Properties

Label 2808.2.cw.b.1585.19
Level $2808$
Weight $2$
Character 2808.1585
Analytic conductor $22.422$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2808,2,Mod(1585,2808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2808.1585"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2808.cw (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4219928876\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 936)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1585.19
Character \(\chi\) \(=\) 2808.1585
Dual form 2808.2.cw.b.2521.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.107804 + 0.0622405i) q^{5} +(1.23873 + 0.715181i) q^{7} +(4.42238 + 2.55326i) q^{11} +(-1.32079 + 3.35493i) q^{13} +5.55695 q^{17} -6.33272i q^{19} +(0.310585 + 0.537949i) q^{23} +(-2.49225 + 4.31671i) q^{25} +(2.82232 - 4.88840i) q^{29} +(0.0848405 - 0.0489827i) q^{31} -0.178053 q^{35} +2.19755i q^{37} +(-3.86373 + 2.23073i) q^{41} +(-3.36274 + 5.82443i) q^{43} +(1.69881 + 0.980810i) q^{47} +(-2.47703 - 4.29034i) q^{49} +8.47447 q^{53} -0.635665 q^{55} +(-5.54284 + 3.20016i) q^{59} +(1.96107 - 3.39667i) q^{61} +(-0.0664265 - 0.443880i) q^{65} +(-10.5326 + 6.08102i) q^{67} +11.5162i q^{71} +7.57155i q^{73} +(3.65209 + 6.32560i) q^{77} +(6.67133 - 11.5551i) q^{79} +(5.92857 + 3.42286i) q^{83} +(-0.599059 + 0.345867i) q^{85} +4.80570i q^{89} +(-4.03548 + 3.21125i) q^{91} +(0.394152 + 0.682691i) q^{95} +(-1.15415 - 0.666350i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 6 q^{13} + 4 q^{17} - 10 q^{23} + 44 q^{25} + 52 q^{35} - 26 q^{43} + 48 q^{49} - 60 q^{53} - 16 q^{55} - 10 q^{61} + 26 q^{65} - 32 q^{77} + 6 q^{79} - 4 q^{91} - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2808\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(1081\) \(1405\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.107804 + 0.0622405i −0.0482113 + 0.0278348i −0.523912 0.851772i \(-0.675528\pi\)
0.475701 + 0.879607i \(0.342195\pi\)
\(6\) 0 0
\(7\) 1.23873 + 0.715181i 0.468196 + 0.270313i 0.715484 0.698629i \(-0.246206\pi\)
−0.247288 + 0.968942i \(0.579539\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.42238 + 2.55326i 1.33340 + 0.769837i 0.985819 0.167814i \(-0.0536708\pi\)
0.347578 + 0.937651i \(0.387004\pi\)
\(12\) 0 0
\(13\) −1.32079 + 3.35493i −0.366320 + 0.930489i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.55695 1.34776 0.673879 0.738842i \(-0.264627\pi\)
0.673879 + 0.738842i \(0.264627\pi\)
\(18\) 0 0
\(19\) 6.33272i 1.45283i −0.687258 0.726413i \(-0.741186\pi\)
0.687258 0.726413i \(-0.258814\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.310585 + 0.537949i 0.0647615 + 0.112170i 0.896588 0.442865i \(-0.146038\pi\)
−0.831827 + 0.555035i \(0.812705\pi\)
\(24\) 0 0
\(25\) −2.49225 + 4.31671i −0.498450 + 0.863342i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.82232 4.88840i 0.524092 0.907754i −0.475515 0.879708i \(-0.657738\pi\)
0.999607 0.0280461i \(-0.00892853\pi\)
\(30\) 0 0
\(31\) 0.0848405 0.0489827i 0.0152378 0.00879755i −0.492362 0.870391i \(-0.663866\pi\)
0.507600 + 0.861593i \(0.330533\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.178053 −0.0300964
\(36\) 0 0
\(37\) 2.19755i 0.361276i 0.983550 + 0.180638i \(0.0578162\pi\)
−0.983550 + 0.180638i \(0.942184\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.86373 + 2.23073i −0.603413 + 0.348381i −0.770383 0.637581i \(-0.779935\pi\)
0.166970 + 0.985962i \(0.446602\pi\)
\(42\) 0 0
\(43\) −3.36274 + 5.82443i −0.512813 + 0.888218i 0.487077 + 0.873359i \(0.338063\pi\)
−0.999890 + 0.0148587i \(0.995270\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.69881 + 0.980810i 0.247797 + 0.143066i 0.618755 0.785584i \(-0.287637\pi\)
−0.370958 + 0.928650i \(0.620971\pi\)
\(48\) 0 0
\(49\) −2.47703 4.29034i −0.353862 0.612906i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.47447 1.16406 0.582029 0.813168i \(-0.302259\pi\)
0.582029 + 0.813168i \(0.302259\pi\)
\(54\) 0 0
\(55\) −0.635665 −0.0857130
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.54284 + 3.20016i −0.721616 + 0.416625i −0.815347 0.578973i \(-0.803454\pi\)
0.0937314 + 0.995598i \(0.470121\pi\)
\(60\) 0 0
\(61\) 1.96107 3.39667i 0.251089 0.434899i −0.712737 0.701431i \(-0.752545\pi\)
0.963826 + 0.266533i \(0.0858780\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.0664265 0.443880i −0.00823920 0.0550565i
\(66\) 0 0
\(67\) −10.5326 + 6.08102i −1.28677 + 0.742915i −0.978076 0.208248i \(-0.933224\pi\)
−0.308690 + 0.951163i \(0.599891\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.5162i 1.36672i 0.730083 + 0.683359i \(0.239481\pi\)
−0.730083 + 0.683359i \(0.760519\pi\)
\(72\) 0 0
\(73\) 7.57155i 0.886183i 0.896476 + 0.443092i \(0.146118\pi\)
