Properties

Label 2808.2.cw.b.1585.20
Level $2808$
Weight $2$
Character 2808.1585
Analytic conductor $22.422$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2808,2,Mod(1585,2808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2808.1585"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2808.cw (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4219928876\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 936)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1585.20
Character \(\chi\) \(=\) 2808.1585
Dual form 2808.2.cw.b.2521.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0518638 + 0.0299436i) q^{5} +(3.08098 + 1.77880i) q^{7} +(1.46178 + 0.843959i) q^{11} +(-2.26535 + 2.80503i) q^{13} -4.45763 q^{17} -0.259933i q^{19} +(-0.0530409 - 0.0918694i) q^{23} +(-2.49821 + 4.32702i) q^{25} +(-5.01275 + 8.68234i) q^{29} +(-6.75507 + 3.90004i) q^{31} -0.213055 q^{35} -2.32326i q^{37} +(3.88390 - 2.24237i) q^{41} +(2.23994 - 3.87969i) q^{43} +(-2.55586 - 1.47563i) q^{47} +(2.82827 + 4.89871i) q^{49} +6.81558 q^{53} -0.101085 q^{55} +(-10.7981 + 6.23426i) q^{59} +(0.436766 - 0.756501i) q^{61} +(0.0334972 - 0.213312i) q^{65} +(4.54557 - 2.62439i) q^{67} -6.85509i q^{71} -14.4296i q^{73} +(3.00247 + 5.20043i) q^{77} +(-7.70339 + 13.3427i) q^{79} +(-4.76733 - 2.75242i) q^{83} +(0.231190 - 0.133477i) q^{85} +3.55749i q^{89} +(-11.9691 + 4.61261i) q^{91} +(0.00778333 + 0.0134811i) q^{95} +(-5.53546 - 3.19590i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 6 q^{13} + 4 q^{17} - 10 q^{23} + 44 q^{25} + 52 q^{35} - 26 q^{43} + 48 q^{49} - 60 q^{53} - 16 q^{55} - 10 q^{61} + 26 q^{65} - 32 q^{77} + 6 q^{79} - 4 q^{91} - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2808\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(1081\) \(1405\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.0518638 + 0.0299436i −0.0231942 + 0.0133912i −0.511552 0.859252i \(-0.670929\pi\)
0.488358 + 0.872643i \(0.337596\pi\)
\(6\) 0 0
\(7\) 3.08098 + 1.77880i 1.16450 + 0.672324i 0.952378 0.304920i \(-0.0986296\pi\)
0.212121 + 0.977243i \(0.431963\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.46178 + 0.843959i 0.440743 + 0.254463i 0.703913 0.710286i \(-0.251435\pi\)
−0.263170 + 0.964750i \(0.584768\pi\)
\(12\) 0 0
\(13\) −2.26535 + 2.80503i −0.628296 + 0.777975i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.45763 −1.08113 −0.540567 0.841301i \(-0.681790\pi\)
−0.540567 + 0.841301i \(0.681790\pi\)
\(18\) 0 0
\(19\) 0.259933i 0.0596327i −0.999555 0.0298164i \(-0.990508\pi\)
0.999555 0.0298164i \(-0.00949225\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.0530409 0.0918694i −0.0110598 0.0191561i 0.860443 0.509547i \(-0.170187\pi\)
−0.871502 + 0.490391i \(0.836854\pi\)
\(24\) 0 0
\(25\) −2.49821 + 4.32702i −0.499641 + 0.865404i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.01275 + 8.68234i −0.930844 + 1.61227i −0.148962 + 0.988843i \(0.547593\pi\)
−0.781882 + 0.623427i \(0.785740\pi\)
\(30\) 0 0
\(31\) −6.75507 + 3.90004i −1.21325 + 0.700468i −0.963465 0.267834i \(-0.913692\pi\)
−0.249781 + 0.968302i \(0.580359\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.213055 −0.0360128
\(36\) 0 0
\(37\) 2.32326i 0.381941i −0.981596 0.190970i \(-0.938837\pi\)
0.981596 0.190970i \(-0.0611635\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.88390 2.24237i 0.606563 0.350199i −0.165056 0.986284i \(-0.552781\pi\)
0.771619 + 0.636085i \(0.219447\pi\)
\(42\) 0 0
\(43\) 2.23994 3.87969i 0.341588 0.591647i −0.643140 0.765748i \(-0.722369\pi\)
0.984728 + 0.174101i \(0.0557021\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.55586 1.47563i −0.372810 0.215242i 0.301875 0.953347i \(-0.402387\pi\)
−0.674686 + 0.738105i \(0.735721\pi\)
\(48\) 0 0
\(49\) 2.82827 + 4.89871i 0.404039 + 0.699816i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.81558 0.936193 0.468096 0.883677i \(-0.344940\pi\)
0.468096 + 0.883677i \(0.344940\pi\)
\(54\) 0 0
\(55\) −0.101085 −0.0136302
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.7981 + 6.23426i −1.40579 + 0.811632i −0.994978 0.100089i \(-0.968087\pi\)
−0.410810 + 0.911721i \(0.634754\pi\)
\(60\) 0 0
\(61\) 0.436766 0.756501i 0.0559222 0.0968601i −0.836709 0.547648i \(-0.815523\pi\)
0.892631 + 0.450788i \(0.148857\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.0334972 0.213312i 0.00415482 0.0264581i
\(66\) 0 0
\(67\) 4.54557 2.62439i 0.555330 0.320620i −0.195939 0.980616i \(-0.562775\pi\)
0.751269 + 0.659996i \(0.229442\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.85509i 0.813550i −0.913528 0.406775i \(-0.866653\pi\)
0.913528 0.406775i \(-0.133347\pi\)
\(72\) 0 0
\(73\) 14.4296i 1.68886i −0.535669 0.844428i \(-0.679940\pi\)
