Properties

Label 2808.2.cw.b.1585.10
Level $2808$
Weight $2$
Character 2808.1585
Analytic conductor $22.422$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2808,2,Mod(1585,2808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2808.1585"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2808.cw (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4219928876\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 936)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1585.10
Character \(\chi\) \(=\) 2808.1585
Dual form 2808.2.cw.b.2521.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.91469 + 1.10545i) q^{5} +(-1.00877 - 0.582415i) q^{7} +(0.252566 + 0.145819i) q^{11} +(1.26769 + 3.37535i) q^{13} -2.15546 q^{17} -3.83640i q^{19} +(3.65862 + 6.33691i) q^{23} +(-0.0559674 + 0.0969384i) q^{25} +(-0.370932 + 0.642474i) q^{29} +(5.53094 - 3.19329i) q^{31} +2.57532 q^{35} -5.81635i q^{37} +(-5.12394 + 2.95831i) q^{41} +(-1.75717 + 3.04352i) q^{43} +(-8.10996 - 4.68229i) q^{47} +(-2.82159 - 4.88713i) q^{49} -5.41101 q^{53} -0.644781 q^{55} +(-8.56121 + 4.94282i) q^{59} +(2.34926 - 4.06904i) q^{61} +(-6.15851 - 5.06138i) q^{65} +(7.47721 - 4.31697i) q^{67} -1.57202i q^{71} -1.79440i q^{73} +(-0.169854 - 0.294196i) q^{77} +(-2.80768 + 4.86305i) q^{79} +(-7.17113 - 4.14026i) q^{83} +(4.12704 - 2.38275i) q^{85} +16.0139i q^{89} +(0.687038 - 4.14328i) q^{91} +(4.24094 + 7.34553i) q^{95} +(-14.9442 - 8.62804i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 6 q^{13} + 4 q^{17} - 10 q^{23} + 44 q^{25} + 52 q^{35} - 26 q^{43} + 48 q^{49} - 60 q^{53} - 16 q^{55} - 10 q^{61} + 26 q^{65} - 32 q^{77} + 6 q^{79} - 4 q^{91} - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2808\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(1081\) \(1405\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.91469 + 1.10545i −0.856277 + 0.494372i −0.862764 0.505607i \(-0.831268\pi\)
0.00648699 + 0.999979i \(0.497935\pi\)
\(6\) 0 0
\(7\) −1.00877 0.582415i −0.381280 0.220132i 0.297095 0.954848i \(-0.403982\pi\)
−0.678375 + 0.734716i \(0.737316\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.252566 + 0.145819i 0.0761514 + 0.0439661i 0.537592 0.843205i \(-0.319334\pi\)
−0.461441 + 0.887171i \(0.652667\pi\)
\(12\) 0 0
\(13\) 1.26769 + 3.37535i 0.351595 + 0.936152i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.15546 −0.522776 −0.261388 0.965234i \(-0.584180\pi\)
−0.261388 + 0.965234i \(0.584180\pi\)
\(18\) 0 0
\(19\) 3.83640i 0.880130i −0.897966 0.440065i \(-0.854955\pi\)
0.897966 0.440065i \(-0.145045\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.65862 + 6.33691i 0.762874 + 1.32134i 0.941363 + 0.337395i \(0.109546\pi\)
−0.178489 + 0.983942i \(0.557121\pi\)
\(24\) 0 0
\(25\) −0.0559674 + 0.0969384i −0.0111935 + 0.0193877i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.370932 + 0.642474i −0.0688804 + 0.119304i −0.898409 0.439160i \(-0.855276\pi\)
0.829528 + 0.558465i \(0.188609\pi\)
\(30\) 0 0
\(31\) 5.53094 3.19329i 0.993386 0.573532i 0.0871016 0.996199i \(-0.472240\pi\)
0.906285 + 0.422668i \(0.138906\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.57532 0.435308
\(36\) 0 0
\(37\) 5.81635i 0.956202i −0.878305 0.478101i \(-0.841325\pi\)
0.878305 0.478101i \(-0.158675\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.12394 + 2.95831i −0.800225 + 0.462010i −0.843550 0.537051i \(-0.819538\pi\)
0.0433247 + 0.999061i \(0.486205\pi\)
\(42\) 0 0
\(43\) −1.75717 + 3.04352i −0.267967 + 0.464132i −0.968337 0.249648i \(-0.919685\pi\)