−0.896476 + 0.443092i \(0.853882\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.65209 + 6.32560i 0.416194 + 0.720869i
\(78\) 0 0
\(79\) 6.67133 11.5551i 0.750584 1.30005i −0.196956 0.980412i \(-0.563106\pi\)
0.947540 0.319637i \(-0.103561\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.92857 + 3.42286i 0.650745 + 0.375708i 0.788741 0.614725i \(-0.210733\pi\)
−0.137997 + 0.990433i \(0.544066\pi\)
\(84\) 0 0
\(85\) −0.599059 + 0.345867i −0.0649771 + 0.0375145i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.80570i 0.509403i 0.967020 + 0.254701i \(0.0819772\pi\)
−0.967020 + 0.254701i \(0.918023\pi\)
\(90\) 0 0
\(91\) −4.03548 + 3.21125i −0.423033 + 0.336630i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.394152 + 0.682691i 0.0404391 + 0.0700426i
\(96\) 0 0
\(97\) −1.15415 0.666350i −0.117186 0.0676576i 0.440261 0.897870i \(-0.354886\pi\)
−0.557447 + 0.830212i \(0.688219\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.10949 8.84989i 0.508413 0.880597i −0.491540 0.870855i \(-0.663566\pi\)
0.999953 0.00974180i \(-0.00310096\pi\)
\(102\) 0 0
\(103\) 9.07403 + 15.7167i 0.894091 + 1.54861i 0.834926 + 0.550362i \(0.185510\pi\)
0.0591648 + 0.998248i \(0.481156\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 17.2761 1.67014 0.835072 0.550140i \(-0.185426\pi\)
0.835072 + 0.550140i \(0.185426\pi\)
\(108\) 0 0
\(109\) 10.1231i 0.969618i −0.874620 0.484809i \(-0.838889\pi\)
0.874620 0.484809i \(-0.161111\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.85914 11.8804i −0.645253 1.11761i −0.984243 0.176821i \(-0.943418\pi\)
0.338990 0.940790i \(-0.389915\pi\)
\(114\) 0 0
\(115\) −0.0669644 0.0386619i −0.00624447 0.00360524i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.88356 + 3.97423i 0.631015 + 0.364317i
\(120\) 0 0
\(121\) 7.53828 + 13.0567i 0.685298 + 1.18697i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.24288i 0.111167i
\(126\) 0 0
\(127\) 13.3132 1.18136 0.590680 0.806906i \(-0.298860\pi\)
0.590680 + 0.806906i \(0.298860\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.984731 + 1.70560i 0.0860363 + 0.149019i 0.905832 0.423636i \(-0.139247\pi\)
−0.819796 + 0.572656i \(0.805913\pi\)
\(132\) 0 0
\(133\) 4.52905 7.84454i 0.392718 0.680208i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −14.0419 8.10710i −1.19968 0.692636i −0.239197 0.970971i \(-0.576884\pi\)
−0.960484 + 0.278335i \(0.910218\pi\)
\(138\) 0 0
\(139\) 8.10810 + 14.0436i 0.687720 + 1.19117i 0.972574 + 0.232595i \(0.0747218\pi\)
−0.284853 + 0.958571i \(0.591945\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −14.4070 + 11.4644i −1.20477 + 0.958704i
\(144\) 0 0
\(145\) 0.702651i 0.0583520i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.5377 8.97068i 1.27290 0.734907i 0.297364 0.954764i \(-0.403893\pi\)
0.975532 + 0.219857i \(0.0705592\pi\)
\(150\) 0 0
\(151\) 5.26643 + 3.04058i 0.428576 + 0.247439i 0.698740 0.715376i \(-0.253744\pi\)
−0.270164 + 0.962814i \(0.587078\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.00609741 + 0.0105610i −0.000489756 + 0.000848282i
\(156\) 0 0
\(157\) 4.96233 + 8.59500i 0.396037 + 0.685956i 0.993233 0.116140i \(-0.0370520\pi\)
−0.597196 + 0.802095i \(0.703719\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.888499i 0.0700235i
\(162\) 0 0
\(163\) 12.4422i 0.974545i 0.873250 + 0.487273i \(0.162008\pi\)
−0.873250 + 0.487273i \(0.837992\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 18.3062 10.5691i 1.41657 0.817859i 0.420578 0.907256i \(-0.361827\pi\)
0.995996 + 0.0893970i \(0.0284940\pi\)
\(168\) 0 0
\(169\) −9.51105 8.86228i −0.731619 0.681714i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.05528 + 7.02395i −0.308317 + 0.534021i −0.977994 0.208631i \(-0.933099\pi\)
0.669677 + 0.742652i \(0.266432\pi\)
\(174\) 0 0
\(175\) −6.17446 + 3.56482i −0.466745 + 0.269475i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.534744 −0.0399687 −0.0199843 0.999800i \(-0.506362\pi\)
−0.0199843 + 0.999800i \(0.506362\pi\)
\(180\) 0 0
\(181\) 3.02076 0.224531 0.112266 0.993678i \(-0.464189\pi\)
0.112266 + 0.993678i \(0.464189\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.136777 0.236904i −0.0100560 0.0174176i
\(186\) 0 0
\(187\) 24.5749 + 14.1883i 1.79710 + 1.03755i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.93227 + 3.34679i −0.139814 + 0.242165i −0.927426 0.374006i \(-0.877984\pi\)
0.787612 + 0.616171i \(0.211317\pi\)
\(192\) 0 0
\(193\) −17.1010 + 9.87328i −1.23096 + 0.710694i −0.967230 0.253903i \(-0.918286\pi\)
−0.263729 + 0.964597i \(0.584952\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.73846i 0.622589i −0.950313 0.311295i \(-0.899237\pi\)
0.950313 0.311295i \(-0.100763\pi\)
