Properties

Label 2808.2.cw.b.1585.12
Level $2808$
Weight $2$
Character 2808.1585
Analytic conductor $22.422$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2808,2,Mod(1585,2808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2808.1585"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2808.cw (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4219928876\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 936)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1585.12
Character \(\chi\) \(=\) 2808.1585
Dual form 2808.2.cw.b.2521.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.43066 + 0.825993i) q^{5} +(-3.63744 - 2.10008i) q^{7} +(2.28296 + 1.31807i) q^{11} +(2.56310 + 2.53585i) q^{13} +2.77519 q^{17} -4.71234i q^{19} +(-0.483145 - 0.836832i) q^{23} +(-1.13547 + 1.96669i) q^{25} +(-3.43884 + 5.95624i) q^{29} +(-4.99896 + 2.88615i) q^{31} +6.93860 q^{35} -5.12978i q^{37} +(2.39938 - 1.38528i) q^{41} +(0.835205 - 1.44662i) q^{43} +(-4.26985 - 2.46520i) q^{47} +(5.32066 + 9.21565i) q^{49} -7.54405 q^{53} -4.35485 q^{55} +(3.31701 - 1.91508i) q^{59} +(4.79798 - 8.31035i) q^{61} +(-5.76152 - 1.51083i) q^{65} +(7.15411 - 4.13043i) q^{67} +0.0532321i q^{71} +0.987000i q^{73} +(-5.53608 - 9.58878i) q^{77} +(7.24877 - 12.5552i) q^{79} +(-6.94144 - 4.00764i) q^{83} +(-3.97036 + 2.29229i) q^{85} -8.80436i q^{89} +(-3.99766 - 14.6067i) q^{91} +(3.89236 + 6.74176i) q^{95} +(1.11958 + 0.646389i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 6 q^{13} + 4 q^{17} - 10 q^{23} + 44 q^{25} + 52 q^{35} - 26 q^{43} + 48 q^{49} - 60 q^{53} - 16 q^{55} - 10 q^{61} + 26 q^{65} - 32 q^{77} + 6 q^{79} - 4 q^{91} - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2808\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(1081\) \(1405\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.43066 + 0.825993i −0.639811 + 0.369395i −0.784542 0.620076i \(-0.787102\pi\)
0.144731 + 0.989471i \(0.453768\pi\)
\(6\) 0 0
\(7\) −3.63744 2.10008i −1.37482 0.793755i −0.383293 0.923627i \(-0.625210\pi\)
−0.991531 + 0.129872i \(0.958543\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.28296 + 1.31807i 0.688337 + 0.397412i 0.802989 0.595994i \(-0.203242\pi\)
−0.114652 + 0.993406i \(0.536575\pi\)
\(12\) 0 0
\(13\) 2.56310 + 2.53585i 0.710876 + 0.703317i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.77519 0.673083 0.336542 0.941669i \(-0.390743\pi\)
0.336542 + 0.941669i \(0.390743\pi\)
\(18\) 0 0
\(19\) 4.71234i 1.08108i −0.841317 0.540542i \(-0.818219\pi\)
0.841317 0.540542i \(-0.181781\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.483145 0.836832i −0.100743 0.174492i 0.811248 0.584702i \(-0.198789\pi\)
−0.911991 + 0.410210i \(0.865455\pi\)
\(24\) 0 0
\(25\) −1.13547 + 1.96669i −0.227094 + 0.393339i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.43884 + 5.95624i −0.638576 + 1.10605i 0.347170 + 0.937802i \(0.387143\pi\)
−0.985745 + 0.168244i \(0.946190\pi\)
\(30\) 0 0
\(31\) −4.99896 + 2.88615i −0.897841 + 0.518368i −0.876499 0.481404i \(-0.840127\pi\)
−0.0213416 + 0.999772i \(0.506794\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.93860 1.17284
\(36\) 0 0
\(37\) 5.12978i 0.843331i −0.906751 0.421665i \(-0.861446\pi\)
0.906751 0.421665i \(-0.138554\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.39938 1.38528i 0.374720 0.216345i −0.300798 0.953688i \(-0.597253\pi\)
0.675519 + 0.737343i \(0.263920\pi\)
\(42\) 0 0
\(43\) 0.835205 1.44662i 0.127368 0.220607i −0.795288 0.606231i \(-0.792681\pi\)
0.922656 + 0.385624i \(0.126014\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.26985 2.46520i −0.622822 0.359586i 0.155145 0.987892i \(-0.450416\pi\)
−0.777967 + 0.628305i \(0.783749\pi\)
\(48\) 0 0
\(49\) 5.32066 + 9.21565i 0.760094 + 1.31652i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.54405 −1.03626 −0.518128 0.855303i \(-0.673371\pi\)
−0.518128 + 0.855303i \(0.673371\pi\)
\(54\) 0 0
\(55\) −4.35485 −0.587208
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.31701 1.91508i 0.431838 0.249322i −0.268291 0.963338i \(-0.586459\pi\)
0.700129 + 0.714016i \(0.253126\pi\)
\(60\) 0 0
\(61\) 4.79798 8.31035i 0.614319 1.06403i −0.376185 0.926545i \(-0.622764\pi\)
0.990504 0.137487i \(-0.0439025\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.76152 1.51083i −0.714629 0.187396i
\(66\) 0 0
\(67\) 7.15411 4.13043i 0.874013 0.504612i 0.00533352 0.999986i \(-0.498302\pi\)
0.868680 + 0.495374i \(0.164969\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.0532321i 0.00631748i 0.999995 + 0.00315874i \(0.00100546\pi\)
−0.999995 + 0.00315874i \(0.998995\pi\)
\(72\) 0 0
\(73\) 0.987000i 0.115520i 0.998331 + 0.0577598i \(0.0183957\pi\)