0.700370 + 0.713780i \(0.253018\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.10996 4.68229i −1.18296 0.682982i −0.226262 0.974067i \(-0.572650\pi\)
−0.956697 + 0.291085i \(0.905984\pi\)
\(48\) 0 0
\(49\) −2.82159 4.88713i −0.403084 0.698161i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.41101 −0.743259 −0.371630 0.928381i \(-0.621201\pi\)
−0.371630 + 0.928381i \(0.621201\pi\)
\(54\) 0 0
\(55\) −0.644781 −0.0869423
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.56121 + 4.94282i −1.11458 + 0.643500i −0.940011 0.341145i \(-0.889185\pi\)
−0.174565 + 0.984646i \(0.555852\pi\)
\(60\) 0 0
\(61\) 2.34926 4.06904i 0.300792 0.520988i −0.675523 0.737339i \(-0.736082\pi\)
0.976316 + 0.216351i \(0.0694156\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.15851 5.06138i −0.763869 0.627787i
\(66\) 0 0
\(67\) 7.47721 4.31697i 0.913487 0.527402i 0.0319356 0.999490i \(-0.489833\pi\)
0.881551 + 0.472088i \(0.156500\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.57202i 0.186564i −0.995640 0.0932822i \(-0.970264\pi\)
0.995640 0.0932822i \(-0.0297359\pi\)
\(72\) 0 0
\(73\) 1.79440i 0.210018i −0.994471 0.105009i \(-0.966513\pi\)
0.994471 0.105009i \(-0.0334872\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.169854 0.294196i −0.0193567 0.0335268i
\(78\) 0 0
\(79\) −2.80768 + 4.86305i −0.315889 + 0.547136i −0.979626 0.200830i \(-0.935636\pi\)
0.663737 + 0.747966i \(0.268969\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.17113 4.14026i −0.787134 0.454452i 0.0518185 0.998657i \(-0.483498\pi\)
−0.838953 + 0.544204i \(0.816832\pi\)
\(84\) 0 0
\(85\) 4.12704 2.38275i 0.447641 0.258446i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 16.0139i 1.69747i 0.528822 + 0.848733i \(0.322634\pi\)
−0.528822 + 0.848733i \(0.677366\pi\)
\(90\) 0 0
\(91\) 0.687038 4.14328i 0.0720212 0.434334i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.24094 + 7.34553i 0.435111 + 0.753635i
\(96\) 0 0
\(97\) −14.9442 8.62804i −1.51735 0.876044i −0.999792 0.0203983i \(-0.993507\pi\)
−0.517561 0.855646i \(-0.673160\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.91990 6.78947i 0.390045 0.675578i −0.602410 0.798187i \(-0.705793\pi\)
0.992455 + 0.122609i \(0.0391261\pi\)
\(102\) 0 0
\(103\) −3.51672 6.09113i −0.346512 0.600177i 0.639115 0.769111i \(-0.279301\pi\)
−0.985627 + 0.168934i \(0.945967\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.67922 −0.742378 −0.371189 0.928557i \(-0.621050\pi\)
−0.371189 + 0.928557i \(0.621050\pi\)
\(108\) 0 0
\(109\) 2.72395i 0.260907i 0.991454 + 0.130454i \(0.0416433\pi\)
−0.991454 + 0.130454i \(0.958357\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.00926 5.21219i −0.283087 0.490321i 0.689056 0.724708i \(-0.258025\pi\)
−0.972144 + 0.234386i \(0.924692\pi\)
\(114\) 0 0
\(115\) −14.0102 8.08882i −1.30646 0.754286i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.17437 + 1.25537i 0.199324 + 0.115080i
\(120\) 0 0
\(121\) −5.45747 9.45262i −0.496134 0.859329i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.3020i 1.01088i
\(126\) 0 0
\(127\) −4.33262 −0.384458 −0.192229 0.981350i \(-0.561572\pi\)
−0.192229 + 0.981350i \(0.561572\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.97323 6.88184i −0.347143 0.601269i 0.638598 0.769541i \(-0.279515\pi\)
−0.985741 + 0.168272i \(0.946181\pi\)
\(132\) 0 0
\(133\) −2.23438 + 3.87005i −0.193745 + 0.335576i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −8.89322 5.13450i −0.759799 0.438670i 0.0694247 0.997587i \(-0.477884\pi\)
