Properties

Label 2808.2.cw.b.1585.17
Level $2808$
Weight $2$
Character 2808.1585
Analytic conductor $22.422$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2808,2,Mod(1585,2808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2808.1585"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2808.cw (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4219928876\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 936)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1585.17
Character \(\chi\) \(=\) 2808.1585
Dual form 2808.2.cw.b.2521.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.834885 + 0.482021i) q^{5} +(-2.67273 - 1.54310i) q^{7} +(-1.06132 - 0.612753i) q^{11} +(1.52066 - 3.26919i) q^{13} +0.546948 q^{17} -1.79737i q^{19} +(2.77669 + 4.80937i) q^{23} +(-2.03531 + 3.52526i) q^{25} +(2.22766 - 3.85842i) q^{29} +(-5.62571 + 3.24801i) q^{31} +2.97523 q^{35} -10.3326i q^{37} +(-2.93292 + 1.69332i) q^{41} +(-4.61987 + 8.00186i) q^{43} +(3.04696 + 1.75916i) q^{47} +(1.26233 + 2.18641i) q^{49} +11.1466 q^{53} +1.18144 q^{55} +(0.294462 - 0.170008i) q^{59} +(-7.25146 + 12.5599i) q^{61} +(0.306243 + 3.46239i) q^{65} +(-5.17608 + 2.98841i) q^{67} +15.2061i q^{71} -0.591132i q^{73} +(1.89108 + 3.27545i) q^{77} +(-1.55716 + 2.69709i) q^{79} +(-4.02026 - 2.32110i) q^{83} +(-0.456638 + 0.263640i) q^{85} +7.95888i q^{89} +(-9.10900 + 6.39113i) q^{91} +(0.866370 + 1.50060i) q^{95} +(-9.64696 - 5.56967i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 6 q^{13} + 4 q^{17} - 10 q^{23} + 44 q^{25} + 52 q^{35} - 26 q^{43} + 48 q^{49} - 60 q^{53} - 16 q^{55} - 10 q^{61} + 26 q^{65} - 32 q^{77} + 6 q^{79} - 4 q^{91} - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2808\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(1081\) \(1405\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.834885 + 0.482021i −0.373372 + 0.215566i −0.674931 0.737881i \(-0.735826\pi\)
0.301559 + 0.953448i \(0.402493\pi\)
\(6\) 0 0
\(7\) −2.67273 1.54310i −1.01020 0.583238i −0.0989479 0.995093i \(-0.531548\pi\)
−0.911249 + 0.411855i \(0.864881\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.06132 0.612753i −0.320000 0.184752i 0.331393 0.943493i \(-0.392481\pi\)
−0.651392 + 0.758741i \(0.725815\pi\)
\(12\) 0 0
\(13\) 1.52066 3.26919i 0.421755 0.906710i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.546948 0.132654 0.0663272 0.997798i \(-0.478872\pi\)
0.0663272 + 0.997798i \(0.478872\pi\)
\(18\) 0 0
\(19\) 1.79737i 0.412345i −0.978516 0.206173i \(-0.933899\pi\)
0.978516 0.206173i \(-0.0661008\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.77669 + 4.80937i 0.578980 + 1.00282i 0.995597 + 0.0937399i \(0.0298822\pi\)
−0.416617 + 0.909082i \(0.636784\pi\)
\(24\) 0 0
\(25\) −2.03531 + 3.52526i −0.407062 + 0.705053i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.22766 3.85842i 0.413666 0.716490i −0.581621 0.813460i \(-0.697581\pi\)
0.995287 + 0.0969692i \(0.0309148\pi\)
\(30\) 0 0
\(31\) −5.62571 + 3.24801i −1.01041 + 0.583359i −0.911311 0.411719i \(-0.864929\pi\)
−0.0990968 + 0.995078i \(0.531595\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.97523 0.502906
\(36\) 0 0
\(37\) 10.3326i 1.69867i −0.527852 0.849336i \(-0.677003\pi\)
0.527852 0.849336i \(-0.322997\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.93292 + 1.69332i −0.458045 + 0.264452i −0.711222 0.702968i \(-0.751858\pi\)
0.253177 + 0.967420i \(0.418524\pi\)
\(42\) 0 0
\(43\) −4.61987 + 8.00186i −0.704524 + 1.22027i 0.262339 + 0.964976i \(0.415506\pi\)
−0.966863 + 0.255296i \(0.917827\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.04696 + 1.75916i 0.444444 + 0.256600i 0.705481 0.708729i \(-0.250731\pi\)
−0.261037 + 0.965329i \(0.584064\pi\)
\(48\) 0 0
\(49\) 1.26233 + 2.18641i 0.180332 + 0.312345i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.1466 1.53111 0.765553 0.643372i \(-0.222465\pi\)
0.765553 + 0.643372i \(0.222465\pi\)
\(54\) 0 0
\(55\) 1.18144 0.159305
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.294462 0.170008i 0.0383357 0.0221331i −0.480710 0.876880i \(-0.659621\pi\)
0.519045 + 0.854747i \(0.326288\pi\)
\(60\) 0 0
\(61\) −7.25146 + 12.5599i −0.928455 + 1.60813i −0.142546 + 0.989788i \(0.545529\pi\)
−0.785908 + 0.618343i \(0.787804\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.306243 + 3.46239i 0.0379848 + 0.429456i
\(66\) 0 0
\(67\) −5.17608 + 2.98841i −0.632359 + 0.365093i −0.781665 0.623698i \(-0.785629\pi\)
0.149306 + 0.988791i \(0.452296\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 15.2061i 1.80463i 0.431075 + 0.902316i \(0.358134\pi\)
−0.431075 + 0.902316i \(0.641866\pi\)
\(72\) 0 0
\(73\) 0.591132i 0.0691867i −0.999401 0.0345934i \(-0.988986\pi\)