−0.998331 + 0.0577598i \(0.981604\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.53608 9.58878i −0.630895 1.09274i
\(78\) 0 0
\(79\) 7.24877 12.5552i 0.815550 1.41257i −0.0933822 0.995630i \(-0.529768\pi\)
0.908932 0.416944i \(-0.136899\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −6.94144 4.00764i −0.761922 0.439896i 0.0680636 0.997681i \(-0.478318\pi\)
−0.829985 + 0.557785i \(0.811651\pi\)
\(84\) 0 0
\(85\) −3.97036 + 2.29229i −0.430646 + 0.248634i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.80436i 0.933260i −0.884453 0.466630i \(-0.845468\pi\)
0.884453 0.466630i \(-0.154532\pi\)
\(90\) 0 0
\(91\) −3.99766 14.6067i −0.419069 1.53120i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.89236 + 6.74176i 0.399348 + 0.691690i
\(96\) 0 0
\(97\) 1.11958 + 0.646389i 0.113676 + 0.0656308i 0.555760 0.831343i \(-0.312427\pi\)
−0.442084 + 0.896974i \(0.645761\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.22972 10.7902i 0.619881 1.07366i −0.369627 0.929180i \(-0.620514\pi\)
0.989507 0.144484i \(-0.0461523\pi\)
\(102\) 0 0
\(103\) −8.74904 15.1538i −0.862068 1.49315i −0.869929 0.493177i \(-0.835836\pi\)
0.00786103 0.999969i \(-0.497498\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.21102 0.310421 0.155211 0.987881i \(-0.450394\pi\)
0.155211 + 0.987881i \(0.450394\pi\)
\(108\) 0 0
\(109\) 17.2490i 1.65215i −0.563560 0.826075i \(-0.690569\pi\)
0.563560 0.826075i \(-0.309431\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.847508 1.46793i −0.0797269 0.138091i 0.823405 0.567454i \(-0.192071\pi\)
−0.903132 + 0.429363i \(0.858738\pi\)
\(114\) 0 0
\(115\) 1.38243 + 0.798149i 0.128913 + 0.0744278i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −10.0946 5.82812i −0.925371 0.534263i
\(120\) 0 0
\(121\) −2.02541 3.50811i −0.184128 0.318919i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0115i 1.07434i
\(126\) 0 0
\(127\) 4.71212 0.418133 0.209067 0.977901i \(-0.432957\pi\)
0.209067 + 0.977901i \(0.432957\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.61370 11.4553i −0.577842 1.00085i −0.995727 0.0923511i \(-0.970562\pi\)
0.417885 0.908500i \(-0.362772\pi\)
\(132\) 0 0
\(133\) −9.89628 + 17.1409i −0.858116 + 1.48630i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.225795 + 0.130363i 0.0192910 + 0.0111376i 0.509614 0.860403i \(-0.329788\pi\)
−0.490324 + 0.871541i \(0.663121\pi\)
\(138\) 0 0
\(139\) −5.87771 10.1805i −0.498541 0.863498i 0.501458 0.865182i \(-0.332797\pi\)
−0.999999 + 0.00168410i \(0.999464\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.50904 + 9.16756i 0.209816 + 0.766630i
\(144\) 0 0
\(145\) 11.3618i 0.943548i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −18.1431 + 10.4749i −1.48634 + 0.858137i −0.999879 0.0155668i \(-0.995045\pi\)
−0.486458 + 0.873704i \(0.661711\pi\)
\(150\) 0 0
\(151\) 10.8725 + 6.27726i 0.884794 + 0.510836i 0.872236 0.489085i \(-0.162669\pi\)
0.0125580 + 0.999921i \(0.496003\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.76788 8.25822i 0.382966 0.663316i
\(156\) 0 0
\(157\) 5.72790 + 9.92101i 0.457136 + 0.791783i 0.998808 0.0488068i \(-0.0155419\pi\)
−0.541672 + 0.840590i \(0.682209\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4.05857i 0.319860i
\(162\) 0 0
\(163\) 11.3497i 0.888976i −0.895785 0.444488i \(-0.853386\pi\)
0.895785 0.444488i \(-0.146614\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −20.5639 + 11.8725i −1.59128 + 0.918725i −0.598191 + 0.801354i \(0.704113\pi\)
−0.993088 + 0.117371i \(0.962553\pi\)
\(168\) 0 0
\(169\) 0.138980 + 12.9993i 0.0106908 + 0.999943i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.28380 + 16.0800i −0.705834 + 1.22254i 0.260556 + 0.965459i \(0.416094\pi\)
−0.966390 + 0.257082i \(0.917239\pi\)
\(174\) 0 0
\(175\) 8.26043 4.76916i 0.624430 0.360515i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.12934 0.383385 0.191692 0.981455i \(-0.438602\pi\)
0.191692 + 0.981455i \(0.438602\pi\)
\(180\) 0 0
\(181\) 20.5034 1.52401 0.762003 0.647573i \(-0.224216\pi\)
0.762003 + 0.647573i \(0.224216\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.23716 + 7.33898i 0.311522 + 0.539573i
\(186\) 0 0
\(187\) 6.33564 + 3.65789i 0.463308 + 0.267491i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.78159 16.9422i 0.707771 1.22590i −0.257911 0.966169i \(-0.583034\pi\)
0.965682 0.259726i \(-0.0836324\pi\)
\(192\) 0 0
\(193\) −4.89103 + 2.82384i −0.352064 + 0.203264i −0.665594 0.746314i \(-0.731822\pi\)
0.313530 + 0.949578i \(0.398488\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 25.6253i 1.82573i −0.408263 0.912865i \(-0.633865\pi\)
0.408263 0.912865i \(-0.366135\pi\)
\(198\) 0 0
\(199\) −2.09536 −0.148536 −0.0742682 0.997238i \(-0.523662\pi\)