0.535669 0.844428i \(-0.320060\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.00247 + 5.20043i 0.342163 + 0.592644i
\(78\) 0 0
\(79\) −7.70339 + 13.3427i −0.866699 + 1.50117i −0.00134973 + 0.999999i \(0.500430\pi\)
−0.865350 + 0.501168i \(0.832904\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.76733 2.75242i −0.523283 0.302117i 0.214994 0.976615i \(-0.431027\pi\)
−0.738277 + 0.674498i \(0.764360\pi\)
\(84\) 0 0
\(85\) 0.231190 0.133477i 0.0250760 0.0144777i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.55749i 0.377093i 0.982064 + 0.188547i \(0.0603777\pi\)
−0.982064 + 0.188547i \(0.939622\pi\)
\(90\) 0 0
\(91\) −11.9691 + 4.61261i −1.25470 + 0.483532i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.00778333 + 0.0134811i 0.000798553 + 0.00138313i
\(96\) 0 0
\(97\) −5.53546 3.19590i −0.562041 0.324494i 0.191924 0.981410i \(-0.438527\pi\)
−0.753964 + 0.656916i \(0.771861\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.0638338 0.110563i 0.00635170 0.0110015i −0.862832 0.505491i \(-0.831312\pi\)
0.869184 + 0.494489i \(0.164645\pi\)
\(102\) 0 0
\(103\) 2.01566 + 3.49123i 0.198609 + 0.344001i 0.948078 0.318039i \(-0.103024\pi\)
−0.749468 + 0.662040i \(0.769691\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.21253 0.213894 0.106947 0.994265i \(-0.465893\pi\)
0.106947 + 0.994265i \(0.465893\pi\)
\(108\) 0 0
\(109\) 8.24035i 0.789283i −0.918835 0.394641i \(-0.870869\pi\)
0.918835 0.394641i \(-0.129131\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.38961 + 11.0671i 0.601084 + 1.04111i 0.992657 + 0.120961i \(0.0385976\pi\)
−0.391573 + 0.920147i \(0.628069\pi\)
\(114\) 0 0
\(115\) 0.00550180 + 0.00317647i 0.000513046 + 0.000296207i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −13.7338 7.92924i −1.25898 0.726872i
\(120\) 0 0
\(121\) −4.07547 7.05892i −0.370497 0.641720i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.598657i 0.0535455i
\(126\) 0 0
\(127\) −14.5269 −1.28906 −0.644529 0.764580i \(-0.722946\pi\)
−0.644529 + 0.764580i \(0.722946\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.46503 + 16.3939i 0.826963 + 1.43234i 0.900409 + 0.435043i \(0.143267\pi\)
−0.0734460 + 0.997299i \(0.523400\pi\)
\(132\) 0 0
\(133\) 0.462369 0.800847i 0.0400925 0.0694423i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.4386 + 7.18140i 1.06270 + 0.613549i 0.926177 0.377088i \(-0.123075\pi\)
0.136520 + 0.990637i \(0.456408\pi\)
\(138\) 0 0
\(139\) 9.82150 + 17.0113i 0.833048 + 1.44288i 0.895610 + 0.444841i \(0.146740\pi\)
−0.0625611 + 0.998041i \(0.519927\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.67877 + 2.18847i −0.474883 + 0.183009i
\(144\) 0 0
\(145\) 0.600399i 0.0498604i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.59543 5.53993i 0.786089 0.453848i −0.0524951 0.998621i \(-0.516717\pi\)
0.838584 + 0.544773i \(0.183384\pi\)
\(150\) 0 0
\(151\) 13.7534 + 7.94054i 1.11924 + 0.646192i 0.941206 0.337833i \(-0.109694\pi\)
0.178031 + 0.984025i \(0.443027\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.233562 0.404542i 0.0187602 0.0324936i
\(156\) 0 0
\(157\) 9.20507 + 15.9436i 0.734644 + 1.27244i 0.954879 + 0.296994i \(0.0959843\pi\)
−0.220235 + 0.975447i \(0.570682\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.377397i 0.0297430i
\(162\) 0 0
\(163\) 8.14878i 0.638262i 0.947711 + 0.319131i \(0.103391\pi\)
−0.947711 + 0.319131i \(0.896609\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.6694 + 6.16001i −0.825626 + 0.476676i −0.852353 0.522967i \(-0.824825\pi\)
0.0267265 + 0.999643i \(0.491492\pi\)
\(168\) 0 0
\(169\) −2.73636 12.7088i −0.210489 0.977596i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −5.12447 + 8.87585i −0.389606 + 0.674818i −0.992397 0.123082i \(-0.960722\pi\)
0.602790 + 0.797900i \(0.294056\pi\)
\(174\) 0 0
\(175\) −15.3938 + 8.88763i −1.16366 + 0.671842i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.01007 0.374470 0.187235 0.982315i \(-0.440047\pi\)
0.187235 + 0.982315i \(0.440047\pi\)
\(180\) 0 0
\(181\) −17.4233 −1.29506 −0.647531 0.762039i \(-0.724198\pi\)
−0.647531 + 0.762039i \(0.724198\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.0695666 + 0.120493i 0.00511464 + 0.00885881i
\(186\) 0 0
\(187\) −6.51607 3.76206i −0.476503 0.275109i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.12065 + 5.40513i −0.225803 + 0.391102i −0.956560 0.291536i \(-0.905834\pi\)
0.730757 + 0.682637i \(0.239167\pi\)
\(192\) 0 0
\(193\) 0.387344 0.223633i 0.0278816 0.0160975i −0.485994 0.873962i \(-0.661542\pi\)
0.513876 + 0.857864i \(0.328209\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 21.3756i 1.52295i 0.648197 + 0.761473i \(0.275523\pi\)
−0.648197 + 0.761473i \(0.724477\pi\)