0.999401 0.0345934i \(-0.0110136\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.89108 + 3.27545i 0.215509 + 0.373272i
\(78\) 0 0
\(79\) −1.55716 + 2.69709i −0.175195 + 0.303446i −0.940229 0.340544i \(-0.889389\pi\)
0.765034 + 0.643990i \(0.222722\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.02026 2.32110i −0.441281 0.254773i 0.262860 0.964834i \(-0.415334\pi\)
−0.704141 + 0.710060i \(0.748668\pi\)
\(84\) 0 0
\(85\) −0.456638 + 0.263640i −0.0495294 + 0.0285958i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.95888i 0.843640i 0.906680 + 0.421820i \(0.138609\pi\)
−0.906680 + 0.421820i \(0.861391\pi\)
\(90\) 0 0
\(91\) −9.10900 + 6.39113i −0.954883 + 0.669973i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.866370 + 1.50060i 0.0888877 + 0.153958i
\(96\) 0 0
\(97\) −9.64696 5.56967i −0.979500 0.565515i −0.0773809 0.997002i \(-0.524656\pi\)
−0.902119 + 0.431487i \(0.857989\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.48042 + 9.49236i −0.545322 + 0.944525i 0.453265 + 0.891376i \(0.350259\pi\)
−0.998587 + 0.0531491i \(0.983074\pi\)
\(102\) 0 0
\(103\) −3.32275 5.75517i −0.327400 0.567073i 0.654595 0.755980i \(-0.272839\pi\)
−0.981995 + 0.188906i \(0.939506\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.27194 −0.606331 −0.303165 0.952938i \(-0.598043\pi\)
−0.303165 + 0.952938i \(0.598043\pi\)
\(108\) 0 0
\(109\) 5.56780i 0.533298i 0.963794 + 0.266649i \(0.0859165\pi\)
−0.963794 + 0.266649i \(0.914084\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.49977 + 6.06178i 0.329231 + 0.570244i 0.982359 0.187003i \(-0.0598773\pi\)
−0.653129 + 0.757247i \(0.726544\pi\)
\(114\) 0 0
\(115\) −4.63643 2.67684i −0.432349 0.249617i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.46184 0.843996i −0.134007 0.0773690i
\(120\) 0 0
\(121\) −4.74907 8.22563i −0.431733 0.747784i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.74446i 0.782128i
\(126\) 0 0
\(127\) −3.82713 −0.339603 −0.169801 0.985478i \(-0.554313\pi\)
−0.169801 + 0.985478i \(0.554313\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4.76389 + 8.25130i 0.416223 + 0.720920i 0.995556 0.0941713i \(-0.0300201\pi\)
−0.579333 + 0.815091i \(0.696687\pi\)
\(132\) 0 0
\(133\) −2.77353 + 4.80389i −0.240495 + 0.416550i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.0185 5.78417i −0.855937 0.494175i 0.00671288 0.999977i \(-0.497863\pi\)
−0.862649 + 0.505802i \(0.831197\pi\)
\(138\) 0 0
\(139\) 3.61971 + 6.26953i 0.307020 + 0.531774i 0.977709 0.209964i \(-0.0673348\pi\)
−0.670689 + 0.741739i \(0.734001\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.61711 + 2.53786i −0.302478 + 0.212227i
\(144\) 0 0
\(145\) 4.29511i 0.356690i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.96224 1.13290i 0.160753 0.0928108i −0.417465 0.908693i \(-0.637081\pi\)
0.578218 + 0.815882i \(0.303748\pi\)
\(150\) 0 0
\(151\) 3.02877 + 1.74866i 0.246478 + 0.142304i 0.618151 0.786060i \(-0.287882\pi\)
−0.371672 + 0.928364i \(0.621216\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.13122 5.42342i 0.251505 0.435620i
\(156\) 0 0
\(157\) 10.2470 + 17.7483i 0.817800 + 1.41647i 0.907300 + 0.420484i \(0.138140\pi\)
−0.0894997 + 0.995987i \(0.528527\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 17.1389i 1.35073i
\(162\) 0 0
\(163\) 13.2244i 1.03581i 0.855438 + 0.517906i \(0.173288\pi\)
−0.855438 + 0.517906i \(0.826712\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −22.0571 + 12.7347i −1.70683 + 0.985440i −0.768405 + 0.639964i \(0.778949\pi\)
−0.938427 + 0.345476i \(0.887717\pi\)
\(168\) 0 0
\(169\) −8.37519 9.94264i −0.644246 0.764819i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.36419 + 12.7552i −0.559889 + 0.969756i 0.437616 + 0.899162i \(0.355823\pi\)
−0.997505 + 0.0705944i \(0.977510\pi\)
\(174\) 0 0
\(175\) 10.8797 6.28139i 0.822426 0.474828i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.68762 −0.126138 −0.0630691 0.998009i \(-0.520089\pi\)
−0.0630691 + 0.998009i \(0.520089\pi\)
\(180\) 0 0
\(181\) 20.3976 1.51614 0.758069 0.652174i \(-0.226143\pi\)
0.758069 + 0.652174i \(0.226143\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.98054 + 8.62655i 0.366177 + 0.634236i
\(186\) 0 0
\(187\) −0.580486 0.335144i −0.0424493 0.0245081i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.64740 8.04953i 0.336274 0.582443i −0.647455 0.762104i \(-0.724167\pi\)
0.983729 + 0.179660i \(0.0574999\pi\)
\(192\) 0 0
\(193\) 15.0682 8.69961i 1.08463 0.626212i 0.152489 0.988305i \(-0.451271\pi\)
0.932142 + 0.362093i \(0.117938\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.5356i 1.03562i 0.855495 + 0.517811i \(0.173253\pi\)
−0.855495 + 0.517811i \(0.826747\pi\)