−0.0742682 + 0.997238i \(0.523662\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 25.0171 14.4437i 1.75586 1.01375i
\(204\) 0 0
\(205\) −2.28847 + 3.96374i −0.159833 + 0.276840i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.21117 10.7581i 0.429636 0.744151i
\(210\) 0 0
\(211\) 11.8477 + 20.5209i 0.815631 + 1.41271i 0.908874 + 0.417071i \(0.136943\pi\)
−0.0932432 + 0.995643i \(0.529723\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.75949i 0.188196i
\(216\) 0 0
\(217\) 24.2446 1.64583
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 7.11310 + 7.03746i 0.478479 + 0.473391i
\(222\) 0 0
\(223\) 8.71542 + 5.03185i 0.583628 + 0.336958i 0.762574 0.646901i \(-0.223935\pi\)
−0.178946 + 0.983859i \(0.557269\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.90016 5.71586i −0.657096 0.379375i 0.134073 0.990971i \(-0.457194\pi\)
−0.791170 + 0.611597i \(0.790528\pi\)
\(228\) 0 0
\(229\) −22.0810 + 12.7485i −1.45916 + 0.842445i −0.998970 0.0453774i \(-0.985551\pi\)
−0.460187 + 0.887822i \(0.652218\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.82435 −0.250542 −0.125271 0.992123i \(-0.539980\pi\)
−0.125271 + 0.992123i \(0.539980\pi\)
\(234\) 0 0
\(235\) 8.14495 0.531318
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.128051 0.0739304i 0.00828294 0.00478216i −0.495853 0.868407i \(-0.665144\pi\)
0.504136 + 0.863624i \(0.331811\pi\)
\(240\) 0 0
\(241\) −2.03972 1.17763i −0.131390 0.0758581i 0.432864 0.901459i \(-0.357503\pi\)
−0.564254 + 0.825601i \(0.690836\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −15.2241 8.78965i −0.972634 0.561550i
\(246\) 0 0
\(247\) 11.9498 12.0782i 0.760345 0.768518i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 29.9852 1.89265 0.946325 0.323218i \(-0.104765\pi\)
0.946325 + 0.323218i \(0.104765\pi\)
\(252\) 0 0
\(253\) 2.54727i 0.160145i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.6703 + 21.9457i 0.790355 + 1.36893i 0.925747 + 0.378142i \(0.123437\pi\)
−0.135393 + 0.990792i \(0.543230\pi\)
\(258\) 0 0
\(259\) −10.7729 + 18.6593i −0.669398 + 1.15943i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.08227 + 10.5348i −0.375049 + 0.649604i −0.990334 0.138700i \(-0.955707\pi\)
0.615285 + 0.788304i \(0.289041\pi\)
\(264\) 0 0
\(265\) 10.7930 6.23133i 0.663008 0.382788i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −17.4224 −1.06226 −0.531132 0.847289i \(-0.678233\pi\)
−0.531132 + 0.847289i \(0.678233\pi\)
\(270\) 0 0
\(271\) 20.5427i 1.24788i 0.781473 + 0.623939i \(0.214469\pi\)
−0.781473 + 0.623939i \(0.785531\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5.18446 + 2.99325i −0.312635 + 0.180500i
\(276\) 0 0
\(277\) −10.1748 + 17.6233i −0.611344 + 1.05888i 0.379670 + 0.925122i \(0.376037\pi\)
−0.991014 + 0.133757i \(0.957296\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −22.3673 12.9138i −1.33432 0.770372i −0.348364 0.937359i \(-0.613263\pi\)
−0.985959 + 0.166988i \(0.946596\pi\)
\(282\) 0 0
\(283\) −12.7895 22.1521i −0.760258 1.31681i −0.942717 0.333593i \(-0.891739\pi\)
0.182459 0.983213i \(-0.441594\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −11.6368 −0.686899
\(288\) 0 0
\(289\) −9.29830 −0.546959
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −21.9855 + 12.6933i −1.28440 + 0.741551i −0.977650 0.210237i \(-0.932576\pi\)
−0.306754 + 0.951789i \(0.599243\pi\)
\(294\) 0 0
\(295\) −3.16368 + 5.47965i −0.184197 + 0.319038i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.883726 3.37007i 0.0511072 0.194896i
\(300\) 0 0
\(301\) −6.07602 + 3.50799i −0.350216 + 0.202197i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 15.8524i 0.907706i
\(306\) 0 0
\(307\) 10.0799i 0.575288i −0.957737 0.287644i \(-0.907128\pi\)
0.957737 0.287644i \(-0.0928720\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.02457 13.8990i −0.455032 0.788138i 0.543658 0.839307i \(-0.317039\pi\)
−0.998690 + 0.0511686i \(0.983705\pi\)
\(312\) 0 0
\(313\) 11.7016 20.2678i 0.661414 1.14560i −0.318830 0.947812i \(-0.603290\pi\)
0.980244 0.197791i \(-0.0633769\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.9411 + 12.0903i 1.17617 + 0.679061i 0.955125 0.296203i \(-0.0957206\pi\)
0.221043 + 0.975264i \(0.429054\pi\)
\(318\) 0 0
\(319\) −15.7014 + 9.06522i −0.879111 + 0.507555i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 13.0776i 0.727660i
\(324\) 0 0
\(325\) −7.89756 + 2.16146i −0.438078 + 0.119896i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 10.3542 + 17.9340i 0.570847 + 0.988736i
\(330\) 0 0
\(331\) −2.77109 1.59989i −0.152313 0.0879379i 0.421906 0.906639i \(-0.361361\pi\)
−0.574219 + 0.818701i \(0.694694\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.82340 + 11.8185i −0.372802 + 0.645713i