\(198\) 0 0
\(199\) −18.6246 −1.32026 −0.660131 0.751151i \(-0.729499\pi\)
−0.660131 + 0.751151i \(0.729499\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −30.8883 + 17.8334i −2.16793 + 1.25166i
\(204\) 0 0
\(205\) −0.134289 + 0.232595i −0.00937916 + 0.0162452i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.219373 0.379965i 0.0151743 0.0262827i
\(210\) 0 0
\(211\) −5.44748 9.43531i −0.375020 0.649553i 0.615310 0.788285i \(-0.289031\pi\)
−0.990330 + 0.138732i \(0.955697\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.268287i 0.0182970i
\(216\) 0 0
\(217\) −27.7496 −1.88377
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 10.0981 12.5038i 0.679272 0.841095i
\(222\) 0 0
\(223\) −8.90104 5.13902i −0.596057 0.344134i 0.171432 0.985196i \(-0.445161\pi\)
−0.767489 + 0.641062i \(0.778494\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.9627 + 9.21609i 1.05948 + 0.611694i 0.925290 0.379261i \(-0.123822\pi\)
0.134195 + 0.990955i \(0.457155\pi\)
\(228\) 0 0
\(229\) 17.1859 9.92226i 1.13567 0.655681i 0.190318 0.981723i \(-0.439048\pi\)
0.945356 + 0.326041i \(0.105715\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.7692 0.705511 0.352755 0.935716i \(-0.385245\pi\)
0.352755 + 0.935716i \(0.385245\pi\)
\(234\) 0 0
\(235\) 0.176742 0.0115294
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 21.3399 12.3206i 1.38036 0.796952i 0.388160 0.921592i \(-0.373111\pi\)
0.992202 + 0.124640i \(0.0397776\pi\)
\(240\) 0 0
\(241\) −7.69000 4.43983i −0.495357 0.285994i 0.231437 0.972850i \(-0.425657\pi\)
−0.726794 + 0.686855i \(0.758991\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.293370 0.169377i −0.0187427 0.0108211i
\(246\) 0 0
\(247\) 0.729119 + 0.588840i 0.0463928 + 0.0374670i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6.04133 −0.381325 −0.190663 0.981656i \(-0.561064\pi\)
−0.190663 + 0.981656i \(0.561064\pi\)
\(252\) 0 0
\(253\) 0.179057i 0.0112572i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 10.0273 + 17.3678i 0.625485 + 1.08337i 0.988447 + 0.151568i \(0.0484324\pi\)
−0.362961 + 0.931804i \(0.618234\pi\)
\(258\) 0 0
\(259\) 4.13261 7.15789i 0.256788 0.444770i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.659359 1.14204i 0.0406578 0.0704214i −0.844980 0.534797i \(-0.820388\pi\)
0.885638 + 0.464376i \(0.153721\pi\)
\(264\) 0 0
\(265\) −0.353482 + 0.204083i −0.0217142 + 0.0125367i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 30.5766 1.86429 0.932143 0.362090i \(-0.117937\pi\)
0.932143 + 0.362090i \(0.117937\pi\)
\(270\) 0 0
\(271\) 17.8738i 1.08575i 0.839812 + 0.542877i \(0.182665\pi\)
−0.839812 + 0.542877i \(0.817335\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.30366 + 4.21677i −0.440427 + 0.254281i
\(276\) 0 0
\(277\) −3.12403 + 5.41098i −0.187705 + 0.325115i −0.944485 0.328555i \(-0.893438\pi\)
0.756780 + 0.653670i \(0.226772\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −23.3573 13.4854i −1.39338 0.804470i −0.399694 0.916648i \(-0.630884\pi\)
−0.993688 + 0.112179i \(0.964217\pi\)
\(282\) 0 0
\(283\) −1.05980 1.83562i −0.0629984 0.109116i 0.832806 0.553565i \(-0.186733\pi\)
−0.895804 + 0.444449i \(0.853400\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 15.9549 0.941789
\(288\) 0 0
\(289\) 2.87047 0.168851
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 15.8842 9.17076i 0.927967 0.535762i 0.0417987 0.999126i \(-0.486691\pi\)
0.886168 + 0.463364i \(0.153358\pi\)
\(294\) 0 0
\(295\) 0.373352 0.646665i 0.0217374 0.0376503i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.377853 + 0.0593357i 0.0218518 + 0.00343147i
\(300\) 0 0
\(301\) 13.8024 7.96882i 0.795557 0.459315i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.0523134i 0.00299546i
\(306\) 0 0
\(307\) 7.79429i 0.444844i −0.974951 0.222422i \(-0.928604\pi\)
0.974951 0.222422i \(-0.0713962\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3.44985 5.97531i −0.195623 0.338829i 0.751482 0.659754i \(-0.229340\pi\)
−0.947105 + 0.320925i \(0.896006\pi\)
\(312\) 0 0
\(313\) 7.72605 13.3819i 0.436702 0.756390i −0.560731 0.827998i \(-0.689480\pi\)
0.997433 + 0.0716082i \(0.0228131\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.8281 + 6.25159i 0.608165 + 0.351124i 0.772247 0.635322i \(-0.219133\pi\)
−0.164082 + 0.986447i \(0.552466\pi\)
\(318\) 0 0
\(319\) −14.6551 + 8.46111i −0.820527 + 0.473731i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.15869i 0.0644710i
\(324\) 0 0
\(325\) −6.47809 16.8098i −0.359340 0.932438i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −5.24969 9.09273i −0.289425 0.501299i
\(330\) 0 0
\(331\) 7.03745 + 4.06308i 0.386813 + 0.223327i 0.680779 0.732489i \(-0.261642\pi\)