\(198\) 0 0
\(199\) 8.75359 0.620526 0.310263 0.950651i \(-0.399583\pi\)
0.310263 + 0.950651i \(0.399583\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −11.9079 + 6.87501i −0.835768 + 0.482531i
\(204\) 0 0
\(205\) 1.63243 2.82746i 0.114014 0.197478i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.10134 + 1.90758i −0.0761815 + 0.131950i
\(210\) 0 0
\(211\) −7.10165 12.3004i −0.488898 0.846796i 0.511021 0.859568i \(-0.329268\pi\)
−0.999918 + 0.0127727i \(0.995934\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.90750i 0.607487i
\(216\) 0 0
\(217\) 20.0480 1.36095
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.831721 1.78808i 0.0559476 0.120279i
\(222\) 0 0
\(223\) −5.32632 3.07515i −0.356677 0.205927i 0.310945 0.950428i \(-0.399354\pi\)
−0.667622 + 0.744500i \(0.732688\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −20.9114 12.0732i −1.38794 0.801328i −0.394858 0.918742i \(-0.629206\pi\)
−0.993083 + 0.117414i \(0.962540\pi\)
\(228\) 0 0
\(229\) 0.190914 0.110224i 0.0126160 0.00728384i −0.493679 0.869644i \(-0.664348\pi\)
0.506295 + 0.862361i \(0.331015\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.6872 0.765651 0.382825 0.923821i \(-0.374951\pi\)
0.382825 + 0.923821i \(0.374951\pi\)
\(234\) 0 0
\(235\) −3.39181 −0.221257
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 11.1577 6.44188i 0.721729 0.416690i −0.0936597 0.995604i \(-0.529857\pi\)
0.815389 + 0.578914i \(0.196523\pi\)
\(240\) 0 0
\(241\) −10.4905 6.05669i −0.675752 0.390146i 0.122501 0.992468i \(-0.460909\pi\)
−0.798253 + 0.602323i \(0.794242\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.10779 1.21694i −0.134662 0.0777472i
\(246\) 0 0
\(247\) −5.87594 2.73319i −0.373877 0.173909i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −21.2460 −1.34103 −0.670517 0.741894i \(-0.733928\pi\)
−0.670517 + 0.741894i \(0.733928\pi\)
\(252\) 0 0
\(253\) 6.80569i 0.427870i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.10826 1.91957i −0.0691315 0.119739i 0.829388 0.558673i \(-0.188689\pi\)
−0.898519 + 0.438934i \(0.855356\pi\)
\(258\) 0 0
\(259\) −15.9443 + 27.6163i −0.990730 + 1.71599i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −10.6562 + 18.4570i −0.657088 + 1.13811i 0.324278 + 0.945962i \(0.394879\pi\)
−0.981366 + 0.192147i \(0.938455\pi\)
\(264\) 0 0
\(265\) −9.30615 + 5.37291i −0.571672 + 0.330055i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8.33035 0.507911 0.253955 0.967216i \(-0.418268\pi\)
0.253955 + 0.967216i \(0.418268\pi\)
\(270\) 0 0
\(271\) 8.21173i 0.498827i −0.968397 0.249414i \(-0.919762\pi\)
0.968397 0.249414i \(-0.0802379\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.32023 2.49429i 0.260520 0.150411i
\(276\) 0 0
\(277\) 2.78690 4.82705i 0.167449 0.290030i −0.770073 0.637955i \(-0.779780\pi\)
0.937522 + 0.347926i \(0.113114\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.159791 + 0.0922553i 0.00953232 + 0.00550349i 0.504759 0.863261i \(-0.331582\pi\)
−0.495226 + 0.868764i \(0.664915\pi\)
\(282\) 0 0
\(283\) 2.75369 + 4.76953i 0.163690 + 0.283519i 0.936189 0.351496i \(-0.114327\pi\)
−0.772499 + 0.635015i \(0.780994\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.4519 0.616954
\(288\) 0 0
\(289\) −16.7008 −0.982403
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 15.6474 9.03401i 0.914129 0.527773i 0.0323715 0.999476i \(-0.489694\pi\)
0.881757 + 0.471703i \(0.156361\pi\)
\(294\) 0 0
\(295\) −0.163895 + 0.283874i −0.00954231 + 0.0165278i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 19.9451 1.76412i 1.15346 0.102021i
\(300\) 0 0
\(301\) 24.6954 14.2579i 1.42342 0.821810i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 13.9814i 0.800575i
\(306\) 0 0
\(307\) 24.5251i 1.39972i 0.714280 + 0.699860i \(0.246754\pi\)
−0.714280 + 0.699860i \(0.753246\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −7.44695 12.8985i −0.422278 0.731406i 0.573884 0.818936i \(-0.305436\pi\)
−0.996162 + 0.0875301i \(0.972103\pi\)
\(312\) 0 0
\(313\) −2.63501 + 4.56397i −0.148940 + 0.257971i −0.930836 0.365438i \(-0.880919\pi\)
0.781896 + 0.623409i \(0.214253\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 21.3942 + 12.3520i 1.20162 + 0.693755i 0.960915 0.276844i \(-0.0892885\pi\)
0.240704 + 0.970599i \(0.422622\pi\)
\(318\) 0 0
\(319\) −4.72851 + 2.73001i −0.264746 + 0.152851i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.983068i 0.0546994i
\(324\) 0 0
\(325\) 8.42974 + 12.0145i 0.467598 + 0.666447i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −5.42913 9.40352i −0.299317 0.518433i
\(330\) 0 0
\(331\) −2.18811 1.26330i −0.120269 0.0694375i 0.438659 0.898654i \(-0.355454\pi\)