−0.829224 + 0.558917i \(0.811217\pi\)
\(138\) 0 0
\(139\) 4.35935 + 7.55061i 0.369755 + 0.640434i 0.989527 0.144348i \(-0.0461083\pi\)
−0.619772 + 0.784782i \(0.712775\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.172013 + 1.03735i −0.0143845 + 0.0867476i
\(144\) 0 0
\(145\) 1.64019i 0.136210i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.53118 + 3.77078i −0.535055 + 0.308914i −0.743072 0.669211i \(-0.766632\pi\)
0.208018 + 0.978125i \(0.433299\pi\)
\(150\) 0 0
\(151\) −12.9339 7.46741i −1.05255 0.607689i −0.129187 0.991620i \(-0.541237\pi\)
−0.923362 + 0.383931i \(0.874570\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −7.06004 + 12.2283i −0.567076 + 0.982204i
\(156\) 0 0
\(157\) −4.54448 7.87128i −0.362689 0.628196i 0.625713 0.780053i \(-0.284808\pi\)
−0.988402 + 0.151857i \(0.951475\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.52333i 0.671732i
\(162\) 0 0
\(163\) 17.8973i 1.40182i 0.713248 + 0.700912i \(0.247223\pi\)
−0.713248 + 0.700912i \(0.752777\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.6547 6.15151i 0.824488 0.476018i −0.0274735 0.999623i \(-0.508746\pi\)
0.851962 + 0.523604i \(0.175413\pi\)
\(168\) 0 0
\(169\) −9.78591 + 8.55780i −0.752762 + 0.658292i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.7657 18.6467i 0.818499 1.41768i −0.0882885 0.996095i \(-0.528140\pi\)
0.906788 0.421587i \(-0.138527\pi\)
\(174\) 0 0
\(175\) 0.112917 0.0651925i 0.00853570 0.00492809i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 14.8784 1.11206 0.556031 0.831161i \(-0.312323\pi\)
0.556031 + 0.831161i \(0.312323\pi\)
\(180\) 0 0
\(181\) −11.7742 −0.875171 −0.437585 0.899177i \(-0.644166\pi\)
−0.437585 + 0.899177i \(0.644166\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.42968 + 11.1365i 0.472719 + 0.818774i
\(186\) 0 0
\(187\) −0.544395 0.314307i −0.0398101 0.0229844i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −0.741298 + 1.28397i −0.0536384 + 0.0929045i −0.891598 0.452828i \(-0.850415\pi\)
0.837959 + 0.545732i \(0.183749\pi\)
\(192\) 0 0
\(193\) −12.2920 + 7.09680i −0.884799 + 0.510839i −0.872238 0.489082i \(-0.837332\pi\)
−0.0125615 + 0.999921i \(0.503999\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 15.2490i 1.08645i −0.839589 0.543223i \(-0.817204\pi\)
0.839589 0.543223i \(-0.182796\pi\)
\(198\) 0 0
\(199\) 12.2757 0.870202 0.435101 0.900382i \(-0.356713\pi\)
0.435101 + 0.900382i \(0.356713\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.748373 0.432073i 0.0525255 0.0303256i
\(204\) 0 0
\(205\) 6.54052 11.3285i 0.456809 0.791217i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.559419 0.968943i 0.0386958 0.0670232i
\(210\) 0 0
\(211\) 12.3557 + 21.4007i 0.850600 + 1.47328i 0.880667 + 0.473735i \(0.157095\pi\)
−0.0300669 + 0.999548i \(0.509572\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.76986i 0.529900i
\(216\) 0 0
\(217\) −7.43928 −0.505011
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.73246 7.27542i −0.183805 0.489398i
\(222\) 0 0
\(223\) −22.2970 12.8732i −1.49312 0.862053i −0.493150 0.869944i \(-0.664155\pi\)
−0.999969 + 0.00789126i \(0.997488\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.90850 + 5.72068i 0.657650 + 0.379695i 0.791381 0.611323i \(-0.209362\pi\)
−0.133731 + 0.991018i \(0.542696\pi\)
\(228\) 0 0
\(229\) 11.8918 6.86575i 0.785834 0.453702i −0.0526598 0.998613i \(-0.516770\pi\)
0.838494 + 0.544911i \(0.183437\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −17.8969 −1.17247 −0.586233 0.810143i \(-0.699390\pi\)