\(336\) 0 0
\(337\) −5.88411 10.1916i −0.320528 0.555171i 0.660069 0.751205i \(-0.270527\pi\)
−0.980597 + 0.196034i \(0.937194\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −15.2166 −0.824023
\(342\) 0 0
\(343\) 15.2941i 0.825804i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −18.1366 31.4135i −0.973623 1.68636i −0.684406 0.729101i \(-0.739938\pi\)
−0.289217 0.957263i \(-0.593395\pi\)
\(348\) 0 0
\(349\) 18.1384 + 10.4722i 0.970925 + 0.560564i 0.899518 0.436884i \(-0.143918\pi\)
0.0714066 + 0.997447i \(0.477251\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.4946 + 8.36846i 0.771469 + 0.445408i 0.833399 0.552673i \(-0.186392\pi\)
−0.0619292 + 0.998081i \(0.519725\pi\)
\(354\) 0 0
\(355\) −0.0439693 0.0761571i −0.00233365 0.00404200i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 29.9958i 1.58312i −0.611092 0.791560i \(-0.709269\pi\)
0.611092 0.791560i \(-0.290731\pi\)
\(360\) 0 0
\(361\) −3.20614 −0.168744
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.815255 1.41206i −0.0426724 0.0739107i
\(366\) 0 0
\(367\) 4.73460 8.20057i 0.247144 0.428067i −0.715588 0.698523i \(-0.753841\pi\)
0.962732 + 0.270456i \(0.0871745\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 27.4411 + 15.8431i 1.42467 + 0.822533i
\(372\) 0 0
\(373\) −7.37007 12.7653i −0.381608 0.660964i 0.609685 0.792644i \(-0.291296\pi\)
−0.991292 + 0.131680i \(0.957963\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −23.9182 + 6.54609i −1.23185 + 0.337141i
\(378\) 0 0
\(379\) 14.7901i 0.759717i 0.925045 + 0.379859i \(0.124027\pi\)
−0.925045 + 0.379859i \(0.875973\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 15.3401 8.85660i 0.783842 0.452551i −0.0539484 0.998544i \(-0.517181\pi\)
0.837790 + 0.545993i \(0.183847\pi\)
\(384\) 0 0
\(385\) 15.8405 + 9.14553i 0.807308 + 0.466099i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −6.20014 + 10.7390i −0.314360 + 0.544487i −0.979301 0.202408i \(-0.935123\pi\)
0.664941 + 0.746896i \(0.268457\pi\)
\(390\) 0 0
\(391\) −1.34082 2.32237i −0.0678082 0.117447i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 23.9497i 1.20504i
\(396\) 0 0
\(397\) 14.0928i 0.707297i −0.935378 0.353649i \(-0.884941\pi\)
0.935378 0.353649i \(-0.115059\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 26.1289 15.0856i 1.30482 0.753336i 0.323591 0.946197i \(-0.395110\pi\)
0.981226 + 0.192861i \(0.0617765\pi\)
\(402\) 0 0
\(403\) −20.1317 5.27909i −1.00283 0.262970i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6.76139 11.7111i 0.335150 0.580496i
\(408\) 0 0
\(409\) −13.8705 + 8.00815i −0.685853 + 0.395977i −0.802057 0.597248i \(-0.796261\pi\)
0.116204 + 0.993225i \(0.462927\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −16.0872 −0.791602
\(414\) 0 0
\(415\) 13.2411 0.649981
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −13.8421 23.9752i −0.676229 1.17126i −0.976108 0.217286i \(-0.930280\pi\)
0.299879 0.953977i \(-0.403054\pi\)
\(420\) 0 0
\(421\) −14.3628 8.29235i −0.699999 0.404145i 0.107348 0.994222i \(-0.465764\pi\)
−0.807347 + 0.590077i \(0.799097\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.15115 + 5.45796i −0.152853 + 0.264750i
\(426\) 0 0
\(427\) −34.9048 + 20.1523i −1.68916 + 0.975238i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.719688i 0.0346661i −0.999850 0.0173331i \(-0.994482\pi\)
0.999850 0.0173331i \(-0.00551756\pi\)
\(432\) 0 0
\(433\) 7.69378 0.369739 0.184870 0.982763i \(-0.440814\pi\)
0.184870 + 0.982763i \(0.440814\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.94344 + 2.27674i −0.188640 + 0.108911i
\(438\) 0 0
\(439\) 13.0575 22.6163i 0.623202 1.07942i −0.365684 0.930739i \(-0.619165\pi\)
0.988886 0.148678i \(-0.0475018\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.01854 + 5.22826i −0.143415 + 0.248402i −0.928781 0.370630i \(-0.879142\pi\)
0.785365 + 0.619032i \(0.212475\pi\)
\(444\) 0 0
\(445\) 7.27234 + 12.5961i 0.344742 + 0.597110i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 40.5862i 1.91538i 0.287799 + 0.957691i \(0.407077\pi\)
−0.287799 + 0.957691i \(0.592923\pi\)
\(450\) 0 0
\(451\) 7.30357 0.343912
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 17.7843 + 17.5952i 0.833742 + 0.824876i
\(456\) 0 0
\(457\) 20.8173 + 12.0188i 0.973790 + 0.562218i 0.900390 0.435085i \(-0.143282\pi\)
0.0734004 + 0.997303i \(0.476615\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 16.8379 + 9.72135i 0.784218 + 0.452768i 0.837923 0.545788i \(-0.183770\pi\)
−0.0537052 + 0.998557i \(0.517103\pi\)
\(462\) 0 0
\(463\) −0.897269 + 0.518038i −0.0416996 + 0.0240753i −0.520705 0.853737i \(-0.674331\pi\)