−0.558928 + 0.829216i \(0.688787\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.88096 4.98996i 0.157403 0.272631i
\(336\) 0 0
\(337\) −9.55590 16.5513i −0.520543 0.901607i −0.999715 0.0238855i \(-0.992396\pi\)
0.479172 0.877721i \(-0.340937\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.96090 0.431107
\(342\) 0 0
\(343\) 13.8118i 0.745769i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.68927 + 8.12206i 0.251733 + 0.436015i 0.964003 0.265891i \(-0.0856661\pi\)
−0.712270 + 0.701906i \(0.752333\pi\)
\(348\) 0 0
\(349\) −20.5021 11.8369i −1.09745 0.633615i −0.161902 0.986807i \(-0.551763\pi\)
−0.935551 + 0.353192i \(0.885096\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 31.4939 + 18.1830i 1.67625 + 0.967783i 0.964018 + 0.265837i \(0.0856483\pi\)
0.712231 + 0.701945i \(0.247685\pi\)
\(354\) 0 0
\(355\) −7.32966 12.6953i −0.389018 0.673799i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 36.6326i 1.93340i 0.255917 + 0.966699i \(0.417622\pi\)
−0.255917 + 0.966699i \(0.582378\pi\)
\(360\) 0 0
\(361\) 15.7695 0.829972
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.284938 + 0.493527i 0.0149143 + 0.0258324i
\(366\) 0 0
\(367\) 11.1385 19.2925i 0.581426 1.00706i −0.413885 0.910329i \(-0.635828\pi\)
0.995311 0.0967299i \(-0.0308383\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −29.7919 17.2004i −1.54672 0.892999i
\(372\) 0 0
\(373\) −5.79906 10.0443i −0.300264 0.520072i 0.675932 0.736964i \(-0.263741\pi\)
−0.976196 + 0.216892i \(0.930408\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −9.22639 13.1500i −0.475183 0.677258i
\(378\) 0 0
\(379\) 9.90166i 0.508614i 0.967124 + 0.254307i \(0.0818474\pi\)
−0.967124 + 0.254307i \(0.918153\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.823581 0.475495i 0.0420830 0.0242967i −0.478811 0.877918i \(-0.658932\pi\)
0.520894 + 0.853621i \(0.325599\pi\)
\(384\) 0 0
\(385\) −3.15767 1.82308i −0.160930 0.0929128i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −9.41896 + 16.3141i −0.477560 + 0.827159i −0.999669 0.0257200i \(-0.991812\pi\)
0.522109 + 0.852879i \(0.325146\pi\)
\(390\) 0 0
\(391\) 1.51870 + 2.63047i 0.0768041 + 0.133029i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.00234i 0.151064i
\(396\) 0 0
\(397\) 12.5330i 0.629015i −0.949255 0.314507i \(-0.898161\pi\)
0.949255 0.314507i \(-0.101839\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −21.6897 + 12.5225i −1.08313 + 0.625345i −0.931739 0.363129i \(-0.881708\pi\)
−0.151391 + 0.988474i \(0.548375\pi\)
\(402\) 0 0
\(403\) 2.06356 + 23.3306i 0.102793 + 1.16218i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6.33134 + 10.9662i −0.313833 + 0.543575i
\(408\) 0 0
\(409\) −3.94504 + 2.27767i −0.195070 + 0.112624i −0.594354 0.804204i \(-0.702592\pi\)
0.399284 + 0.916827i \(0.369259\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.04936 −0.0516355
\(414\) 0 0
\(415\) 4.47527 0.219682
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −7.42799 12.8657i −0.362881 0.628528i 0.625553 0.780182i \(-0.284874\pi\)
−0.988434 + 0.151654i \(0.951540\pi\)
\(420\) 0 0
\(421\) 8.64149 + 4.98917i 0.421160 + 0.243157i 0.695574 0.718455i \(-0.255150\pi\)
−0.274413 + 0.961612i \(0.588484\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.11321 + 1.92813i −0.0539986 + 0.0935283i
\(426\) 0 0
\(427\) 38.7624 22.3795i 1.87585 1.08302i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9.39892i 0.452730i 0.974043 + 0.226365i \(0.0726842\pi\)
−0.974043 + 0.226365i \(0.927316\pi\)
\(432\) 0 0
\(433\) −12.6379 −0.607338 −0.303669 0.952778i \(-0.598212\pi\)
−0.303669 + 0.952778i \(0.598212\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.64421 4.99074i 0.413509 0.238739i
\(438\) 0 0
\(439\) −11.5221 + 19.9568i −0.549918 + 0.952485i 0.448362 + 0.893852i \(0.352008\pi\)
−0.998280 + 0.0586333i \(0.981326\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 16.9553 29.3675i 0.805572 1.39529i −0.110332 0.993895i \(-0.535192\pi\)
0.915904 0.401397i \(-0.131475\pi\)
\(444\) 0 0
\(445\) −3.83635 6.64475i −0.181860 0.314991i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 39.2398i 1.85184i −0.377718 0.925921i \(-0.623291\pi\)
0.377718 0.925921i \(-0.376709\pi\)
\(450\) 0 0
\(451\) 4.15035 0.195432
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.52431 9.72659i 0.212103 0.455990i
\(456\) 0 0
\(457\) 13.9019 + 8.02629i 0.650305 + 0.375454i 0.788573 0.614941i \(-0.210820\pi\)
−0.138268 + 0.990395i \(0.544153\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 23.1433 + 13.3618i 1.07789 + 0.622322i 0.930327 0.366730i \(-0.119523\pi\)
0.147566 + 0.989052i \(0.452856\pi\)
\(462\) 0 0
\(463\) 6.70568 3.87153i 0.311639 0.179925i −0.336020 0.941855i \(-0.609081\pi\)