−0.586233 + 0.810143i \(0.699390\pi\)
\(234\) 0 0
\(235\) 20.7041 1.35059
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −7.94867 + 4.58917i −0.514157 + 0.296849i −0.734541 0.678565i \(-0.762602\pi\)
0.220384 + 0.975413i \(0.429269\pi\)
\(240\) 0 0
\(241\) 3.50775 + 2.02520i 0.225954 + 0.130455i 0.608704 0.793397i \(-0.291690\pi\)
−0.382750 + 0.923852i \(0.625023\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 10.8049 + 6.23824i 0.690302 + 0.398546i
\(246\) 0 0
\(247\) 12.9492 4.86338i 0.823936 0.309449i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 7.19260 0.453993 0.226996 0.973896i \(-0.427109\pi\)
0.226996 + 0.973896i \(0.427109\pi\)
\(252\) 0 0
\(253\) 2.13398i 0.134162i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.98687 10.3696i −0.373451 0.646836i 0.616643 0.787243i \(-0.288492\pi\)
−0.990094 + 0.140407i \(0.955159\pi\)
\(258\) 0 0
\(259\) −3.38753 + 5.86737i −0.210491 + 0.364581i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −9.94118 + 17.2186i −0.613000 + 1.06175i 0.377732 + 0.925915i \(0.376704\pi\)
−0.990732 + 0.135832i \(0.956629\pi\)
\(264\) 0 0
\(265\) 10.3604 5.98159i 0.636435 0.367446i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.61461 0.342329 0.171165 0.985242i \(-0.445247\pi\)
0.171165 + 0.985242i \(0.445247\pi\)
\(270\) 0 0
\(271\) 8.77363i 0.532960i 0.963840 + 0.266480i \(0.0858606\pi\)
−0.963840 + 0.266480i \(0.914139\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.0282709 + 0.0163222i −0.00170480 + 0.000984266i
\(276\) 0 0
\(277\) 6.62496 11.4748i 0.398055 0.689452i −0.595431 0.803407i \(-0.703019\pi\)
0.993486 + 0.113955i \(0.0363519\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3.55941 + 2.05502i 0.212336 + 0.122592i 0.602397 0.798197i \(-0.294213\pi\)
−0.390060 + 0.920789i \(0.627546\pi\)
\(282\) 0 0
\(283\) 2.51643 + 4.35858i 0.149586 + 0.259091i 0.931075 0.364829i \(-0.118873\pi\)
−0.781488 + 0.623920i \(0.785539\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6.89185 0.406813
\(288\) 0 0
\(289\) −12.3540 −0.726705
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.273708 + 0.158025i −0.0159902 + 0.00923194i −0.507974 0.861373i \(-0.669605\pi\)
0.491984 + 0.870604i \(0.336272\pi\)
\(294\) 0 0
\(295\) 10.9281 18.9280i 0.636256 1.10203i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −16.7512 + 20.3823i −0.968750 + 1.17874i
\(300\) 0 0
\(301\) 3.54518 2.04681i 0.204341 0.117976i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 10.3880i 0.594813i
\(306\) 0 0
\(307\) 5.60861i 0.320100i 0.987109 + 0.160050i \(0.0511656\pi\)
−0.987109 + 0.160050i \(0.948834\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.39800 + 11.0817i 0.362797 + 0.628384i 0.988420 0.151742i \(-0.0484884\pi\)
−0.625623 + 0.780126i \(0.715155\pi\)
\(312\) 0 0
\(313\) −5.35958 + 9.28307i −0.302942 + 0.524710i −0.976801 0.214149i \(-0.931302\pi\)
0.673859 + 0.738860i \(0.264635\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −26.1325 15.0876i −1.46775 0.847405i −0.468400 0.883516i \(-0.655169\pi\)
−0.999348 + 0.0361118i \(0.988503\pi\)
\(318\) 0 0
\(319\) −0.187370 + 0.108178i −0.0104907 + 0.00605680i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.26921i 0.460111i
\(324\) 0 0
\(325\) −0.398150 0.0660212i −0.0220854 0.00366220i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5.45407 + 9.44672i 0.300692 + 0.520815i
\(330\) 0 0
\(331\) 12.6168 + 7.28431i 0.693482 + 0.400382i 0.804915 0.593390i \(-0.202211\pi\)