\(198\) 0 0
\(199\) −13.5343 −0.959423 −0.479712 0.877426i \(-0.659259\pi\)
−0.479712 + 0.877426i \(0.659259\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.99219 4.03694i 0.490756 0.283338i
\(204\) 0 0
\(205\) 0.277683 0.480961i 0.0193942 0.0335918i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 16.1691 28.0057i 1.11844 1.93719i
\(210\) 0 0
\(211\) −3.73277 6.46534i −0.256974 0.445092i 0.708456 0.705755i \(-0.249392\pi\)
−0.965430 + 0.260663i \(0.916059\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.837194i 0.0570961i
\(216\) 0 0
\(217\) 0.140126 0.00951237
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −7.33954 + 18.6431i −0.493711 + 1.25407i
\(222\) 0 0
\(223\) −10.8722 6.27709i −0.728059 0.420345i 0.0896528 0.995973i \(-0.471424\pi\)
−0.817712 + 0.575628i \(0.804758\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 11.2633 + 6.50285i 0.747569 + 0.431609i 0.824815 0.565403i \(-0.191279\pi\)
−0.0772456 + 0.997012i \(0.524613\pi\)
\(228\) 0 0
\(229\) −25.5552 + 14.7543i −1.68874 + 0.974992i −0.733248 + 0.679961i \(0.761997\pi\)
−0.955488 + 0.295031i \(0.904670\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.1835 −0.667145 −0.333573 0.942724i \(-0.608254\pi\)
−0.333573 + 0.942724i \(0.608254\pi\)
\(234\) 0 0
\(235\) −0.244184 −0.0159288
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −24.6974 + 14.2591i −1.59755 + 0.922343i −0.605587 + 0.795779i \(0.707061\pi\)
−0.991958 + 0.126564i \(0.959605\pi\)
\(240\) 0 0
\(241\) 23.4478 + 13.5376i 1.51040 + 0.872031i 0.999926 + 0.0121394i \(0.00386420\pi\)
0.510476 + 0.859892i \(0.329469\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.534066 + 0.308343i 0.0341202 + 0.0196993i
\(246\) 0 0
\(247\) 21.2458 + 8.36418i 1.35184 + 0.532200i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4.75511 −0.300140 −0.150070 0.988675i \(-0.547950\pi\)
−0.150070 + 0.988675i \(0.547950\pi\)
\(252\) 0 0
\(253\) 3.17202i 0.199423i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.31065 + 12.6624i 0.456026 + 0.789860i 0.998747 0.0500530i \(-0.0159390\pi\)
−0.542720 + 0.839913i \(0.682606\pi\)
\(258\) 0 0
\(259\) −1.57165 + 2.72218i −0.0976575 + 0.169148i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.59569 + 11.4241i −0.406708 + 0.704438i −0.994519 0.104560i \(-0.966657\pi\)
0.587811 + 0.808998i \(0.299990\pi\)
\(264\) 0 0
\(265\) −0.913579 + 0.527455i −0.0561207 + 0.0324013i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.7284 0.654124 0.327062 0.945003i \(-0.393941\pi\)
0.327062 + 0.945003i \(0.393941\pi\)
\(270\) 0 0
\(271\) 6.83605i 0.415261i 0.978207 + 0.207630i \(0.0665751\pi\)
−0.978207 + 0.207630i \(0.933425\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −22.0434 + 12.7267i −1.32926 + 0.767451i
\(276\) 0 0
\(277\) 16.1542 27.9798i 0.970609 1.68114i 0.276885 0.960903i \(-0.410698\pi\)
0.693724 0.720241i \(-0.255969\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −16.2814 9.40008i −0.971267 0.560761i −0.0716450 0.997430i \(-0.522825\pi\)
−0.899622 + 0.436669i \(0.856158\pi\)
\(282\) 0 0
\(283\) 0.598221 + 1.03615i 0.0355606 + 0.0615927i 0.883258 0.468887i \(-0.155345\pi\)
−0.847697 + 0.530480i \(0.822012\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.38149 −0.376688
\(288\) 0 0
\(289\) 13.8797 0.816451
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 23.9635 13.8353i 1.39996 0.808269i 0.405574 0.914062i \(-0.367071\pi\)
0.994388 + 0.105793i \(0.0337382\pi\)
\(294\) 0 0
\(295\) 0.398359 0.689977i 0.0231933 0.0401720i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.21500 + 0.331474i −0.128097 + 0.0191696i
\(300\) 0 0
\(301\) −8.33105 + 4.80994i −0.480194 + 0.277240i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.488231i 0.0279560i
\(306\) 0 0
\(307\) 9.49426i 0.541866i −0.962598 0.270933i \(-0.912668\pi\)
0.962598 0.270933i \(-0.0873322\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −10.7524 18.6237i −0.609713 1.05605i −0.991288 0.131716i \(-0.957951\pi\)
0.381574 0.924338i \(-0.375382\pi\)
\(312\) 0 0
\(313\) 3.05449 5.29053i 0.172650 0.299038i −0.766696 0.642011i \(-0.778100\pi\)
0.939345 + 0.342973i \(0.111434\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.09446 2.94129i −0.286133 0.165199i 0.350064 0.936726i \(-0.386160\pi\)
−0.636197 + 0.771527i \(0.719493\pi\)
\(318\) 0 0
\(319\) 24.9627 14.4122i 1.39765 0.806931i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 35.1906i 1.95806i
\(324\) 0 0
\(325\) −11.1905 14.0628i −0.620737 0.780062i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.40291 + 2.42992i 0.0773452 + 0.133966i
\(330\) 0 0
\(331\) 7.17112 + 4.14025i 0.394160 + 0.227568i 0.683961 0.729518i \(-0.260256\pi\)