0.647660 + 0.761930i \(0.275748\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 20.2237 0.935840 0.467920 0.883771i \(-0.345004\pi\)
0.467920 + 0.883771i \(0.345004\pi\)
\(468\) 0 0
\(469\) 18.4457 0.851743
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.80632 5.66168i 0.450895 0.260324i
\(474\) 0 0
\(475\) 6.33620 + 3.65821i 0.290725 + 0.167850i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.76117 1.59416i −0.126161 0.0728391i 0.435591 0.900145i \(-0.356539\pi\)
−0.561752 + 0.827305i \(0.689873\pi\)
\(480\) 0 0
\(481\) −33.7793 15.7124i −1.54020 0.716423i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10.7388 0.487624
\(486\) 0 0
\(487\) 10.3517i 0.469080i 0.972106 + 0.234540i \(0.0753584\pi\)
−0.972106 + 0.234540i \(0.924642\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −11.1824 19.3684i −0.504654 0.874086i −0.999986 0.00538181i \(-0.998287\pi\)
0.495332 0.868704i \(-0.335046\pi\)
\(492\) 0 0
\(493\) 1.21841 2.11035i 0.0548746 0.0950455i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 23.4646 40.6418i 1.05253 1.82303i
\(498\) 0 0
\(499\) −17.4174 + 10.0559i −0.779710 + 0.450166i −0.836327 0.548230i \(-0.815302\pi\)
0.0566178 + 0.998396i \(0.481968\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −28.8457 −1.28617 −0.643084 0.765796i \(-0.722345\pi\)
−0.643084 + 0.765796i \(0.722345\pi\)
\(504\) 0 0
\(505\) 10.5667i 0.470212i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5.80754 3.35298i 0.257415 0.148618i −0.365740 0.930717i \(-0.619184\pi\)
0.623155 + 0.782099i \(0.285851\pi\)
\(510\) 0 0
\(511\) −0.912176 + 1.57994i −0.0403523 + 0.0698923i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.54822 + 3.20327i 0.244484 + 0.141153i
\(516\) 0 0
\(517\) −2.15586 3.73406i −0.0948147 0.164224i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.19549 −0.402862 −0.201431 0.979503i \(-0.564559\pi\)
−0.201431 + 0.979503i \(0.564559\pi\)
\(522\) 0 0
\(523\) 8.89040 0.388750 0.194375 0.980927i \(-0.437732\pi\)
0.194375 + 0.980927i \(0.437732\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.07697 + 1.77649i −0.134035 + 0.0773851i
\(528\) 0 0
\(529\) −3.92000 + 6.78963i −0.170435 + 0.295201i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.07582 + 12.1632i 0.0465989 + 0.526848i
\(534\) 0 0
\(535\) 5.23635 3.02321i 0.226387 0.130705i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.09398i 0.133267i
\(540\) 0 0
\(541\) 41.7785i 1.79620i −0.439792 0.898099i \(-0.644948\pi\)
0.439792 0.898099i \(-0.355052\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.68379 4.64847i −0.114961 0.199119i
\(546\) 0 0
\(547\) 8.21994 14.2374i 0.351459 0.608745i −0.635046 0.772474i \(-0.719019\pi\)
0.986505 + 0.163729i \(0.0523523\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6.93501 4.00393i −0.295441 0.170573i
\(552\) 0 0
\(553\) 8.32376 4.80573i 0.353962 0.204360i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 19.2254i 0.814608i 0.913293 + 0.407304i \(0.133531\pi\)
−0.913293 + 0.407304i \(0.866469\pi\)
\(558\) 0 0
\(559\) 19.1343 + 27.2713i 0.809296 + 1.15345i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.35474 + 14.4708i 0.352110 + 0.609873i 0.986619 0.163043i \(-0.0521309\pi\)
−0.634509 + 0.772916i \(0.718798\pi\)
\(564\) 0 0
\(565\) −5.84381 3.37393i −0.245851 0.141942i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.02623 8.70569i 0.210711 0.364961i −0.741227 0.671255i \(-0.765756\pi\)
0.951937 + 0.306294i \(0.0990889\pi\)
\(570\) 0 0
\(571\) −13.7325 23.7854i −0.574687 0.995388i −0.996076 0.0885074i \(-0.971790\pi\)
0.421388 0.906880i \(-0.361543\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −22.6057 −0.942723
\(576\) 0 0
\(577\) 16.9542i 0.705813i 0.935659 + 0.352907i \(0.114807\pi\)
−0.935659 + 0.352907i \(0.885193\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 7.16338 + 12.4073i 0.297187 + 0.514743i
\(582\) 0 0
\(583\) −11.8301 6.83013i −0.489954 0.282875i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5.99432 3.46082i −0.247412 0.142843i 0.371167 0.928566i \(-0.378958\pi\)
−0.618579 + 0.785723i \(0.712291\pi\)
\(588\) 0 0
\(589\) 5.83787 + 10.1115i 0.240545 + 0.416637i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 2.91351i 0.119643i −0.998209 0.0598217i \(-0.980947\pi\)
0.998209 0.0598217i \(-0.0190532\pi\)
\(594\) 0 0
\(595\) 1.62730 0.0667126
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −19.7811 34.2619i −0.808234 1.39990i −0.914086 0.405521i \(-0.867090\pi\)
0.105851 0.994382i \(-0.466243\pi\)
\(600\) 0 0
\(601\) 8.81624 15.2702i 0.359622 0.622883i −0.628276 0.777991i \(-0.716239\pi\)