0.479005 + 0.877812i \(0.340997\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 19.0967 0.883688 0.441844 0.897092i \(-0.354325\pi\)
0.441844 + 0.897092i \(0.354325\pi\)
\(468\) 0 0
\(469\) −34.6969 −1.60215
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.81347 2.20171i 0.175344 0.101235i
\(474\) 0 0
\(475\) 9.26773 + 5.35073i 0.425233 + 0.245508i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 17.2977 + 9.98682i 0.790352 + 0.456310i 0.840086 0.542453i \(-0.182504\pi\)
−0.0497348 + 0.998762i \(0.515838\pi\)
\(480\) 0 0
\(481\) 13.0083 13.1482i 0.593129 0.599504i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.13565 −0.0969749
\(486\) 0 0
\(487\) 32.5937i 1.47696i −0.674275 0.738480i \(-0.735544\pi\)
0.674275 0.738480i \(-0.264456\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9.26692 + 16.0508i 0.418210 + 0.724362i 0.995760 0.0919943i \(-0.0293241\pi\)
−0.577549 + 0.816356i \(0.695991\pi\)
\(492\) 0 0
\(493\) −9.54343 + 16.5297i −0.429815 + 0.744461i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.111792 0.193629i 0.00501454 0.00868543i
\(498\) 0 0
\(499\) −15.6180 + 9.01707i −0.699159 + 0.403660i −0.807034 0.590505i \(-0.798929\pi\)
0.107875 + 0.994164i \(0.465595\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −0.317040 −0.0141361 −0.00706806 0.999975i \(-0.502250\pi\)
−0.00706806 + 0.999975i \(0.502250\pi\)
\(504\) 0 0
\(505\) 20.5828i 0.915924i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 24.9432 14.4010i 1.10559 0.638312i 0.167905 0.985803i \(-0.446300\pi\)
0.937683 + 0.347491i \(0.112966\pi\)
\(510\) 0 0
\(511\) 2.07278 3.59015i 0.0916942 0.158819i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 25.0338 + 14.4533i 1.10312 + 0.636888i
\(516\) 0 0
\(517\) −6.49859 11.2559i −0.285808 0.495033i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 34.4420 1.50893 0.754466 0.656339i \(-0.227896\pi\)
0.754466 + 0.656339i \(0.227896\pi\)
\(522\) 0 0
\(523\) −42.3521 −1.85193 −0.925965 0.377610i \(-0.876746\pi\)
−0.925965 + 0.377610i \(0.876746\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −13.8731 + 8.00963i −0.604321 + 0.348905i
\(528\) 0 0
\(529\) 11.0331 19.1100i 0.479702 0.830868i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 9.66271 + 2.53383i 0.418539 + 0.109753i
\(534\) 0 0
\(535\) −4.59389 + 2.65228i −0.198611 + 0.114668i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 28.0519i 1.20828i
\(540\) 0 0
\(541\) 19.8244i 0.852318i 0.904648 + 0.426159i \(0.140134\pi\)
−0.904648 + 0.426159i \(0.859866\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 14.2475 + 24.6774i 0.610297 + 1.05706i
\(546\) 0 0
\(547\) 1.37157 2.37563i 0.0586442 0.101575i −0.835213 0.549927i \(-0.814656\pi\)
0.893857 + 0.448352i \(0.147989\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 28.0678 + 16.2050i 1.19573 + 0.690355i
\(552\) 0 0
\(553\) −52.7340 + 30.4460i −2.24248 + 1.29469i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 36.5778i 1.54985i 0.632052 + 0.774926i \(0.282213\pi\)
−0.632052 + 0.774926i \(0.717787\pi\)
\(558\) 0 0
\(559\) 5.80911 1.58988i 0.245699 0.0672446i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6.64821 11.5150i −0.280188 0.485301i 0.691243 0.722623i \(-0.257064\pi\)
−0.971431 + 0.237322i \(0.923730\pi\)
\(564\) 0 0
\(565\) 2.42500 + 1.40007i 0.102020 + 0.0589015i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 14.5215 25.1519i 0.608772 1.05442i −0.382671 0.923885i \(-0.624996\pi\)
0.991443 0.130540i \(-0.0416710\pi\)
\(570\) 0 0
\(571\) −0.708741 1.22757i −0.0296599 0.0513724i 0.850814 0.525466i \(-0.176109\pi\)
−0.880474 + 0.474094i \(0.842776\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.19439 0.0915124
\(576\) 0 0
\(577\) 17.5665i 0.731302i −0.930752 0.365651i \(-0.880846\pi\)
0.930752 0.365651i \(-0.119154\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 16.8327 + 29.1551i 0.698339 + 1.20956i
\(582\) 0 0
\(583\) −17.2227 9.94356i −0.713293 0.411820i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −25.1528 14.5220i −1.03817 0.599387i −0.118855 0.992912i \(-0.537922\pi\)
−0.919314 + 0.393524i \(0.871256\pi\)
\(588\) 0 0
\(589\) 13.6005 + 23.5568i 0.560400 + 0.970642i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 4.30919i 0.176957i 0.996078 + 0.0884786i \(0.0282005\pi\)
−0.996078 + 0.0884786i \(0.971800\pi\)
\(594\) 0 0
\(595\) 19.2560 0.789417
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −4.61748 7.99771i −0.188665 0.326777i 0.756140 0.654409i \(-0.227083\pi\)
−0.944805 + 0.327632i \(0.893749\pi\)
\(600\) 0 0
\(601\) 9.05716 15.6875i 0.369449 0.639905i −0.620030 0.784578i \(-0.712880\pi\)
0.989480 + 0.144673i \(0.0462131\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.79534 + 3.34594i 0.235614 + 0.136032i