−0.289801 + 0.957087i \(0.593589\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.756971 1.31111i 0.0413578 0.0716337i
\(336\) 0 0
\(337\) −9.29585 16.1009i −0.506377 0.877071i −0.999973 0.00737973i \(-0.997651\pi\)
0.493595 0.869692i \(-0.335682\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.500262 0.0270907
\(342\) 0 0
\(343\) 17.0986i 0.923240i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.79875 6.57964i −0.203928 0.353213i 0.745863 0.666100i \(-0.232037\pi\)
−0.949791 + 0.312886i \(0.898704\pi\)
\(348\) 0 0
\(349\) −13.5732 7.83649i −0.726556 0.419478i 0.0906046 0.995887i \(-0.471120\pi\)
−0.817161 + 0.576409i \(0.804453\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 19.5570 + 11.2912i 1.04091 + 0.600972i 0.920092 0.391702i \(-0.128114\pi\)
0.120822 + 0.992674i \(0.461447\pi\)
\(354\) 0 0
\(355\) −0.716772 1.24148i −0.0380423 0.0658912i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.73683i 0.0916662i 0.998949 + 0.0458331i \(0.0145942\pi\)
−0.998949 + 0.0458331i \(0.985406\pi\)
\(360\) 0 0
\(361\) −21.1034 −1.11071
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.471257 0.816241i −0.0246667 0.0427240i
\(366\) 0 0
\(367\) −2.67182 + 4.62772i −0.139468 + 0.241565i −0.927295 0.374331i \(-0.877872\pi\)
0.787828 + 0.615896i \(0.211206\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 10.4976 + 6.06078i 0.545007 + 0.314660i
\(372\) 0 0
\(373\) 3.74634 + 6.48885i 0.193978 + 0.335980i 0.946565 0.322513i \(-0.104528\pi\)
−0.752587 + 0.658493i \(0.771194\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.6725 + 15.9252i 0.652669 + 0.820190i
\(378\) 0 0
\(379\) 4.96945i 0.255263i 0.991822 + 0.127632i \(0.0407375\pi\)
−0.991822 + 0.127632i \(0.959262\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −13.3855 + 7.72812i −0.683967 + 0.394889i −0.801348 0.598198i \(-0.795883\pi\)
0.117381 + 0.993087i \(0.462550\pi\)
\(384\) 0 0
\(385\) −0.787417 0.454615i −0.0401305 0.0231693i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0.0196973 0.0341167i 0.000998691 0.00172978i −0.865526 0.500865i \(-0.833015\pi\)
0.866524 + 0.499135i \(0.166349\pi\)
\(390\) 0 0
\(391\) 1.72591 + 2.98936i 0.0872828 + 0.151178i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.66091i 0.0835694i
\(396\) 0 0
\(397\) 28.3519i 1.42294i −0.702716 0.711470i \(-0.748030\pi\)
0.702716 0.711470i \(-0.251970\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 21.5623 12.4490i 1.07677 0.621673i 0.146746 0.989174i \(-0.453120\pi\)
0.930023 + 0.367501i \(0.119787\pi\)
\(402\) 0 0
\(403\) 0.0522771 + 0.349329i 0.00260411 + 0.0174013i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.61093 + 9.71841i −0.278123 + 0.481724i
\(408\) 0 0
\(409\) 13.6728 7.89398i 0.676075 0.390332i −0.122299 0.992493i \(-0.539027\pi\)
0.798375 + 0.602161i \(0.205693\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −9.15477 −0.450477
\(414\) 0 0
\(415\) −0.852161 −0.0418310
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4.12759 7.14919i −0.201646 0.349261i 0.747413 0.664360i \(-0.231296\pi\)
−0.949059 + 0.315099i \(0.897962\pi\)
\(420\) 0 0
\(421\) −12.5328 7.23583i −0.610812 0.352653i 0.162471 0.986713i \(-0.448054\pi\)
−0.773283 + 0.634061i \(0.781387\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −13.8493 + 23.9877i −0.671790 + 1.16358i
\(426\) 0 0
\(427\) 4.85847 2.80504i 0.235118 0.135745i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 17.9574i 0.864978i 0.901639 + 0.432489i \(0.142365\pi\)
−0.901639 + 0.432489i \(0.857635\pi\)
\(432\) 0 0
\(433\) −24.5493 −1.17976 −0.589882 0.807489i \(-0.700826\pi\)
−0.589882 + 0.807489i \(0.700826\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.40669 1.96685i 0.162964 0.0940872i
\(438\) 0 0
\(439\) −8.39074 + 14.5332i −0.400468 + 0.693631i −0.993782 0.111340i \(-0.964486\pi\)
0.593314 + 0.804971i \(0.297819\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.10192 + 8.83678i −0.242399 + 0.419848i −0.961397 0.275164i \(-0.911268\pi\)
0.718998 + 0.695012i \(0.244601\pi\)
\(444\) 0 0
\(445\) −0.299109 0.518072i −0.0141791 0.0245590i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.90395i 0.137046i −0.997650 0.0685230i \(-0.978171\pi\)
0.997650 0.0685230i \(-0.0218287\pi\)
\(450\) 0 0
\(451\) −22.7825 −1.07279
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.235170 0.597354i 0.0110249 0.0280044i
\(456\) 0 0
\(457\) −7.21692 4.16669i −0.337593 0.194910i 0.321614 0.946871i \(-0.395775\pi\)
−0.659207 + 0.751961i \(0.729108\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −25.8461 14.9223i −1.20377 0.695000i −0.242382 0.970181i \(-0.577929\pi\)
−0.961392 + 0.275181i \(0.911262\pi\)
\(462\) 0 0
\(463\) −29.0805 + 16.7896i −1.35149 + 0.780280i −0.988458 0.151498i \(-0.951590\pi\)