0.987898 + 0.155108i \(0.0495724\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.92985 + 4.57830i 0.322394 + 0.186134i
\(606\) 0 0
\(607\) −11.2097 19.4158i −0.454989 0.788064i 0.543699 0.839280i \(-0.317023\pi\)
−0.998688 + 0.0512168i \(0.983690\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 10.3844 7.28599i 0.420108 0.294760i
\(612\) 0 0
\(613\) 38.2173i 1.54358i 0.635877 + 0.771791i \(0.280639\pi\)
−0.635877 + 0.771791i \(0.719361\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −26.6211 + 15.3697i −1.07172 + 0.618761i −0.928652 0.370952i \(-0.879032\pi\)
−0.143073 + 0.989712i \(0.545698\pi\)
\(618\) 0 0
\(619\) 31.3023 + 18.0724i 1.25815 + 0.726390i 0.972714 0.232009i \(-0.0745298\pi\)
0.285431 + 0.958399i \(0.407863\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.2814 21.2719i 0.492042 0.852243i
\(624\) 0 0
\(625\) −5.96154 10.3257i −0.238462 0.413028i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5.65140i 0.225336i
\(630\) 0 0
\(631\) 48.0242i 1.91181i −0.293673 0.955906i \(-0.594878\pi\)
0.293673 0.955906i \(-0.405122\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 3.19521 1.84476i 0.126798 0.0732069i
\(636\) 0 0
\(637\) 9.06737 0.801995i 0.359262 0.0317762i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 10.4738 18.1412i 0.413691 0.716533i −0.581599 0.813475i \(-0.697573\pi\)
0.995290 + 0.0969423i \(0.0309062\pi\)
\(642\) 0 0
\(643\) 11.6982 6.75399i 0.461334 0.266351i −0.251271 0.967917i \(-0.580849\pi\)
0.712605 + 0.701566i \(0.247515\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 15.1084 0.593972 0.296986 0.954882i \(-0.404019\pi\)
0.296986 + 0.954882i \(0.404019\pi\)
\(648\) 0 0
\(649\) −0.416691 −0.0163565
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19.7246 34.1640i −0.771883 1.33694i −0.936530 0.350588i \(-0.885982\pi\)
0.164647 0.986353i \(-0.447351\pi\)
\(654\) 0 0
\(655\) −7.95461 4.59259i −0.310812 0.179447i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 9.60018 16.6280i 0.373970 0.647735i −0.616202 0.787588i \(-0.711330\pi\)
0.990172 + 0.139853i \(0.0446630\pi\)
\(660\) 0 0
\(661\) 25.4024 14.6661i 0.988039 0.570445i 0.0833514 0.996520i \(-0.473438\pi\)
0.904688 + 0.426076i \(0.140104\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.34759i 0.207371i
\(666\) 0 0
\(667\) 24.7421 0.958016
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 15.3922 8.88671i 0.594211 0.343068i
\(672\) 0 0
\(673\) −1.04790 + 1.81501i −0.0403934 + 0.0699635i −0.885515 0.464610i \(-0.846194\pi\)
0.845122 + 0.534574i \(0.179528\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −22.3251 + 38.6683i −0.858025 + 1.48614i 0.0157850 + 0.999875i \(0.494975\pi\)
−0.873810 + 0.486268i \(0.838358\pi\)
\(678\) 0 0
\(679\) 17.1891 + 29.7725i 0.659659 + 1.14256i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 27.7927i 1.06346i 0.846914 + 0.531729i \(0.178458\pi\)
−0.846914 + 0.531729i \(0.821542\pi\)
\(684\) 0 0
\(685\) 11.1524 0.426110
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 16.9502 36.4404i 0.645752 1.38827i
\(690\) 0 0
\(691\) −3.11860 1.80053i −0.118637 0.0684952i 0.439507 0.898239i \(-0.355153\pi\)
−0.558144 + 0.829744i \(0.688486\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6.04409 3.48955i −0.229265 0.132366i
\(696\) 0 0
\(697\) −1.60415 + 0.926158i −0.0607616 + 0.0350807i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −39.7625 −1.50181 −0.750904 0.660411i \(-0.770382\pi\)
−0.750904 + 0.660411i \(0.770382\pi\)
\(702\) 0 0
\(703\) −18.5715 −0.700439
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 29.2954 16.9137i 1.10177 0.636104i
\(708\) 0 0
\(709\) −9.34209 5.39366i −0.350849 0.202563i 0.314210 0.949354i \(-0.398260\pi\)
−0.665059 + 0.746791i \(0.731594\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −31.2417 18.0374i −1.17001 0.675506i
\(714\) 0 0
\(715\) 1.79657 3.86235i 0.0671877 0.144444i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −12.8343 −0.478640 −0.239320 0.970941i \(-0.576924\pi\)
−0.239320 + 0.970941i \(0.576924\pi\)
\(720\) 0 0
\(721\) 20.5093i 0.763808i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 9.06796 + 15.7062i 0.336776 + 0.583312i
\(726\) 0 0
\(727\) 8.18448 14.1759i 0.303545 0.525756i −0.673391 0.739287i \(-0.735163\pi\)
0.976936 + 0.213530i \(0.0684962\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2.52683 + 4.37660i −0.0934581 + 0.161874i
\(732\) 0 0
\(733\) 19.7182 11.3843i 0.728310 0.420490i −0.0894936 0.995987i \(-0.528525\pi\)
0.817804 + 0.575497i \(0.195192\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.32463 0.269806
\(738\) 0 0
\(739\) 40.5277i 1.49084i −0.666597 0.745418i \(-0.732250\pi\)