\(606\) 0 0
\(607\) 5.22492 + 9.04982i 0.212073 + 0.367321i 0.952363 0.304966i \(-0.0986452\pi\)
−0.740290 + 0.672287i \(0.765312\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.69270 17.1462i −0.189846 0.693663i
\(612\) 0 0
\(613\) 24.1176i 0.974102i −0.873373 0.487051i \(-0.838073\pi\)
0.873373 0.487051i \(-0.161927\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 14.9897 8.65431i 0.603463 0.348410i −0.166940 0.985967i \(-0.553389\pi\)
0.770403 + 0.637558i \(0.220055\pi\)
\(618\) 0 0
\(619\) 41.6042 + 24.0202i 1.67221 + 0.965453i 0.966395 + 0.257060i \(0.0827539\pi\)
0.705818 + 0.708393i \(0.250579\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −18.4898 + 32.0254i −0.740780 + 1.28307i
\(624\) 0 0
\(625\) 4.24405 + 7.35091i 0.169762 + 0.294036i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 14.2361i 0.567632i
\(630\) 0 0
\(631\) 23.5460i 0.937351i 0.883370 + 0.468676i \(0.155269\pi\)
−0.883370 + 0.468676i \(0.844731\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −6.74145 + 3.89218i −0.267526 + 0.154456i
\(636\) 0 0
\(637\) −9.73208 + 37.1130i −0.385599 + 1.47047i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2.63766 4.56856i 0.104181 0.180447i −0.809222 0.587503i \(-0.800111\pi\)
0.913403 + 0.407056i \(0.133444\pi\)
\(642\) 0 0
\(643\) −37.6481 + 21.7361i −1.48469 + 0.857189i −0.999848 0.0174104i \(-0.994458\pi\)
−0.484846 + 0.874599i \(0.661124\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −4.53802 −0.178408 −0.0892040 0.996013i \(-0.528432\pi\)
−0.0892040 + 0.996013i \(0.528432\pi\)
\(648\) 0 0
\(649\) 10.0968 0.396333
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.38366 + 9.32478i 0.210679 + 0.364907i 0.951927 0.306324i \(-0.0990992\pi\)
−0.741248 + 0.671231i \(0.765766\pi\)
\(654\) 0 0
\(655\) 18.9239 + 10.9257i 0.739419 + 0.426904i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −7.79180 + 13.4958i −0.303526 + 0.525722i −0.976932 0.213551i \(-0.931497\pi\)
0.673406 + 0.739273i \(0.264830\pi\)
\(660\) 0 0
\(661\) −22.1283 + 12.7758i −0.860692 + 0.496921i −0.864244 0.503073i \(-0.832203\pi\)
0.00355165 + 0.999994i \(0.498869\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 32.6970i 1.26794i
\(666\) 0 0
\(667\) 6.64583 0.257328
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 21.9072 12.6481i 0.845717 0.488275i
\(672\) 0 0
\(673\) 1.05029 1.81916i 0.0404857 0.0701233i −0.845072 0.534652i \(-0.820443\pi\)
0.885558 + 0.464528i \(0.153776\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 11.2822 19.5414i 0.433611 0.751036i −0.563570 0.826068i \(-0.690573\pi\)
0.997181 + 0.0750320i \(0.0239059\pi\)
\(678\) 0 0
\(679\) −2.71493 4.70240i −0.104190 0.180462i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 50.4385i 1.92998i 0.262293 + 0.964988i \(0.415521\pi\)
−0.262293 + 0.964988i \(0.584479\pi\)
\(684\) 0 0
\(685\) −0.430715 −0.0164568
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −19.3362 19.1305i −0.736650 0.728816i
\(690\) 0 0
\(691\) 39.0601 + 22.5513i 1.48592 + 0.857894i 0.999871 0.0160406i \(-0.00510609\pi\)
0.486044 + 0.873934i \(0.338439\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 16.8180 + 9.70989i 0.637944 + 0.368317i
\(696\) 0 0
\(697\) 6.65874 3.84443i 0.252218 0.145618i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −27.9606 −1.05606 −0.528028 0.849227i \(-0.677068\pi\)
−0.528028 + 0.849227i \(0.677068\pi\)
\(702\) 0 0
\(703\) −24.1733 −0.911712
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −45.3205 + 26.1658i −1.70445 + 0.984067i
\(708\) 0 0
\(709\) −26.7050 15.4182i −1.00293 0.579041i −0.0938149 0.995590i \(-0.529906\pi\)
−0.909113 + 0.416549i \(0.863240\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 4.83045 + 2.78886i 0.180902 + 0.104444i
\(714\) 0 0
\(715\) −11.1619 11.0432i −0.417432 0.412993i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 24.0344 0.896330 0.448165 0.893951i \(-0.352078\pi\)
0.448165 + 0.893951i \(0.352078\pi\)
\(720\) 0 0
\(721\) 73.4946i 2.73708i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −7.80940 13.5263i −0.290034 0.502354i
\(726\) 0 0
\(727\) −4.84666 + 8.39466i −0.179753 + 0.311341i −0.941796 0.336186i \(-0.890863\pi\)
0.762043 + 0.647526i \(0.224196\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.31785 4.01464i 0.0857289 0.148487i
\(732\) 0 0
\(733\) 13.5294 7.81123i 0.499721 0.288514i −0.228877 0.973455i \(-0.573505\pi\)
0.728598 + 0.684941i \(0.240172\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 21.7767 0.802155
\(738\) 0 0
\(739\) 40.9286i 1.50558i 0.658258 + 0.752792i \(0.271293\pi\)