−0.111433 + 0.993772i \(0.535544\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −9.54438 + 16.5313i −0.521465 + 0.903204i
\(336\) 0 0
\(337\) 14.8456 + 25.7133i 0.808691 + 1.40069i 0.913771 + 0.406230i \(0.133157\pi\)
−0.105080 + 0.994464i \(0.533510\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.86257 0.100864
\(342\) 0 0
\(343\) 14.7271i 0.795191i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.21438 7.29952i −0.226240 0.391859i 0.730451 0.682965i \(-0.239310\pi\)
−0.956691 + 0.291106i \(0.905977\pi\)
\(348\) 0 0
\(349\) −27.2940 15.7582i −1.46102 0.843517i −0.461957 0.886903i \(-0.652852\pi\)
−0.999058 + 0.0433851i \(0.986186\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.40734 + 1.38988i 0.128130 + 0.0739758i 0.562695 0.826665i \(-0.309765\pi\)
−0.434565 + 0.900640i \(0.643098\pi\)
\(354\) 0 0
\(355\) 1.73779 + 3.00994i 0.0922322 + 0.159751i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 28.1761i 1.48708i 0.668692 + 0.743539i \(0.266854\pi\)
−0.668692 + 0.743539i \(0.733146\pi\)
\(360\) 0 0
\(361\) 4.28205 0.225371
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.98361 + 3.43572i 0.103827 + 0.179834i
\(366\) 0 0
\(367\) −17.7440 + 30.7335i −0.926230 + 1.60428i −0.136659 + 0.990618i \(0.543637\pi\)
−0.789571 + 0.613660i \(0.789697\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.45847 + 3.15145i 0.283390 + 0.163615i
\(372\) 0 0
\(373\) −15.7013 27.1954i −0.812982 1.40813i −0.910768 0.412919i \(-0.864509\pi\)
0.0977853 0.995208i \(-0.468824\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.63880 0.437565i −0.135905 0.0225358i
\(378\) 0 0
\(379\) 20.9265i 1.07492i −0.843288 0.537462i \(-0.819383\pi\)
0.843288 0.537462i \(-0.180617\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.210574 0.121575i 0.0107598 0.00621219i −0.494610 0.869115i \(-0.664689\pi\)
0.505370 + 0.862903i \(0.331356\pi\)
\(384\) 0 0
\(385\) 0.650437 + 0.375530i 0.0331494 + 0.0191388i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 18.0937 31.3391i 0.917385 1.58896i 0.114013 0.993479i \(-0.463629\pi\)
0.803372 0.595478i \(-0.203037\pi\)
\(390\) 0 0
\(391\) −7.88600 13.6590i −0.398812 0.690763i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 12.4150i 0.624666i
\(396\) 0 0
\(397\) 33.0787i 1.66017i 0.557635 + 0.830086i \(0.311709\pi\)
−0.557635 + 0.830086i \(0.688291\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.59095 2.65058i 0.229261 0.132364i −0.380970 0.924587i \(-0.624410\pi\)
0.610231 + 0.792223i \(0.291077\pi\)
\(402\) 0 0
\(403\) 17.7900 + 14.6207i 0.886183 + 0.728310i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.848134 1.46901i 0.0420404 0.0728162i
\(408\) 0 0
\(409\) −0.738843 + 0.426571i −0.0365334 + 0.0210926i −0.518155 0.855286i \(-0.673381\pi\)
0.481622 + 0.876379i \(0.340048\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 11.5151 0.566620
\(414\) 0 0
\(415\) 18.3074 0.898673
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −19.3543 33.5226i −0.945520 1.63769i −0.754707 0.656062i \(-0.772221\pi\)
−0.190813 0.981626i \(-0.561112\pi\)
\(420\) 0 0
\(421\) 14.2901 + 8.25041i 0.696459 + 0.402101i 0.806027 0.591879i \(-0.201614\pi\)
−0.109568 + 0.993979i \(0.534947\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.120636 0.208947i 0.00585168 0.0101354i
\(426\) 0 0
\(427\) −4.73974 + 2.73649i −0.229372 + 0.132428i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 21.9603i 1.05779i −0.848687 0.528895i \(-0.822607\pi\)
0.848687 0.528895i \(-0.177393\pi\)
\(432\) 0 0