−0.293965 + 0.955816i \(0.594975\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.157167 + 0.272221i −0.00858696 + 0.0148730i
\(336\) 0 0
\(337\) 11.5854 + 20.0666i 0.631099 + 1.09310i 0.987327 + 0.158697i \(0.0507293\pi\)
−0.356228 + 0.934399i \(0.615937\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −13.1659 −0.712973
\(342\) 0 0
\(343\) 4.77949i 0.258068i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.17177 12.4219i −0.385001 0.666841i 0.606768 0.794879i \(-0.292466\pi\)
−0.991769 + 0.128037i \(0.959132\pi\)
\(348\) 0 0
\(349\) 18.7601 + 10.8311i 1.00421 + 0.579778i 0.909490 0.415726i \(-0.136473\pi\)
0.0947153 + 0.995504i \(0.469806\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −29.0176 16.7533i −1.54445 0.891689i −0.998550 0.0538398i \(-0.982854\pi\)
−0.545901 0.837849i \(-0.683813\pi\)
\(354\) 0 0
\(355\) 0.205266 + 0.355531i 0.0108944 + 0.0188696i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7.79779i 0.411552i 0.978599 + 0.205776i \(0.0659718\pi\)
−0.978599 + 0.205776i \(0.934028\pi\)
\(360\) 0 0
\(361\) 18.9324 0.996444
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.432074 + 0.748374i 0.0226158 + 0.0391717i
\(366\) 0 0
\(367\) −0.560705 + 0.971170i −0.0292686 + 0.0506946i −0.880289 0.474438i \(-0.842651\pi\)
0.851020 + 0.525133i \(0.175984\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 20.9986 + 12.1236i 1.09020 + 0.629425i
\(372\) 0 0
\(373\) 11.7643 + 20.3764i 0.609135 + 1.05505i 0.991383 + 0.130993i \(0.0418164\pi\)
−0.382249 + 0.924059i \(0.624850\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −12.9985 33.7295i −0.669459 1.73716i
\(378\) 0 0
\(379\) 27.3824i 1.40654i −0.710924 0.703269i \(-0.751723\pi\)
0.710924 0.703269i \(-0.248277\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −26.4482 + 15.2699i −1.35144 + 0.780255i −0.988451 0.151538i \(-0.951577\pi\)
−0.362990 + 0.931793i \(0.618244\pi\)
\(384\) 0 0
\(385\) −0.311439 0.179809i −0.0158724 0.00916394i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.49704 2.59294i 0.0759028 0.131467i −0.825576 0.564291i \(-0.809149\pi\)
0.901478 + 0.432824i \(0.142483\pi\)
\(390\) 0 0
\(391\) 0.236437 + 0.409520i 0.0119571 + 0.0207103i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.922669i 0.0464245i
\(396\) 0 0
\(397\) 12.2130i 0.612951i 0.951879 + 0.306475i \(0.0991497\pi\)
−0.951879 + 0.306475i \(0.900850\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.88631 + 1.66641i −0.144136 + 0.0832167i −0.570334 0.821413i \(-0.693186\pi\)
0.426198 + 0.904630i \(0.359853\pi\)
\(402\) 0 0
\(403\) 4.36289 27.7831i 0.217331 1.38398i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.96073 3.39609i 0.0971899 0.168338i
\(408\) 0 0
\(409\) −10.9025 + 6.29455i −0.539093 + 0.311245i −0.744711 0.667387i \(-0.767413\pi\)
0.205618 + 0.978632i \(0.434079\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −44.3581 −2.18272
\(414\) 0 0
\(415\) 0.329669 0.0161828
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −11.3192 19.6054i −0.552979 0.957789i −0.998058 0.0622968i \(-0.980157\pi\)
0.445078 0.895492i \(-0.353176\pi\)
\(420\) 0 0
\(421\) 14.9600 + 8.63718i 0.729107 + 0.420950i 0.818095 0.575082i \(-0.195030\pi\)
−0.0889882 + 0.996033i \(0.528363\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 11.1361 19.2883i 0.540179 0.935618i
\(426\) 0 0
\(427\) 2.69133 1.55384i 0.130243 0.0751956i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 35.0943i 1.69043i −0.534426 0.845215i \(-0.679472\pi\)
0.534426 0.845215i \(-0.320528\pi\)
\(432\) 0 0
\(433\) 11.4234 0.548971 0.274486 0.961591i \(-0.411492\pi\)
0.274486 + 0.961591i \(0.411492\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.0238799 + 0.0137871i −0.00114233 + 0.000659525i
\(438\) 0 0
\(439\) 9.65550 16.7238i 0.460832 0.798184i −0.538171 0.842836i \(-0.680885\pi\)
0.999003 + 0.0446518i \(0.0142179\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.54814 2.68146i 0.0735544 0.127400i −0.826902 0.562346i \(-0.809899\pi\)
0.900457 + 0.434946i \(0.143232\pi\)
\(444\) 0 0
\(445\) −0.106524 0.184505i −0.00504972 0.00874637i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.31689i 0.345305i 0.984983 + 0.172653i \(0.0552338\pi\)
−0.984983 + 0.172653i \(0.944766\pi\)
\(450\) 0 0
\(451\) 7.56987 0.356451
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.482644 0.597624i 0.0226267 0.0280171i
\(456\) 0 0
\(457\) 21.2881 + 12.2907i 0.995817 + 0.574935i 0.907008 0.421114i \(-0.138361\pi\)
0.0888088 + 0.996049i \(0.471694\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 13.6875 + 7.90250i 0.637492 + 0.368056i 0.783648 0.621206i \(-0.213357\pi\)
−0.146156 + 0.989262i \(0.546690\pi\)
\(462\) 0 0
\(463\) 15.1784 8.76324i 0.705399 0.407262i −0.103956 0.994582i \(-0.533150\pi\)