−0.658258 + 0.752792i \(0.728707\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27.1375 15.6678i 0.995578 0.574797i 0.0886409 0.996064i \(-0.471748\pi\)
0.906937 + 0.421267i \(0.138414\pi\)
\(744\) 0 0
\(745\) 17.3044 29.9721i 0.633983 1.09809i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −11.6799 6.74340i −0.426775 0.246398i
\(750\) 0 0
\(751\) 9.96795 + 17.2650i 0.363736 + 0.630009i 0.988572 0.150747i \(-0.0481678\pi\)
−0.624837 + 0.780755i \(0.714834\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −20.7399 −0.754802
\(756\) 0 0
\(757\) −17.0157 −0.618447 −0.309224 0.950989i \(-0.600069\pi\)
−0.309224 + 0.950989i \(0.600069\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11.6270 + 6.71285i −0.421478 + 0.243341i −0.695710 0.718323i \(-0.744910\pi\)
0.274231 + 0.961664i \(0.411577\pi\)
\(762\) 0 0
\(763\) −36.2242 + 62.7421i −1.31140 + 2.27142i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 13.3582 + 3.50289i 0.482336 + 0.126482i
\(768\) 0 0
\(769\) 39.9043 23.0388i 1.43899 0.830799i 0.441206 0.897406i \(-0.354551\pi\)
0.997779 + 0.0666070i \(0.0212174\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 38.1681i 1.37281i −0.727219 0.686405i \(-0.759188\pi\)
0.727219 0.686405i \(-0.240812\pi\)
\(774\) 0 0
\(775\) 13.1086i 0.470874i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.52792 11.3067i −0.233887 0.405104i
\(780\) 0 0
\(781\) −0.0701634 + 0.121526i −0.00251064 + 0.00434856i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −16.3894 9.46241i −0.584962 0.337728i
\(786\) 0 0
\(787\) −9.73274 + 5.61920i −0.346935 + 0.200303i −0.663334 0.748323i \(-0.730859\pi\)
0.316400 + 0.948626i \(0.397526\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 7.11934i 0.253134i
\(792\) 0 0
\(793\) 33.3715 9.13333i 1.18506 0.324334i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −25.9716 44.9841i −0.919961 1.59342i −0.799471 0.600704i \(-0.794887\pi\)
−0.120489 0.992715i \(-0.538446\pi\)
\(798\) 0 0
\(799\) −11.8497 6.84140i −0.419211 0.242032i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.30093 + 2.25328i −0.0459088 + 0.0795164i
\(804\) 0 0
\(805\) −3.35235 5.80644i −0.118155 0.204650i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −13.2120 −0.464508 −0.232254 0.972655i \(-0.574610\pi\)
−0.232254 + 0.972655i \(0.574610\pi\)
\(810\) 0 0
\(811\) 26.9033i 0.944704i −0.881410 0.472352i \(-0.843405\pi\)
0.881410 0.472352i \(-0.156595\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 9.37476 + 16.2376i 0.328383 + 0.568777i
\(816\) 0 0
\(817\) −6.81695 3.93577i −0.238495 0.137695i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 13.3222 + 7.69156i 0.464947 + 0.268437i 0.714122 0.700021i \(-0.246826\pi\)
−0.249175 + 0.968458i \(0.580159\pi\)
\(822\) 0 0
\(823\) −10.0259 17.3653i −0.349480 0.605318i 0.636677 0.771131i \(-0.280309\pi\)
−0.986157 + 0.165813i \(0.946975\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 11.6593i 0.405435i −0.979237 0.202718i \(-0.935023\pi\)
0.979237 0.202718i \(-0.0649774\pi\)
\(828\) 0 0
\(829\) −32.7895 −1.13883 −0.569413 0.822052i \(-0.692829\pi\)
−0.569413 + 0.822052i \(0.692829\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 14.7659 + 25.5752i 0.511607 + 0.886129i
\(834\) 0 0
\(835\) 19.6133 33.9712i 0.678745 1.17562i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −9.39251 5.42277i −0.324266 0.187215i 0.329027 0.944321i \(-0.393279\pi\)
−0.653292 + 0.757106i \(0.726613\pi\)
\(840\) 0 0
\(841\) −9.15119 15.8503i −0.315558 0.546563i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −10.9361 18.4827i −0.376214 0.635826i
\(846\) 0 0
\(847\) 17.0141i 0.584610i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4.29277 + 2.47843i −0.147154 + 0.0849595i
\(852\) 0 0
\(853\) 29.3981 + 16.9730i 1.00657 + 0.581144i 0.910186 0.414200i \(-0.135938\pi\)
0.0963857 + 0.995344i \(0.469272\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0.273868 0.474353i 0.00935515 0.0162036i −0.861310 0.508080i \(-0.830355\pi\)
0.870665 + 0.491876i \(0.163689\pi\)
\(858\) 0 0
\(859\) 13.3494 + 23.1218i 0.455474 + 0.788904i 0.998715 0.0506723i \(-0.0161364\pi\)
−0.543241 + 0.839577i \(0.682803\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 8.84803i 0.301190i 0.988596 + 0.150595i \(0.0481190\pi\)
−0.988596 + 0.150595i \(0.951881\pi\)
\(864\) 0 0
\(865\) 30.6734i 1.04293i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 33.0972 19.1087i 1.12275 0.648218i
\(870\) 0 0
\(871\) 28.8108 + 7.55501i 0.976218 + 0.255992i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −25.2251 + 43.6911i −0.852763 + 1.47703i
\(876\) 0 0
\(877\) 11.4060 6.58525i 0.385153 0.222368i −0.294905 0.955527i \(-0.595288\pi\)