0.666597 0.745418i \(-0.267750\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 33.4496 19.3122i 1.22715 0.708494i 0.260715 0.965416i \(-0.416042\pi\)
0.966432 + 0.256922i \(0.0827082\pi\)
\(744\) 0 0
\(745\) −1.09216 + 1.89168i −0.0400138 + 0.0693059i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 16.7632 + 9.67824i 0.612514 + 0.353635i
\(750\) 0 0
\(751\) −15.8209 27.4027i −0.577314 0.999938i −0.995786 0.0917079i \(-0.970767\pi\)
0.418472 0.908230i \(-0.362566\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −3.37157 −0.122704
\(756\) 0 0
\(757\) −36.1531 −1.31401 −0.657003 0.753888i \(-0.728176\pi\)
−0.657003 + 0.753888i \(0.728176\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −41.8216 + 24.1457i −1.51603 + 0.875281i −0.516209 + 0.856463i \(0.672657\pi\)
−0.999823 + 0.0188184i \(0.994010\pi\)
\(762\) 0 0
\(763\) 8.59168 14.8812i 0.311040 0.538736i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.108011 1.22118i −0.00390006 0.0440941i
\(768\) 0 0
\(769\) −44.0990 + 25.4606i −1.59025 + 0.918131i −0.596987 + 0.802251i \(0.703635\pi\)
−0.993263 + 0.115880i \(0.963031\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 32.8060i 1.17995i −0.807421 0.589976i \(-0.799137\pi\)
0.807421 0.589976i \(-0.200863\pi\)
\(774\) 0 0
\(775\) 26.4428i 0.949854i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.04352 + 5.27154i 0.109046 + 0.188872i
\(780\) 0 0
\(781\) 9.31758 16.1385i 0.333409 0.577482i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −17.1101 9.87854i −0.610687 0.352580i
\(786\) 0 0
\(787\) −18.0928 + 10.4459i −0.644939 + 0.372356i −0.786515 0.617572i \(-0.788117\pi\)
0.141575 + 0.989927i \(0.454783\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 21.6020i 0.768079i
\(792\) 0 0
\(793\) 30.0337 + 42.8057i 1.06653 + 1.52008i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −11.9825 20.7543i −0.424441 0.735154i 0.571927 0.820305i \(-0.306196\pi\)
−0.996368 + 0.0851508i \(0.972863\pi\)
\(798\) 0 0
\(799\) 1.66653 + 0.962169i 0.0589574 + 0.0340391i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −0.362218 + 0.627379i −0.0127824 + 0.0221397i
\(804\) 0 0
\(805\) 8.26129 + 14.3090i 0.291172 + 0.504325i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 17.0779 0.600428 0.300214 0.953872i \(-0.402942\pi\)
0.300214 + 0.953872i \(0.402942\pi\)
\(810\) 0 0
\(811\) 40.7960i 1.43254i 0.697823 + 0.716270i \(0.254152\pi\)
−0.697823 + 0.716270i \(0.745848\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.37442 11.0408i −0.223286 0.386743i
\(816\) 0 0
\(817\) 14.3823 + 8.30362i 0.503173 + 0.290507i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 28.0370 + 16.1872i 0.978498 + 0.564936i 0.901816 0.432120i \(-0.142234\pi\)
0.0766814 + 0.997056i \(0.475568\pi\)
\(822\) 0 0
\(823\) 12.0337 + 20.8430i 0.419469 + 0.726542i 0.995886 0.0906136i \(-0.0288828\pi\)
−0.576417 + 0.817156i \(0.695549\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 47.6352i 1.65644i 0.560404 + 0.828219i \(0.310646\pi\)
−0.560404 + 0.828219i \(0.689354\pi\)
\(828\) 0 0
\(829\) 17.2774 0.600069 0.300034 0.953928i \(-0.403002\pi\)
0.300034 + 0.953928i \(0.403002\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.690427 + 1.19585i 0.0239219 + 0.0414339i
\(834\) 0 0
\(835\) 12.2768 21.2640i 0.424856 0.735871i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 6.80893 + 3.93114i 0.235070 + 0.135718i 0.612909 0.790154i \(-0.289999\pi\)
−0.377839 + 0.925871i \(0.623333\pi\)
\(840\) 0 0
\(841\) 4.57507 + 7.92425i 0.157761 + 0.273250i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 11.7849 + 4.26394i 0.405412 + 0.146684i
\(846\) 0 0
\(847\) 29.3132i 1.00721i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 49.6933 28.6905i 1.70347 0.983496i
\(852\) 0 0
\(853\) 37.8803 + 21.8702i 1.29700 + 0.748822i 0.979884 0.199566i \(-0.0639533\pi\)
0.317113 + 0.948388i \(0.397287\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −9.16998 + 15.8829i −0.313240 + 0.542548i −0.979062 0.203563i \(-0.934748\pi\)
0.665822 + 0.746111i \(0.268081\pi\)
\(858\) 0 0
\(859\) −21.6708 37.5349i −0.739397 1.28067i −0.952767 0.303702i \(-0.901777\pi\)
0.213370 0.976971i \(-0.431556\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 44.7839i 1.52446i −0.647305 0.762231i \(-0.724104\pi\)
0.647305 0.762231i \(-0.275896\pi\)
\(864\) 0 0
\(865\) 14.1988i 0.482773i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.30530 1.90831i 0.112125 0.0647351i
\(870\) 0 0
\(871\) 1.89863 + 21.4659i 0.0643327 + 0.727346i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −13.4936 + 23.3716i −0.456167 + 0.790104i
\(876\) 0 0
\(877\) 20.0726 11.5889i 0.677802 0.391329i −0.121224 0.992625i \(-0.538682\pi\)