0.809355 + 0.587320i \(0.199817\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.7626 −0.498034 −0.249017 0.968499i \(-0.580107\pi\)
−0.249017 + 0.968499i \(0.580107\pi\)
\(468\) 0 0
\(469\) 18.6731 0.862242
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.54860 3.78083i 0.301105 0.173843i
\(474\) 0 0
\(475\) 1.12474 + 0.649367i 0.0516064 + 0.0297950i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.83048 + 2.78888i 0.220710 + 0.127427i 0.606279 0.795252i \(-0.292661\pi\)
−0.385569 + 0.922679i \(0.625995\pi\)
\(480\) 0 0
\(481\) 6.51679 + 5.26299i 0.297140 + 0.239972i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.382786 0.0173814
\(486\) 0 0
\(487\) 29.3212i 1.32867i 0.747436 + 0.664334i \(0.231285\pi\)
−0.747436 + 0.664334i \(0.768715\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −7.10138 12.3000i −0.320481 0.555089i 0.660106 0.751172i \(-0.270511\pi\)
−0.980587 + 0.196083i \(0.937178\pi\)
\(492\) 0 0
\(493\) 22.3450 38.7027i 1.00637 1.74308i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.1939 21.1204i 0.546969 0.947378i
\(498\) 0 0
\(499\) −32.9511 + 19.0243i −1.47509 + 0.851646i −0.999606 0.0280752i \(-0.991062\pi\)
−0.475489 + 0.879722i \(0.657729\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −14.5101 −0.646975 −0.323488 0.946232i \(-0.604855\pi\)
−0.323488 + 0.946232i \(0.604855\pi\)
\(504\) 0 0
\(505\) 0.00764565i 0.000340227i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 7.68729 4.43826i 0.340733 0.196722i −0.319863 0.947464i \(-0.603637\pi\)
0.660596 + 0.750741i \(0.270304\pi\)
\(510\) 0 0
\(511\) 25.6674 44.4572i 1.13546 1.96667i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −0.209080 0.120712i −0.00921317 0.00531923i
\(516\) 0 0
\(517\) −2.49073 4.31408i −0.109542 0.189733i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −28.7656 −1.26025 −0.630123 0.776496i \(-0.716995\pi\)
−0.630123 + 0.776496i \(0.716995\pi\)
\(522\) 0 0
\(523\) 3.92567 0.171658 0.0858289 0.996310i \(-0.472646\pi\)
0.0858289 + 0.996310i \(0.472646\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 30.1116 17.3849i 1.31168 0.757300i
\(528\) 0 0
\(529\) 11.4944 19.9088i 0.499755 0.865602i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.50849 + 15.9742i −0.108655 + 0.691919i
\(534\) 0 0
\(535\) −0.114750 + 0.0662512i −0.00496110 + 0.00286429i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 9.54778i 0.411252i
\(540\) 0 0
\(541\) 22.8833i 0.983829i −0.870644 0.491914i \(-0.836297\pi\)
0.870644 0.491914i \(-0.163703\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.246746 + 0.427376i 0.0105694 + 0.0183068i
\(546\) 0 0
\(547\) −9.96461 + 17.2592i −0.426056 + 0.737950i −0.996518 0.0833732i \(-0.973431\pi\)
0.570463 + 0.821324i \(0.306764\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.25683 + 1.30298i 0.0961441 + 0.0555088i
\(552\) 0 0
\(553\) −47.4679 + 27.4056i −2.01854 + 1.16541i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 30.6804i 1.29997i 0.759946 + 0.649986i \(0.225225\pi\)
−0.759946 + 0.649986i \(0.774775\pi\)
\(558\) 0 0
\(559\) 5.80838 + 15.0720i 0.245668 + 0.637476i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −17.2617 29.8982i −0.727495 1.26006i −0.957939 0.286973i \(-0.907351\pi\)
0.230444 0.973086i \(-0.425982\pi\)
\(564\) 0 0
\(565\) −0.662779 0.382656i −0.0278833 0.0160984i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.70622 6.41935i 0.155373 0.269113i −0.777822 0.628485i \(-0.783676\pi\)
0.933195 + 0.359371i \(0.117009\pi\)
\(570\) 0 0
\(571\) 15.8005 + 27.3673i 0.661230 + 1.14528i 0.980293 + 0.197551i \(0.0632988\pi\)
−0.319062 + 0.947734i \(0.603368\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.530028 0.0221037
\(576\) 0 0
\(577\) 31.8254i 1.32491i 0.749102 + 0.662455i \(0.230485\pi\)
−0.749102 + 0.662455i \(0.769515\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −9.79202 16.9603i −0.406241 0.703631i
\(582\) 0 0
\(583\) 9.96288 + 5.75207i 0.412620 + 0.238227i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.20029 + 3.00239i 0.214639 + 0.123922i 0.603465 0.797389i \(-0.293786\pi\)
−0.388827 + 0.921311i \(0.627119\pi\)
\(588\) 0 0
\(589\) 1.01375 + 1.75587i 0.0417708 + 0.0723492i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 21.7811i 0.894442i −0.894424 0.447221i \(-0.852414\pi\)
0.894424 0.447221i \(-0.147586\pi\)
\(594\) 0 0
\(595\) 0.949719 0.0389347
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −8.42383 14.5905i −0.344188 0.596152i 0.641018 0.767526i \(-0.278513\pi\)
−0.985206 + 0.171375i \(0.945179\pi\)
\(600\) 0 0
\(601\) −5.67287 + 9.82571i −0.231401 + 0.400799i −0.958221 0.286030i \(-0.907664\pi\)