−0.363028 + 0.931778i \(0.618257\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7.04842 0.326162 0.163081 0.986613i \(-0.447857\pi\)
0.163081 + 0.986613i \(0.447857\pi\)
\(468\) 0 0
\(469\) −17.3961 −0.803279
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −29.7426 + 17.1719i −1.36757 + 0.789565i
\(474\) 0 0
\(475\) 27.3365 + 15.7827i 1.25429 + 0.724162i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 28.3125 + 16.3462i 1.29363 + 0.746879i 0.979296 0.202433i \(-0.0648847\pi\)
0.314336 + 0.949312i \(0.398218\pi\)
\(480\) 0 0
\(481\) −7.37263 2.90250i −0.336163 0.132343i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.165896 0.00753294
\(486\) 0 0
\(487\) 4.64327i 0.210407i −0.994451 0.105203i \(-0.966451\pi\)
0.994451 0.105203i \(-0.0335493\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.11404 + 1.92957i 0.0502758 + 0.0870803i 0.890068 0.455828i \(-0.150657\pi\)
−0.839792 + 0.542908i \(0.817323\pi\)
\(492\) 0 0
\(493\) 15.6835 27.1646i 0.706349 1.22343i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −8.23615 + 14.2654i −0.369442 + 0.639892i
\(498\) 0 0
\(499\) 6.18239 3.56940i 0.276762 0.159788i −0.355195 0.934792i \(-0.615585\pi\)
0.631957 + 0.775004i \(0.282252\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 40.5832 1.80952 0.904759 0.425924i \(-0.140051\pi\)
0.904759 + 0.425924i \(0.140051\pi\)
\(504\) 0 0
\(505\) 1.27207i 0.0566063i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.9806 8.64905i 0.664003 0.383362i −0.129797 0.991541i \(-0.541433\pi\)
0.793801 + 0.608178i \(0.208099\pi\)
\(510\) 0 0
\(511\) −5.41503 + 9.37911i −0.239547 + 0.414908i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1.95643 1.12954i −0.0862105 0.0497736i
\(516\) 0 0
\(517\) 5.00853 + 8.67503i 0.220275 + 0.381527i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −40.2648 −1.76403 −0.882017 0.471217i \(-0.843815\pi\)
−0.882017 + 0.471217i \(0.843815\pi\)
\(522\) 0 0
\(523\) −37.6724 −1.64730 −0.823649 0.567100i \(-0.808065\pi\)
−0.823649 + 0.567100i \(0.808065\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.471454 0.272194i 0.0205369 0.0118570i
\(528\) 0 0
\(529\) 11.3071 19.5844i 0.491612 0.851497i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.38076 15.9088i −0.103122 0.689088i
\(534\) 0 0
\(535\) −1.86243 + 1.07527i −0.0805198 + 0.0464881i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 25.2980i 1.08966i
\(540\) 0 0
\(541\) 20.8974i 0.898451i −0.893418 0.449226i \(-0.851700\pi\)
0.893418 0.449226i \(-0.148300\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.630067 + 1.09131i 0.0269891 + 0.0467465i
\(546\) 0 0
\(547\) 7.35397 12.7375i 0.314433 0.544614i −0.664884 0.746947i \(-0.731519\pi\)
0.979317 + 0.202333i \(0.0648523\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −30.9569 17.8730i −1.31881 0.761415i
\(552\) 0 0
\(553\) 16.5280 9.54243i 0.702841 0.405785i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 29.5223i 1.25090i −0.780265 0.625450i \(-0.784916\pi\)
0.780265 0.625450i \(-0.215084\pi\)
\(558\) 0 0
\(559\) −15.0991 18.9746i −0.638623 0.802539i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −15.9484 27.6234i −0.672144 1.16419i −0.977295 0.211884i \(-0.932040\pi\)
0.305151 0.952304i \(-0.401293\pi\)
\(564\) 0 0
\(565\) 1.47888 + 0.853832i 0.0622170 + 0.0359210i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 12.5077 21.6640i 0.524351 0.908202i −0.475247 0.879852i \(-0.657641\pi\)
0.999598 0.0283499i \(-0.00902527\pi\)
\(570\) 0 0
\(571\) −3.27326 5.66946i −0.136982 0.237259i 0.789371 0.613916i \(-0.210407\pi\)
−0.926353 + 0.376657i \(0.877074\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −3.09623 −0.129122
\(576\) 0 0
\(577\) 6.43675i 0.267965i 0.990984 + 0.133983i \(0.0427767\pi\)
−0.990984 + 0.133983i \(0.957223\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.89593 + 8.48000i 0.203117 + 0.351810i
\(582\) 0 0
\(583\) 37.4773 + 21.6375i 1.55215 + 0.896135i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −16.5761 9.57022i −0.684169 0.395005i 0.117255 0.993102i \(-0.462591\pi\)
−0.801424 + 0.598097i \(0.795924\pi\)
\(588\) 0 0
\(589\) −0.310194 0.537271i −0.0127813 0.0221379i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 16.3476i 0.671315i 0.941984 + 0.335658i \(0.108959\pi\)
−0.941984 + 0.335658i \(0.891041\pi\)
\(594\) 0 0
\(595\) −0.989431 −0.0405627
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 13.2978 + 23.0325i 0.543334 + 0.941081i 0.998710 + 0.0507823i \(0.0161715\pi\)
−0.455376 + 0.890299i \(0.650495\pi\)
\(600\) 0 0
\(601\) −17.1713 + 29.7415i −0.700431 + 1.21318i 0.267885 + 0.963451i \(0.413675\pi\)