0.799026 + 0.601296i \(0.205349\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −50.2918 −1.69438 −0.847188 0.531294i \(-0.821706\pi\)
−0.847188 + 0.531294i \(0.821706\pi\)
\(882\) 0 0
\(883\) 39.1343 1.31697 0.658487 0.752592i \(-0.271197\pi\)
0.658487 + 0.752592i \(0.271197\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 26.8545 + 46.5133i 0.901685 + 1.56176i 0.825307 + 0.564684i \(0.191002\pi\)
0.0763777 + 0.997079i \(0.475665\pi\)
\(888\) 0 0
\(889\) 10.2289 + 5.90565i 0.343066 + 0.198069i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 3.16186 5.47651i 0.105808 0.183264i
\(894\) 0 0
\(895\) 1.40896 0.813466i 0.0470965 0.0271912i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 28.9418i 0.965263i
\(900\) 0 0
\(901\) 6.09662 0.203108
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −17.0296 + 9.83205i −0.566084 + 0.326829i
\(906\) 0 0
\(907\) 7.93300 13.7404i 0.263411 0.456241i −0.703735 0.710463i \(-0.748486\pi\)
0.967146 + 0.254221i \(0.0818191\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −11.9973 + 20.7799i −0.397487 + 0.688467i −0.993415 0.114570i \(-0.963451\pi\)
0.595928 + 0.803038i \(0.296784\pi\)
\(912\) 0 0
\(913\) 2.84452 + 4.92685i 0.0941398 + 0.163055i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 29.4047i 0.971028i
\(918\) 0 0
\(919\) 28.3186 0.934144 0.467072 0.884219i \(-0.345309\pi\)
0.467072 + 0.884219i \(0.345309\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 49.7116 + 23.1233i 1.63628 + 0.761112i
\(924\) 0 0
\(925\) 36.4252 + 21.0301i 1.19765 + 0.691465i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −30.3419 17.5179i −0.995485 0.574743i −0.0885755 0.996069i \(-0.528231\pi\)
−0.906909 + 0.421326i \(0.861565\pi\)
\(930\) 0 0
\(931\) 3.92980 2.26887i 0.128794 0.0743592i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.646185 0.0211325
\(936\) 0 0
\(937\) −12.2708 −0.400870 −0.200435 0.979707i \(-0.564235\pi\)
−0.200435 + 0.979707i \(0.564235\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −8.71346 + 5.03072i −0.284051 + 0.163997i −0.635256 0.772302i \(-0.719105\pi\)
0.351205 + 0.936299i \(0.385772\pi\)
\(942\) 0 0
\(943\) −16.2876 9.40365i −0.530397 0.306225i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −37.1040 21.4220i −1.20572 0.696122i −0.243898 0.969801i \(-0.578426\pi\)
−0.961821 + 0.273679i \(0.911760\pi\)
\(948\) 0 0
\(949\) −1.93252 0.898910i −0.0627323 0.0291798i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 45.5949 1.47696 0.738482 0.674273i \(-0.235543\pi\)
0.738482 + 0.674273i \(0.235543\pi\)
\(954\) 0 0
\(955\) 8.96057i 0.289957i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 17.8511 + 30.9191i 0.576443 + 0.998429i
\(960\) 0 0
\(961\) 5.59909 9.69791i 0.180616 0.312836i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −8.38679 + 14.5264i −0.269980 + 0.467620i
\(966\) 0 0
\(967\) −8.87129 + 5.12184i −0.285282 + 0.164707i −0.635812 0.771844i \(-0.719335\pi\)
0.350530 + 0.936551i \(0.386001\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −53.0601 −1.70278 −0.851389 0.524534i \(-0.824239\pi\)
−0.851389 + 0.524534i \(0.824239\pi\)
\(972\) 0 0
\(973\) 22.3423i 0.716262i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −37.8301 + 21.8412i −1.21029 + 0.698762i −0.962823 0.270134i \(-0.912932\pi\)
−0.247469 + 0.968896i \(0.579599\pi\)
\(978\) 0 0
\(979\) 4.87683 8.44691i 0.155864 0.269964i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 39.1820 + 22.6217i 1.24971 + 0.721521i 0.971052 0.238868i \(-0.0767765\pi\)
0.278660 + 0.960390i \(0.410110\pi\)
\(984\) 0 0
\(985\) −7.00648 12.1356i −0.223245 0.386672i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −51.3118 −1.63162
\(990\) 0 0
\(991\) −4.23866 −0.134645 −0.0673227 0.997731i \(-0.521446\pi\)
−0.0673227 + 0.997731i \(0.521446\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −7.30824 + 4.21942i −0.231687 + 0.133764i
\(996\) 0 0
\(997\) −21.1207 + 36.5821i −0.668898 + 1.15857i 0.309314 + 0.950960i \(0.399901\pi\)
−0.978212 + 0.207606i \(0.933433\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2808.2.cw.b.1585.17 80
3.2 odd 2 936.2.cw.b.25.6 yes 80
9.4 even 3 inner 2808.2.cw.b.2521.24 80
9.5 odd 6 936.2.cw.b.337.5 yes 80
13.12 even 2 inner 2808.2.cw.b.1585.24 80
39.38 odd 2 936.2.cw.b.25.5 80
117.77 odd 6 936.2.cw.b.337.6 yes 80
117.103 even 6 inner 2808.2.cw.b.2521.17 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.cw.b.25.5 80 39.38 odd 2
936.2.cw.b.25.6 yes 80 3.2 odd 2
936.2.cw.b.337.5 yes 80 9.5 odd 6
936.2.cw.b.337.6 yes 80 117.77 odd 6
2808.2.cw.b.1585.17 80 1.1 even 1 trivial
2808.2.cw.b.1585.24 80 13.12 even 2 inner
2808.2.cw.b.2521.17 80 117.103 even 6 inner
2808.2.cw.b.2521.24 80 9.4 even 3 inner