\(433\) −7.96989 −0.383009 −0.191504 0.981492i \(-0.561337\pi\)
−0.191504 + 0.981492i \(0.561337\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 24.3109 14.0359i 1.16295 0.671428i
\(438\) 0 0
\(439\) 12.7371 22.0613i 0.607908 1.05293i −0.383677 0.923468i \(-0.625342\pi\)
0.991585 0.129460i \(-0.0413244\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.93415 + 6.81415i −0.186917 + 0.323750i −0.944221 0.329313i \(-0.893183\pi\)
0.757304 + 0.653063i \(0.226516\pi\)
\(444\) 0 0
\(445\) −17.7025 30.6616i −0.839179 1.45350i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 20.2221i 0.954342i 0.878811 + 0.477171i \(0.158338\pi\)
−0.878811 + 0.477171i \(0.841662\pi\)
\(450\) 0 0
\(451\) −1.72551 −0.0812511
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.26471 + 8.69259i 0.153052 + 0.407515i
\(456\) 0 0
\(457\) −1.02690 0.592879i −0.0480362 0.0277337i 0.475790 0.879559i \(-0.342162\pi\)
−0.523826 + 0.851825i \(0.675496\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 17.9921 + 10.3878i 0.837976 + 0.483806i 0.856576 0.516021i \(-0.172587\pi\)
−0.0185995 + 0.999827i \(0.505921\pi\)
\(462\) 0 0
\(463\) 21.0641 12.1613i 0.978930 0.565186i 0.0769833 0.997032i \(-0.475471\pi\)
0.901947 + 0.431847i \(0.142138\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.0899 −0.466905 −0.233453 0.972368i \(-0.575002\pi\)
−0.233453 + 0.972368i \(0.575002\pi\)
\(468\) 0 0
\(469\) −10.0571 −0.464393
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.887604 + 0.512458i −0.0408121 + 0.0235629i
\(474\) 0 0
\(475\) 0.371894 + 0.214713i 0.0170637 + 0.00985172i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 36.4756 + 21.0592i 1.66661 + 0.962220i 0.969443 + 0.245316i \(0.0788918\pi\)
0.697172 + 0.716904i \(0.254442\pi\)
\(480\) 0 0
\(481\) 19.6322 7.37335i 0.895151 0.336196i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 38.1514 1.73237
\(486\) 0 0
\(487\) 25.4950i 1.15529i 0.816289 + 0.577644i \(0.196028\pi\)
−0.816289 + 0.577644i \(0.803972\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −11.2578 19.4991i −0.508059 0.879984i −0.999956 0.00933096i \(-0.997030\pi\)
0.491897 0.870653i \(-0.336304\pi\)
\(492\) 0 0
\(493\) 0.799530 1.38483i 0.0360090 0.0623695i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.915568 + 1.58581i −0.0410688 + 0.0711333i
\(498\) 0 0
\(499\) 15.5398 8.97193i 0.695659 0.401639i −0.110070 0.993924i \(-0.535107\pi\)
0.805729 + 0.592285i \(0.201774\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 9.20678 0.410510 0.205255 0.978709i \(-0.434198\pi\)
0.205255 + 0.978709i \(0.434198\pi\)
\(504\) 0 0
\(505\) 17.3330i 0.771309i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.565564 0.326529i 0.0250682 0.0144731i −0.487414 0.873171i \(-0.662060\pi\)
0.512482 + 0.858698i \(0.328726\pi\)
\(510\) 0 0
\(511\) −1.04508 + 1.81014i −0.0462318 + 0.0800758i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 13.4669 + 7.77510i 0.593421 + 0.342612i
\(516\) 0 0
\(517\) −1.36553 2.36517i −0.0600560 0.104020i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −31.8369 −1.39480 −0.697399 0.716683i \(-0.745659\pi\)
−0.697399 + 0.716683i \(0.745659\pi\)
\(522\) 0 0
\(523\) 33.3595 1.45871 0.729355 0.684136i \(-0.239820\pi\)
0.729355 + 0.684136i \(0.239820\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −11.9217 + 6.88301i −0.519319 + 0.299829i
\(528\) 0 0
\(529\) −15.2709 + 26.4500i −0.663953 + 1.15000i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −16.4809 13.5448i −0.713867 0.586692i
\(534\) 0 0
