
\(828\) 0 0
\(829\) 35.4543 1.23138 0.615690 0.787989i \(-0.288878\pi\)
0.615690 + 0.787989i \(0.288878\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 53.4116 + 92.5116i 1.85060 + 3.20534i
\(834\) 0 0
\(835\) −5.94744 + 10.3013i −0.205820 + 0.356490i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.46587 4.27100i 0.0851311 0.147451i −0.820316 0.571911i \(-0.806202\pi\)
0.905447 + 0.424459i \(0.139536\pi\)
\(840\) 0 0
\(841\) −4.05765 7.02806i −0.139919 0.242347i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.23670 0.0425438
\(846\) 0 0
\(847\) 45.8912 1.57684
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 20.9101 + 36.2174i 0.716789 + 1.24152i
\(852\) 0 0
\(853\) 7.44717 12.8989i 0.254986 0.441649i −0.709906 0.704297i \(-0.751262\pi\)
0.964892 + 0.262648i \(0.0845957\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 10.0396 17.3891i 0.342946 0.593999i −0.642033 0.766677i \(-0.721909\pi\)
0.984978 + 0.172678i \(0.0552420\pi\)
\(858\) 0 0
\(859\) 6.62665 + 11.4777i 0.226098 + 0.391614i 0.956648 0.291245i \(-0.0940696\pi\)
−0.730550 + 0.682859i \(0.760736\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −10.8734 −0.370135 −0.185068 0.982726i \(-0.559250\pi\)
−0.185068 + 0.982726i \(0.559250\pi\)
\(864\) 0 0
\(865\) −0.451971 −0.0153675
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.92156 + 6.79234i 0.133030 + 0.230414i
\(870\) 0 0
\(871\) −0.406963 + 0.704881i −0.0137894 + 0.0238840i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −24.2082 + 41.9299i −0.818387 + 1.41749i
\(876\) 0 0
\(877\) −6.24563 10.8178i −0.210900 0.365289i 0.741096 0.671399i \(-0.234306\pi\)
−0.951996 + 0.306109i \(0.900973\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.28015 0.0431293 0.0215646 0.999767i \(-0.493135\pi\)
0.0215646 + 0.999767i \(0.493135\pi\)
\(882\) 0 0
\(883\) −7.14883 −0.240577 −0.120289 0.992739i \(-0.538382\pi\)
−0.120289 + 0.992739i \(0.538382\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 6.25551 + 10.8349i 0.210039 + 0.363799i 0.951727 0.306947i \(-0.0993074\pi\)
−0.741687 + 0.670746i \(0.765974\pi\)
\(888\) 0 0
\(889\) −18.9579 + 32.8361i −0.635829 + 1.10129i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −17.6914 + 30.6425i −0.592021 + 1.02541i
\(894\) 0 0
\(895\) 2.43834 + 4.22333i 0.0815047 + 0.141170i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 43.7119 1.45787
\(900\) 0 0
\(901\) −77.6543 −2.58704
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −3.16268 5.47792i −0.105131 0.182092i
\(906\) 0 0
\(907\) 26.0188 45.0659i 0.863940 1.49639i −0.00415607 0.999991i \(-0.501323\pi\)
0.868096 0.496396i \(-0.165344\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −25.0479 + 43.3842i −0.829873 + 1.43738i 0.0682636 + 0.997667i \(0.478254\pi\)
−0.898137 + 0.439716i \(0.855079\pi\)
\(912\) 0 0
\(913\) 2.65116 + 4.59194i 0.0877406 + 0.151971i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −52.9766 −1.74944
\(918\) 0 0
\(919\) 31.9154 1.05279 0.526396 0.850240i \(-0.323543\pi\)
0.526396 + 0.850240i \(0.323543\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 5.15718 + 8.93249i 0.169750 + 0.294016i
\(924\) 0 0
\(925\) −14.9430 + 25.8821i −0.491324 + 0.850999i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0.968674 1.67779i 0.0317812 0.0550466i −0.849697 0.527271i \(-0.823215\pi\)
0.881479 + 0.472224i \(0.156549\pi\)
\(930\) 0 0
\(931\) −31.7114 54.9257i −1.03930 1.80012i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 9.51896 0.311303
\(936\) 0 0
\(937\) 12.4448 0.406553 0.203277 0.979121i \(-0.434841\pi\)
0.203277 + 0.979121i \(0.434841\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −14.0002 24.2490i −0.456393 0.790496i 0.542374 0.840137i \(-0.317526\pi\)
−0.998767 + 0.0496411i \(0.984192\pi\)
\(942\) 0 0
\(943\) 2.58488 4.47714i 0.0841753 0.145796i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 24.2126 41.9375i 0.786804 1.36278i −0.141111 0.989994i \(-0.545068\pi\)
0.927915 0.372791i \(-0.121599\pi\)
\(948\) 0 0
\(949\) −4.07695 7.06149i −0.132344 0.229226i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 19.9083 0.644894 0.322447 0.946588i \(-0.395495\pi\)
0.322447 + 0.946588i \(0.395495\pi\)
\(954\) 0 0
\(955\) −0.538604 −0.0174288
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −48.6768 84.3106i −1.57185 2.72253i
\(960\) 0 0
\(961\) −10.2404 + 17.7369i −0.330336 + 0.572159i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −10.0700 + 17.4417i −0.324164 + 0.561469i
\(966\) 0 0
\(967\) 24.5219 + 42.4732i 0.788572 + 1.36585i 0.926842 + 0.375452i \(0.122512\pi\)
−0.138270 + 0.990395i \(0.544154\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 8.47587 0.272004 0.136002 0.990709i \(-0.456575\pi\)
0.136002 + 0.990709i \(0.456575\pi\)
\(972\) 0 0
\(973\) −108.894 −3.49099
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −8.15362 14.1225i −0.260857 0.451818i 0.705613 0.708598i \(-0.250672\pi\)
−0.966470 + 0.256780i \(0.917339\pi\)
\(978\) 0 0
\(979\) 1.74581 3.02383i 0.0557964 0.0966421i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 16.8494 29.1840i 0.537411 0.930824i −0.461631 0.887072i \(-0.652736\pi\)
0.999042 0.0437519i \(-0.0139311\pi\)
\(984\) 0 0
\(985\) −9.83957 17.0426i −0.313515 0.543023i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −13.0334 −0.414439
\(990\) 0 0
\(991\) −15.0990 −0.479634 −0.239817 0.970818i \(-0.577087\pi\)
−0.239817 + 0.970818i \(0.577087\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −8.58179 14.8641i −0.272061 0.471224i
\(996\) 0 0
\(997\) −7.49064 + 12.9742i −0.237231 + 0.410896i −0.959919 0.280279i \(-0.909573\pi\)
0.722688 + 0.691175i \(0.242906\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2808.2.q.g.937.4 22
3.2 odd 2 936.2.q.g.313.7 22
9.2 odd 6 8424.2.a.bf.1.4 11
9.4 even 3 inner 2808.2.q.g.1873.4 22
9.5 odd 6 936.2.q.g.625.7 yes 22
9.7 even 3 8424.2.a.be.1.8 11
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.q.g.313.7 22 3.2 odd 2
936.2.q.g.625.7 yes 22 9.5 odd 6
2808.2.q.g.937.4 22 1.1 even 1 trivial
2808.2.q.g.1873.4 22 9.4 even 3 inner
8424.2.a.be.1.8 11 9.7 even 3
8424.2.a.bf.1.4 11 9.2 odd 6