−0.968315 + 0.249731i \(0.919658\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.62531 0.938372i −0.0660782 0.0381503i
\(606\) 0 0
\(607\) −9.09912 15.7601i −0.369322 0.639685i 0.620138 0.784493i \(-0.287077\pi\)
−0.989460 + 0.144808i \(0.953743\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.53432 + 4.40395i −0.223894 + 0.178165i
\(612\) 0 0
\(613\) 29.1208i 1.17618i −0.808797 0.588088i \(-0.799881\pi\)
0.808797 0.588088i \(-0.200119\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.73626 5.04388i 0.351708 0.203059i −0.313729 0.949513i \(-0.601578\pi\)
0.665437 + 0.746454i \(0.268245\pi\)
\(618\) 0 0
\(619\) −8.17164 4.71790i −0.328446 0.189628i 0.326705 0.945126i \(-0.394062\pi\)
−0.655151 + 0.755498i \(0.727395\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.43694 + 5.95296i −0.137698 + 0.238500i
\(624\) 0 0
\(625\) −12.3839 21.4496i −0.495356 0.857982i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 12.2117i 0.486912i
\(630\) 0 0
\(631\) 45.1898i 1.79898i −0.436943 0.899489i \(-0.643939\pi\)
0.436943 0.899489i \(-0.356061\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1.43522 + 0.828622i −0.0569548 + 0.0328829i
\(636\) 0 0
\(637\) 17.6654 2.64363i 0.699929 0.104744i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6.52825 11.3073i 0.257850 0.446610i −0.707816 0.706397i \(-0.750319\pi\)
0.965666 + 0.259788i \(0.0836525\pi\)
\(642\) 0 0
\(643\) 4.07575 2.35313i 0.160732 0.0927985i −0.417477 0.908688i \(-0.637085\pi\)
0.578208 + 0.815889i \(0.303752\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −42.6817 −1.67799 −0.838995 0.544140i \(-0.816856\pi\)
−0.838995 + 0.544140i \(0.816856\pi\)
\(648\) 0 0
\(649\) −32.6833 −1.28293
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −6.78464 11.7513i −0.265504 0.459866i 0.702192 0.711988i \(-0.252205\pi\)
−0.967695 + 0.252122i \(0.918872\pi\)
\(654\) 0 0
\(655\) −0.212315 0.122580i −0.00829584 0.00478961i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 4.13615 7.16402i 0.161121 0.279071i −0.774150 0.633003i \(-0.781822\pi\)
0.935271 + 0.353932i \(0.115156\pi\)
\(660\) 0 0
\(661\) 14.8793 8.59059i 0.578739 0.334135i −0.181893 0.983318i \(-0.558222\pi\)
0.760632 + 0.649183i \(0.224889\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.12756i 0.0437249i
\(666\) 0 0
\(667\) 3.50629 0.135764
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 17.3452 10.0142i 0.669602 0.386595i
\(672\) 0 0
\(673\) 0.105568 0.182849i 0.00406933 0.00704829i −0.863984 0.503520i \(-0.832038\pi\)
0.868053 + 0.496472i \(0.165371\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −15.2201 + 26.3619i −0.584954 + 1.01317i 0.409927 + 0.912118i \(0.365554\pi\)
−0.994881 + 0.101052i \(0.967779\pi\)
\(678\) 0 0
\(679\) −0.953122 1.65086i −0.0365775 0.0633540i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 39.1443i 1.49782i −0.662674 0.748908i \(-0.730579\pi\)
0.662674 0.748908i \(-0.269421\pi\)
\(684\) 0 0
\(685\) 2.01836 0.0771175
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −11.1930 + 28.4312i −0.426418 + 1.08314i
\(690\) 0 0
\(691\) −31.8371 18.3811i −1.21114 0.699251i −0.248131 0.968726i \(-0.579816\pi\)
−0.963007 + 0.269475i \(0.913150\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.74817 1.00930i −0.0663117 0.0382851i
\(696\) 0 0
\(697\) −21.4705 + 12.3960i −0.813255 + 0.469533i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 10.4630 0.395184 0.197592 0.980284i \(-0.436688\pi\)
0.197592 + 0.980284i \(0.436688\pi\)
\(702\) 0 0
\(703\) 13.9165 0.524871
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 12.6586 7.30842i 0.476074 0.274861i
\(708\) 0 0
\(709\) 24.0129 + 13.8638i 0.901822 + 0.520667i 0.877791 0.479044i \(-0.159017\pi\)
0.0240312 + 0.999711i \(0.492350\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.0527004 + 0.0304266i 0.00197365 + 0.00113948i
\(714\) 0 0
\(715\) 0.839577 2.13261i 0.0313984 0.0797550i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −3.34049 −0.124579 −0.0622896 0.998058i \(-0.519840\pi\)
−0.0622896 + 0.998058i \(0.519840\pi\)
\(720\) 0 0
\(721\) 25.9583i 0.966738i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 14.0679 + 24.3663i 0.522468 + 0.904941i
\(726\) 0 0
\(727\) 21.3278 36.9409i 0.791005 1.37006i −0.134340 0.990935i \(-0.542891\pi\)
0.925345 0.379126i \(-0.123775\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −18.6866 + 32.3661i −0.691148 + 1.19710i
\(732\) 0 0
\(733\) 35.9640 20.7638i 1.32836 0.766929i 0.343315 0.939220i \(-0.388450\pi\)
0.985046 + 0.172291i \(0.0551169\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −62.1057 −2.28769
\(738\) 0 0
\(739\) 16.5772i 0.609802i 0.952384 + 0.304901i \(0.0986234\pi\)