0.726819 + 0.686829i \(0.240998\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0.422738 + 0.244068i 0.0171868 + 0.00992278i
\(606\) 0 0
\(607\) 7.03033 + 12.1769i 0.285352 + 0.494245i 0.972695 0.232089i \(-0.0745560\pi\)
−0.687342 + 0.726334i \(0.741223\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.92909 3.82644i 0.401688 0.154801i
\(612\) 0 0
\(613\) 32.0837i 1.29585i −0.761704 0.647925i \(-0.775637\pi\)
0.761704 0.647925i \(-0.224363\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 29.1022 16.8022i 1.17161 0.676431i 0.217553 0.976049i \(-0.430193\pi\)
0.954059 + 0.299618i \(0.0968592\pi\)
\(618\) 0 0
\(619\) 34.0448 + 19.6558i 1.36838 + 0.790033i 0.990721 0.135914i \(-0.0433969\pi\)
0.377656 + 0.925946i \(0.376730\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.32807 + 10.9605i −0.253529 + 0.439125i
\(624\) 0 0
\(625\) −12.4731 21.6041i −0.498924 0.864162i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 10.3562i 0.412929i
\(630\) 0 0
\(631\) 14.4972i 0.577124i 0.957461 + 0.288562i \(0.0931771\pi\)
−0.957461 + 0.288562i \(0.906823\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.753422 0.434989i 0.0298986 0.0172620i
\(636\) 0 0
\(637\) −20.1480 3.16393i −0.798295 0.125359i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.89387 15.4046i 0.351287 0.608447i −0.635188 0.772357i \(-0.719078\pi\)
0.986475 + 0.163911i \(0.0524109\pi\)
\(642\) 0 0
\(643\) 34.3076 19.8075i 1.35296 0.781131i 0.364296 0.931283i \(-0.381310\pi\)
0.988663 + 0.150152i \(0.0479764\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 44.2481 1.73957 0.869786 0.493429i \(-0.164257\pi\)
0.869786 + 0.493429i \(0.164257\pi\)
\(648\) 0 0
\(649\) −21.0459 −0.826122
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 10.3543 + 17.9342i 0.405195 + 0.701818i 0.994344 0.106206i \(-0.0338704\pi\)
−0.589150 + 0.808024i \(0.700537\pi\)
\(654\) 0 0
\(655\) −0.981785 0.566834i −0.0383615 0.0221480i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −15.5524 + 26.9376i −0.605836 + 1.04934i 0.386083 + 0.922464i \(0.373828\pi\)
−0.991919 + 0.126874i \(0.959505\pi\)
\(660\) 0 0
\(661\) 37.7135 21.7739i 1.46689 0.846908i 0.467573 0.883954i \(-0.345128\pi\)
0.999314 + 0.0370468i \(0.0117951\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.0553800i 0.00214754i
\(666\) 0 0
\(667\) 1.06352 0.0411797
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.27691 0.737226i 0.0492946 0.0284603i
\(672\) 0 0
\(673\) 3.08342 5.34065i 0.118857 0.205867i −0.800458 0.599389i \(-0.795410\pi\)
0.919315 + 0.393522i \(0.128744\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 13.8360 23.9646i 0.531760 0.921035i −0.467553 0.883965i \(-0.654864\pi\)
0.999313 0.0370696i \(-0.0118023\pi\)
\(678\) 0 0
\(679\) −11.3697 19.6930i −0.436330 0.755747i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 4.42967i 0.169497i 0.996402 + 0.0847483i \(0.0270086\pi\)
−0.996402 + 0.0847483i \(0.972991\pi\)
\(684\) 0 0
\(685\) −0.860148 −0.0328646
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −15.4397 + 19.1179i −0.588206 + 0.728334i
\(690\) 0 0
\(691\) −12.9164 7.45729i −0.491363 0.283689i 0.233777 0.972290i \(-0.424892\pi\)
−0.725140 + 0.688602i \(0.758225\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.01876 0.588181i −0.0386438 0.0223110i
\(696\) 0 0
\(697\) −17.3130 + 9.99565i −0.655776 + 0.378612i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 3.72229 0.140589 0.0702945 0.997526i \(-0.477606\pi\)
0.0702945 + 0.997526i \(0.477606\pi\)
\(702\) 0 0
\(703\) −0.603891 −0.0227762
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.393341 0.227095i 0.0147931 0.00854080i
\(708\) 0 0
\(709\) 40.4480 + 23.3526i 1.51906 + 0.877027i 0.999748 + 0.0224395i \(0.00714332\pi\)
0.519307 + 0.854588i \(0.326190\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.716589 + 0.413723i 0.0268365 + 0.0154940i
\(714\) 0 0
\(715\) 0.228992 0.283545i 0.00856383 0.0106040i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −3.67210 −0.136946 −0.0684731 0.997653i \(-0.521813\pi\)
−0.0684731 + 0.997653i \(0.521813\pi\)
\(720\) 0 0
\(721\) 14.3419i 0.534119i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −25.0458 43.3805i −0.930177 1.61111i
\(726\) 0 0
\(727\) 3.61026 6.25316i 0.133897 0.231917i −0.791278 0.611456i \(-0.790584\pi\)
0.925176 + 0.379539i \(0.123917\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9.98482 + 17.2942i −0.369302 + 0.639650i
\(732\) 0 0
\(733\) −21.8645 + 12.6235i −0.807583 + 0.466258i −0.846116 0.532999i \(-0.821065\pi\)
0.0385326 + 0.999257i \(0.487732\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.85950 0.326344
\(738\) 0 0
\(739\) 10.5123i 0.386700i −0.981130 0.193350i \(-0.938065\pi\)