0.680058 + 0.733159i \(0.261955\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 3.52038 0.118605 0.0593024 0.998240i \(-0.481112\pi\)
0.0593024 + 0.998240i \(0.481112\pi\)
\(882\) 0 0
\(883\) −23.7425 −0.799000 −0.399500 0.916733i \(-0.630816\pi\)
−0.399500 + 0.916733i \(0.630816\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.39354 + 4.14574i 0.0803673 + 0.139200i 0.903408 0.428783i \(-0.141057\pi\)
−0.823040 + 0.567983i \(0.807724\pi\)
\(888\) 0 0
\(889\) −17.1401 9.89583i −0.574860 0.331895i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −11.6169 + 20.1210i −0.388743 + 0.673323i
\(894\) 0 0
\(895\) −7.33834 + 4.23679i −0.245294 + 0.141620i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 39.7000i 1.32407i
\(900\) 0 0
\(901\) −20.9362 −0.697486
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −29.3334 + 16.9357i −0.975076 + 0.562961i
\(906\) 0 0
\(907\) 2.21433 3.83533i 0.0735256 0.127350i −0.826919 0.562322i \(-0.809908\pi\)
0.900444 + 0.434972i \(0.143242\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −25.2576 + 43.7474i −0.836820 + 1.44942i 0.0557194 + 0.998446i \(0.482255\pi\)
−0.892540 + 0.450969i \(0.851079\pi\)
\(912\) 0 0
\(913\) −10.5647 18.2985i −0.349639 0.605593i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 55.5572i 1.83466i
\(918\) 0 0
\(919\) −27.0493 −0.892275 −0.446138 0.894964i \(-0.647201\pi\)
−0.446138 + 0.894964i \(0.647201\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −0.134988 + 0.136439i −0.00444319 + 0.00449095i
\(924\) 0 0
\(925\) 10.0887 + 5.82472i 0.331715 + 0.191516i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 17.9409 + 10.3582i 0.588621 + 0.339841i 0.764552 0.644562i \(-0.222960\pi\)
−0.175931 + 0.984403i \(0.556293\pi\)
\(930\) 0 0
\(931\) 43.4273 25.0728i 1.42327 0.821726i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −12.0856 −0.395240
\(936\) 0 0
\(937\) 12.0164 0.392557 0.196279 0.980548i \(-0.437114\pi\)
0.196279 + 0.980548i \(0.437114\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 16.4914 9.52132i 0.537604 0.310386i −0.206503 0.978446i \(-0.566208\pi\)
0.744108 + 0.668060i \(0.232875\pi\)
\(942\) 0 0
\(943\) −2.31850 1.33858i −0.0755006 0.0435903i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −36.4342 21.0353i −1.18395 0.683554i −0.227026 0.973889i \(-0.572900\pi\)
−0.956925 + 0.290334i \(0.906233\pi\)
\(948\) 0 0
\(949\) −2.50288 + 2.52978i −0.0812469 + 0.0821201i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −33.9675 −1.10032 −0.550158 0.835060i \(-0.685433\pi\)
−0.550158 + 0.835060i \(0.685433\pi\)
\(954\) 0 0
\(955\) 32.3181i 1.04579i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −0.547544 0.948374i −0.0176811 0.0306246i
\(960\) 0 0
\(961\) 1.15976 2.00877i 0.0374118 0.0647991i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.66494 8.07991i 0.150170 0.260102i
\(966\) 0 0
\(967\) 0.908277 0.524394i 0.0292082 0.0168634i −0.485325 0.874334i \(-0.661299\pi\)
0.514533 + 0.857471i \(0.327965\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.63762 −0.0525538 −0.0262769 0.999655i \(-0.508365\pi\)
−0.0262769 + 0.999655i \(0.508365\pi\)
\(972\) 0 0
\(973\) 49.3746i 1.58288i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −33.1964 + 19.1659i −1.06205 + 0.613173i −0.925998 0.377529i \(-0.876774\pi\)
−0.136049 + 0.990702i \(0.543440\pi\)
\(978\) 0 0
\(979\) 11.6047 20.1000i 0.370889 0.642398i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −48.0181 27.7233i −1.53154 0.884236i −0.999291 0.0376482i \(-0.988013\pi\)
−0.532250 0.846587i \(-0.678653\pi\)
\(984\) 0 0
\(985\) 21.1663 + 36.6612i 0.674416 + 1.16812i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.61410 −0.0513254
\(990\) 0 0
\(991\) 39.1442 1.24346 0.621728 0.783233i \(-0.286431\pi\)
0.621728 + 0.783233i \(0.286431\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2.99776 1.73076i 0.0950353 0.0548687i
\(996\) 0 0
\(997\) −3.87163 + 6.70585i −0.122616 + 0.212377i −0.920798 0.390039i \(-0.872462\pi\)
0.798183 + 0.602415i \(0.205795\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2808.2.cw.b.1585.12 80
3.2 odd 2 936.2.cw.b.25.30 yes 80
9.4 even 3 inner 2808.2.cw.b.2521.29 80
9.5 odd 6 936.2.cw.b.337.29 yes 80
13.12 even 2 inner 2808.2.cw.b.1585.29 80
39.38 odd 2 936.2.cw.b.25.29 80
117.77 odd 6 936.2.cw.b.337.30 yes 80
117.103 even 6 inner 2808.2.cw.b.2521.12 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.cw.b.25.29 80 39.38 odd 2
936.2.cw.b.25.30 yes 80 3.2 odd 2
936.2.cw.b.337.29 yes 80 9.5 odd 6
936.2.cw.b.337.30 yes 80 117.77 odd 6
2808.2.cw.b.1585.12 80 1.1 even 1 trivial
2808.2.cw.b.1585.29 80 13.12 even 2 inner
2808.2.cw.b.2521.12 80 117.103 even 6 inner
2808.2.cw.b.2521.29 80 9.4 even 3 inner