−0.952384 + 0.304901i \(0.901377\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −7.42474 + 4.28667i −0.272387 + 0.157263i −0.629972 0.776618i \(-0.716934\pi\)
0.357585 + 0.933881i \(0.383600\pi\)
\(744\) 0 0
\(745\) −1.11668 + 1.93414i −0.0409119 + 0.0708616i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 21.4004 + 12.3556i 0.781955 + 0.451462i
\(750\) 0 0
\(751\) −6.05873 10.4940i −0.221086 0.382932i 0.734052 0.679093i \(-0.237627\pi\)
−0.955138 + 0.296161i \(0.904294\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −0.756988 −0.0275496
\(756\) 0 0
\(757\) 38.6116 1.40336 0.701682 0.712490i \(-0.252433\pi\)
0.701682 + 0.712490i \(0.252433\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0.678687 0.391840i 0.0246024 0.0142042i −0.487648 0.873040i \(-0.662145\pi\)
0.512251 + 0.858836i \(0.328812\pi\)
\(762\) 0 0
\(763\) 7.23986 12.5398i 0.262101 0.453971i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.41539 22.8225i −0.123323 0.824074i
\(768\) 0 0
\(769\) −31.7357 + 18.3226i −1.14442 + 0.660730i −0.947521 0.319694i \(-0.896420\pi\)
−0.196897 + 0.980424i \(0.563087\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 2.36509i 0.0850664i −0.999095 0.0425332i \(-0.986457\pi\)
0.999095 0.0425332i \(-0.0135428\pi\)
\(774\) 0 0
\(775\) 0.488309i 0.0175406i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14.1266 + 24.4679i 0.506137 + 0.876655i
\(780\) 0 0
\(781\) −29.4038 + 50.9288i −1.05215 + 1.82238i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.06991 0.617715i −0.0381869 0.0220472i
\(786\) 0 0
\(787\) 12.5486 7.24495i 0.447310 0.258254i −0.259384 0.965774i \(-0.583519\pi\)
0.706693 + 0.707520i \(0.250186\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 19.6221i 0.697682i
\(792\) 0 0
\(793\) 8.80542 + 11.0655i 0.312690 + 0.392948i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 7.62409 + 13.2053i 0.270059 + 0.467756i 0.968877 0.247544i \(-0.0796234\pi\)
−0.698818 + 0.715300i \(0.746290\pi\)
\(798\) 0 0
\(799\) 9.44022 + 5.45031i 0.333971 + 0.192818i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −19.3322 + 33.4843i −0.682217 + 1.18163i
\(804\) 0 0
\(805\) −0.0553006 0.0957834i −0.00194909 0.00337592i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −37.0260 −1.30176 −0.650882 0.759179i \(-0.725601\pi\)
−0.650882 + 0.759179i \(0.725601\pi\)
\(810\) 0 0
\(811\) 26.4852i 0.930020i −0.885305 0.465010i \(-0.846051\pi\)
0.885305 0.465010i \(-0.153949\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −0.774406 1.34131i −0.0271263 0.0469841i
\(816\) 0 0
\(817\) 36.8845 + 21.2953i 1.29043 + 0.745028i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −30.2740 17.4787i −1.05657 0.610011i −0.132089 0.991238i \(-0.542168\pi\)
−0.924482 + 0.381227i \(0.875502\pi\)
\(822\) 0 0
\(823\) −13.4726 23.3352i −0.469625 0.813415i 0.529771 0.848140i \(-0.322278\pi\)
−0.999397 + 0.0347253i \(0.988944\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 23.2041i 0.806886i 0.915005 + 0.403443i \(0.132187\pi\)
−0.915005 + 0.403443i \(0.867813\pi\)
\(828\) 0 0
\(829\) −3.87791 −0.134685 −0.0673427 0.997730i \(-0.521452\pi\)
−0.0673427 + 0.997730i \(0.521452\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −13.7647 23.8412i −0.476920 0.826049i
\(834\) 0 0
\(835\) −1.31565 + 2.27877i −0.0455299 + 0.0788601i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 9.33328 + 5.38857i 0.322221 + 0.186034i 0.652382 0.757890i \(-0.273770\pi\)
−0.330161 + 0.943925i \(0.607103\pi\)
\(840\) 0 0
\(841\) −1.43100 2.47856i −0.0493448 0.0854677i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.57692 + 0.363414i 0.0542476 + 0.0125018i
\(846\) 0 0
\(847\) 21.5649i 0.740980i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −1.18217 + 0.682528i −0.0405244 + 0.0233967i
\(852\) 0 0
\(853\) −31.4188 18.1397i −1.07576 0.621090i −0.146011 0.989283i \(-0.546643\pi\)
−0.929750 + 0.368193i \(0.879977\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 15.2301 26.3794i 0.520252 0.901102i −0.479471 0.877558i \(-0.659171\pi\)
0.999723 0.0235447i \(-0.00749522\pi\)
\(858\) 0 0
\(859\) 21.1701 + 36.6676i 0.722313 + 1.25108i 0.960070 + 0.279759i \(0.0902544\pi\)
−0.237757 + 0.971325i \(0.576412\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.175513i 0.00597452i 0.999996 + 0.00298726i \(0.000950876\pi\)
−0.999996 + 0.00298726i \(0.999049\pi\)
\(864\) 0 0
\(865\) 1.00961i 0.0343278i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 59.0063 34.0673i 2.00165 1.15565i
\(870\) 0 0
\(871\) −6.49001 43.3679i −0.219905 1.46947i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.888885 1.53959i 0.0300498 0.0520478i
\(876\) 0 0
\(877\) 42.9232 24.7817i 1.44941 0.836818i 0.450966 0.892541i \(-0.351080\pi\)