0.981130 0.193350i \(-0.0619353\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −17.7866 + 10.2691i −0.652527 + 0.376737i −0.789424 0.613849i \(-0.789621\pi\)
0.136897 + 0.990585i \(0.456287\pi\)
\(744\) 0 0
\(745\) −0.331770 + 0.574643i −0.0121551 + 0.0210533i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 6.81677 + 3.93566i 0.249079 + 0.143806i
\(750\) 0 0
\(751\) −7.92121 13.7199i −0.289049 0.500648i 0.684534 0.728981i \(-0.260006\pi\)
−0.973583 + 0.228333i \(0.926672\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −0.951073 −0.0346131
\(756\) 0 0
\(757\) 9.27761 0.337200 0.168600 0.985685i \(-0.446075\pi\)
0.168600 + 0.985685i \(0.446075\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 23.4846 13.5589i 0.851318 0.491508i −0.00977762 0.999952i \(-0.503112\pi\)
0.861095 + 0.508444i \(0.169779\pi\)
\(762\) 0 0
\(763\) 14.6580 25.3883i 0.530654 0.919119i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6.97414 44.4117i 0.251822 1.60361i
\(768\) 0 0
\(769\) 16.5174 9.53633i 0.595633 0.343889i −0.171689 0.985151i \(-0.554922\pi\)
0.767322 + 0.641263i \(0.221589\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 19.3989i 0.697730i 0.937173 + 0.348865i \(0.113433\pi\)
−0.937173 + 0.348865i \(0.886567\pi\)
\(774\) 0 0
\(775\) 38.9724i 1.39993i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.582866 1.00955i −0.0208833 0.0361710i
\(780\) 0 0
\(781\) 5.78542 10.0206i 0.207018 0.358567i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −0.954819 0.551265i −0.0340790 0.0196755i
\(786\) 0 0
\(787\) −44.4615 + 25.6698i −1.58488 + 0.915031i −0.590748 + 0.806856i \(0.701167\pi\)
−0.994132 + 0.108175i \(0.965499\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 45.4634i 1.61649i
\(792\) 0 0
\(793\) 1.13258 + 2.93888i 0.0402190 + 0.104363i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 21.7117 + 37.6058i 0.769068 + 1.33207i 0.938069 + 0.346450i \(0.112613\pi\)
−0.169000 + 0.985616i \(0.554054\pi\)
\(798\) 0 0
\(799\) 11.3931 + 6.57779i 0.403058 + 0.232706i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 12.1780 21.0929i 0.429752 0.744352i
\(804\) 0 0
\(805\) 0.0113006 + 0.0195732i 0.000398294 + 0.000689865i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.73990 0.0611717 0.0305859 0.999532i \(-0.490263\pi\)
0.0305859 + 0.999532i \(0.490263\pi\)
\(810\) 0 0
\(811\) 12.9989i 0.456454i −0.973608 0.228227i \(-0.926707\pi\)
0.973608 0.228227i \(-0.0732928\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −0.244004 0.422627i −0.00854707 0.0148040i
\(816\) 0 0
\(817\) −1.00846 0.582234i −0.0352815 0.0203698i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −15.9133 9.18756i −0.555378 0.320648i 0.195910 0.980622i \(-0.437234\pi\)
−0.751288 + 0.659974i \(0.770567\pi\)
\(822\) 0 0
\(823\) 21.5812 + 37.3797i 0.752273 + 1.30298i 0.946719 + 0.322062i \(0.104376\pi\)
−0.194445 + 0.980913i \(0.562291\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 30.3552i 1.05555i −0.849383 0.527776i \(-0.823026\pi\)
0.849383 0.527776i \(-0.176974\pi\)
\(828\) 0 0
\(829\) 19.7899 0.687332 0.343666 0.939092i \(-0.388331\pi\)
0.343666 + 0.939092i \(0.388331\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −12.6074 21.8366i −0.436820 0.756595i
\(834\) 0 0
\(835\) 0.368905 0.638963i 0.0127665 0.0221122i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 42.6346 + 24.6151i 1.47191 + 0.849807i 0.999501 0.0315737i \(-0.0100519\pi\)
0.472407 + 0.881380i \(0.343385\pi\)
\(840\) 0 0
\(841\) −35.7553 61.9300i −1.23294 2.13552i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.522463 + 0.577188i 0.0179733 + 0.0198559i
\(846\) 0 0
\(847\) 28.9978i 0.996376i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.213436 + 0.123227i −0.00731650 + 0.00422418i
\(852\) 0 0
\(853\) −7.40541 4.27552i −0.253556 0.146391i 0.367835 0.929891i \(-0.380099\pi\)
−0.621392 + 0.783500i \(0.713432\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 14.8253 25.6782i 0.506423 0.877150i −0.493550 0.869718i \(-0.664301\pi\)
0.999972 0.00743241i \(-0.00236583\pi\)
\(858\) 0 0
\(859\) −14.2933 24.7568i −0.487682 0.844690i 0.512217 0.858856i \(-0.328824\pi\)
−0.999900 + 0.0141653i \(0.995491\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 31.7886i 1.08210i −0.840991 0.541049i \(-0.818027\pi\)
0.840991 0.541049i \(-0.181973\pi\)
\(864\) 0 0
\(865\) 0.613780i 0.0208692i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −22.5213 + 13.0027i −0.763984 + 0.441086i
\(870\) 0 0
\(871\) −2.93585 + 18.6956i −0.0994773 + 0.633477i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.06489 1.84445i 0.0359999 0.0623537i
\(876\) 0 0
\(877\) 24.2939 14.0261i 0.820348 0.473628i −0.0301886 0.999544i \(-0.509611\pi\)
0.850536 + 0.525916i \(0.176277\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2.31849 0.0781119 0.0390559 0.999237i \(-0.487565\pi\)
0.0390559 + 0.999237i \(0.487565\pi\)
\(882\) 0 0
\(883\) −24.4927 −0.824244 −0.412122 0.911129i \(-0.635212\pi\)
−0.412122 + 0.911129i \(0.635212\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −10.1260 17.5387i −0.339997 0.588892i 0.644435 0.764659i \(-0.277093\pi\)
−0.984432 + 0.175767i \(0.943759\pi\)
\(888\) 0 0
\(889\) −44.7571 25.8405i −1.50111 0.866664i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.383564 + 0.664352i −0.0128355 + 0.0222317i
\(894\) 0 0
\(895\) −0.259841 + 0.150019i −0.00868553 + 0.00501459i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 78.1997i 2.60811i
\(900\) 0 0
\(901\) −30.3814 −1.01215
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.903637 0.521715i 0.0300379 0.0173424i
\(906\) 0 0
\(907\) −24.4963 + 42.4288i −0.813386 + 1.40883i 0.0970944 + 0.995275i \(0.469045\pi\)
−0.910481 + 0.413551i \(0.864288\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −7.48302 + 12.9610i −0.247924 + 0.429416i −0.962950 0.269682i \(-0.913082\pi\)
0.715026 + 0.699098i \(0.246415\pi\)
\(912\) 0 0
\(913\) −4.64586 8.04686i −0.153756 0.266312i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 67.3456i 2.22395i
\(918\) 0 0
\(919\) 31.2552 1.03101 0.515506 0.856886i \(-0.327604\pi\)
0.515506 + 0.856886i \(0.327604\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 19.2287 + 15.5292i 0.632921 + 0.511150i
\(924\) 0 0
\(925\) 10.0528 + 5.80397i 0.330533 + 0.190833i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −47.4285 27.3829i −1.55608 0.898403i −0.997626 0.0688671i \(-0.978062\pi\)
−0.558454 0.829536i \(-0.688605\pi\)
\(930\) 0 0
\(931\) 1.27334 0.735161i 0.0417319 0.0240939i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.450598 0.0147361
\(936\) 0 0
\(937\) −6.18261 −0.201977 −0.100988 0.994888i \(-0.532201\pi\)
−0.100988 + 0.994888i \(0.532201\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 25.1961 14.5470i 0.821370 0.474218i −0.0295189 0.999564i \(-0.509398\pi\)
0.850889 + 0.525346i \(0.176064\pi\)
\(942\) 0 0
\(943\) −0.412010 0.237874i −0.0134169 0.00774625i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −5.07292 2.92885i −0.164848 0.0951750i 0.415306 0.909682i \(-0.363674\pi\)
−0.580154 + 0.814507i \(0.697008\pi\)
\(948\) 0 0
\(949\) 40.4754 + 32.6881i 1.31389 + 1.06110i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 27.6005 0.894067 0.447034 0.894517i \(-0.352480\pi\)
0.447034 + 0.894517i \(0.352480\pi\)
\(954\) 0 0
\(955\) 0.373774i 0.0120950i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 25.5486 + 44.2515i 0.825007 + 1.42895i
\(960\) 0 0
\(961\) 14.9206 25.8433i 0.481311 0.833654i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.0133927 + 0.0231969i −0.000431128 + 0.000746735i
\(966\) 0 0
\(967\) 26.8101 15.4788i 0.862156 0.497766i −0.00257789 0.999997i \(-0.500821\pi\)
0.864734 + 0.502231i \(0.167487\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −50.0574 −1.60642 −0.803209 0.595697i \(-0.796876\pi\)
−0.803209 + 0.595697i \(0.796876\pi\)
\(972\) 0 0
\(973\) 69.8820i 2.24031i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −44.2147 + 25.5274i −1.41455 + 0.816692i −0.995813 0.0914138i \(-0.970861\pi\)
−0.418740 + 0.908106i \(0.637528\pi\)
\(978\) 0 0
\(979\) −3.00238 + 5.20027i −0.0959564 + 0.166201i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −9.28036 5.35802i −0.295997 0.170894i 0.344646 0.938733i \(-0.387999\pi\)
−0.640643 + 0.767839i \(0.721332\pi\)
\(984\) 0 0
\(985\) −0.640061 1.10862i −0.0203940 0.0353235i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −0.475233 −0.0151115
\(990\) 0 0
\(991\) 48.7981 1.55012 0.775062 0.631885i \(-0.217719\pi\)
0.775062 + 0.631885i \(0.217719\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0.965942 0.557687i 0.0306224 0.0176799i
\(996\) 0 0
\(997\) −1.13441 + 1.96485i −0.0359270 + 0.0622273i −0.883430 0.468564i \(-0.844772\pi\)
0.847503 + 0.530791i \(0.178105\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2808.2.cw.b.1585.20 80
3.2 odd 2 936.2.cw.b.25.38 yes 80
9.4 even 3 inner 2808.2.cw.b.2521.21 80
9.5 odd 6 936.2.cw.b.337.37 yes 80
13.12 even 2 inner 2808.2.cw.b.1585.21 80
39.38 odd 2 936.2.cw.b.25.37 80
117.77 odd 6 936.2.cw.b.337.38 yes 80
117.103 even 6 inner 2808.2.cw.b.2521.20 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.cw.b.25.37 80 39.38 odd 2
936.2.cw.b.25.38 yes 80 3.2 odd 2
936.2.cw.b.337.37 yes 80 9.5 odd 6
936.2.cw.b.337.38 yes 80 117.77 odd 6
2808.2.cw.b.1585.20 80 1.1 even 1 trivial
2808.2.cw.b.1585.21 80 13.12 even 2 inner
2808.2.cw.b.2521.20 80 117.103 even 6 inner
2808.2.cw.b.2521.21 80 9.4 even 3 inner