0.998446 + 0.0557229i \(0.0177464\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −9.81413 −0.330646 −0.165323 0.986239i \(-0.552867\pi\)
−0.165323 + 0.986239i \(0.552867\pi\)
\(882\) 0 0
\(883\) −6.16031 −0.207311 −0.103656 0.994613i \(-0.533054\pi\)
−0.103656 + 0.994613i \(0.533054\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −17.2629 29.9002i −0.579632 1.00395i −0.995521 0.0945365i \(-0.969863\pi\)
0.415890 0.909415i \(-0.363470\pi\)
\(888\) 0 0
\(889\) 16.4915 + 9.52138i 0.553108 + 0.319337i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.21120 10.7581i 0.207850 0.360007i
\(894\) 0 0
\(895\) 0.0576474 0.0332827i 0.00192694 0.00111252i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.552979i 0.0184429i
\(900\) 0 0
\(901\) 47.0922 1.56887
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −0.325649 + 0.188014i −0.0108249 + 0.00624978i
\(906\) 0 0
\(907\) 21.8265 37.8046i 0.724737 1.25528i −0.234345 0.972153i \(-0.575295\pi\)
0.959082 0.283128i \(-0.0913721\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −8.70581 + 15.0789i −0.288436 + 0.499587i −0.973437 0.228956i \(-0.926469\pi\)
0.685000 + 0.728543i \(0.259802\pi\)
\(912\) 0 0
\(913\) 17.4789 + 30.2743i 0.578467 + 1.00193i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.81704i 0.0930270i
\(918\) 0 0
\(919\) −1.83009 −0.0603692 −0.0301846 0.999544i \(-0.509610\pi\)
−0.0301846 + 0.999544i \(0.509610\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −38.6359 15.2104i −1.27172 0.500656i
\(924\) 0 0
\(925\) −9.48620 5.47686i −0.311904 0.180078i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −19.9913 11.5420i −0.655892 0.378680i 0.134818 0.990870i \(-0.456955\pi\)
−0.790710 + 0.612191i \(0.790288\pi\)
\(930\) 0 0
\(931\) −27.1696 + 15.6864i −0.890447 + 0.514100i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −3.53235 −0.115520
\(936\) 0 0
\(937\) −35.5716 −1.16207 −0.581036 0.813878i \(-0.697353\pi\)
−0.581036 + 0.813878i \(0.697353\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 12.0588 6.96215i 0.393106 0.226960i −0.290399 0.956906i \(-0.593788\pi\)
0.683505 + 0.729946i \(0.260455\pi\)
\(942\) 0 0
\(943\) −2.40003 1.38566i −0.0781559 0.0451233i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −31.0660 17.9360i −1.00951 0.582841i −0.0984625 0.995141i \(-0.531392\pi\)
−0.911048 + 0.412299i \(0.864726\pi\)
\(948\) 0 0
\(949\) −25.4020 10.0004i −0.824584 0.324627i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 10.2863 0.333205 0.166602 0.986024i \(-0.446720\pi\)
0.166602 + 0.986024i \(0.446720\pi\)
\(954\) 0 0
\(955\) 0.481061i 0.0155668i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −11.5961 20.0850i −0.374457 0.648579i
\(960\) 0 0
\(961\) −15.4952 + 26.8385i −0.499845 + 0.865757i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.22904 2.12875i 0.0395640 0.0685269i
\(966\) 0 0
\(967\) −39.4742 + 22.7905i −1.26941 + 0.732892i −0.974876 0.222750i \(-0.928497\pi\)
−0.294530 + 0.955642i \(0.595163\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 48.0053 1.54056 0.770281 0.637704i \(-0.220116\pi\)
0.770281 + 0.637704i \(0.220116\pi\)
\(972\) 0 0
\(973\) 23.1951i 0.743599i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −42.7507 + 24.6821i −1.36772 + 0.789652i −0.990636 0.136529i \(-0.956405\pi\)
−0.377081 + 0.926180i \(0.623072\pi\)
\(978\) 0 0
\(979\) −12.2702 + 21.2526i −0.392157 + 0.679236i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 19.8114 + 11.4381i 0.631885 + 0.364819i 0.781482 0.623928i \(-0.214464\pi\)
−0.149597 + 0.988747i \(0.547798\pi\)
\(984\) 0 0
\(985\) 0.543886 + 0.942038i 0.0173296 + 0.0300158i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4.17767 −0.132842
\(990\) 0 0
\(991\) −18.5403 −0.588951 −0.294475 0.955659i \(-0.595145\pi\)
−0.294475 + 0.955659i \(0.595145\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.45905 0.842383i 0.0462550 0.0267053i
\(996\) 0 0
\(997\) −10.0331 + 17.3779i −0.317753 + 0.550364i −0.980019 0.198905i \(-0.936261\pi\)
0.662266 + 0.749269i \(0.269595\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2808.2.cw.b.1585.19 80
3.2 odd 2 936.2.cw.b.25.20 yes 80
9.4 even 3 inner 2808.2.cw.b.2521.22 80
9.5 odd 6 936.2.cw.b.337.19 yes 80
13.12 even 2 inner 2808.2.cw.b.1585.22 80
39.38 odd 2 936.2.cw.b.25.19 80
117.77 odd 6 936.2.cw.b.337.20 yes 80
117.103 even 6 inner 2808.2.cw.b.2521.19 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.cw.b.25.19 80 39.38 odd 2
936.2.cw.b.25.20 yes 80 3.2 odd 2
936.2.cw.b.337.19 yes 80 9.5 odd 6
936.2.cw.b.337.20 yes 80 117.77 odd 6
2808.2.cw.b.1585.19 80 1.1 even 1 trivial
2808.2.cw.b.1585.22 80 13.12 even 2 inner
2808.2.cw.b.2521.19 80 117.103 even 6 inner
2808.2.cw.b.2521.22 80 9.4 even 3 inner