\(535\) 14.7034 8.48898i 0.635681 0.367011i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.64576i 0.0708880i
\(540\) 0 0
\(541\) 10.1445i 0.436146i 0.975932 + 0.218073i \(0.0699771\pi\)
−0.975932 + 0.218073i \(0.930023\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.01119 5.21553i −0.128985 0.223409i
\(546\) 0 0
\(547\) 8.35259 14.4671i 0.357131 0.618569i −0.630349 0.776312i \(-0.717088\pi\)
0.987480 + 0.157742i \(0.0504216\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.46479 + 1.42304i 0.105003 + 0.0606237i
\(552\) 0 0
\(553\) 5.66463 3.27047i 0.240884 0.139075i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 31.3082i 1.32657i 0.748367 + 0.663285i \(0.230838\pi\)
−0.748367 + 0.663285i \(0.769162\pi\)
\(558\) 0 0
\(559\) −12.5005 2.07283i −0.528714 0.0876713i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −7.58162 13.1318i −0.319527 0.553438i 0.660862 0.750507i \(-0.270191\pi\)
−0.980389 + 0.197070i \(0.936857\pi\)
\(564\) 0 0
\(565\) 11.5236 + 6.65316i 0.484802 + 0.279901i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7.13422 12.3568i 0.299082 0.518025i −0.676844 0.736126i \(-0.736653\pi\)
0.975926 + 0.218101i \(0.0699862\pi\)
\(570\) 0 0
\(571\) 3.56135 + 6.16844i 0.149038 + 0.258141i 0.930872 0.365345i \(-0.119049\pi\)
−0.781834 + 0.623486i \(0.785716\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.819053 −0.0341569
\(576\) 0 0
\(577\) 44.7223i 1.86181i 0.365255 + 0.930907i \(0.380982\pi\)
−0.365255 + 0.930907i \(0.619018\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.82269 + 8.35315i 0.200079 + 0.346547i
\(582\) 0 0
\(583\) −1.36664 0.789027i −0.0566002 0.0326782i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −6.86543 3.96376i −0.283367 0.163602i 0.351580 0.936158i \(-0.385645\pi\)
−0.634947 + 0.772556i \(0.718978\pi\)
\(588\) 0 0
\(589\) −12.2507 21.2189i −0.504783 0.874309i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.7522i 0.646866i −0.946251 0.323433i \(-0.895163\pi\)
0.946251 0.323433i \(-0.104837\pi\)
\(594\) 0 0
\(595\) −5.55100 −0.227569
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 11.0365 + 19.1157i 0.450938 + 0.781047i 0.998445 0.0557544i \(-0.0177564\pi\)
−0.547507 + 0.836801i \(0.684423\pi\)
\(600\) 0 0
\(601\) 8.79460 15.2327i 0.358739 0.621354i −0.629011 0.777396i \(-0.716540\pi\)
0.987750 + 0.156042i \(0.0498734\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 20.8988 + 12.0659i 0.849656 + 0.490549i
\(606\) 0 0
\(607\) 0.449016 + 0.777719i 0.0182250 + 0.0315666i 0.874994 0.484134i \(-0.160865\pi\)
−0.856769 + 0.515700i \(0.827532\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.52340 33.3096i 0.223453 1.34756i
\(612\) 0 0
\(613\) 0.130728i 0.00528005i −0.999997 0.00264002i \(-0.999160\pi\)
0.999997 0.00264002i \(-0.000840346\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −10.4725 + 6.04630i −0.421607 + 0.243415i −0.695765 0.718270i \(-0.744934\pi\)
0.274158 + 0.961685i \(0.411601\pi\)
\(618\) 0 0
\(619\) −38.1937 22.0511i −1.53513 0.886310i −0.999113 0.0421046i \(-0.986594\pi\)
−0.536020 0.844205i \(-0.680073\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 9.32671 16.1543i 0.373667 0.647210i
\(624\) 0 0
\(625\) 12.2139 + 21.1551i 0.488556 + 0.846204i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 12.5369i 0.499880i
\(630\) 0 0
\(631\) 20.5084i 0.816427i 0.912886 + 0.408214i \(0.133848\pi\)
−0.912886 + 0.408214i \(0.866152\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.29564 4.78949i 0.329202 0.190065i
\(636\) 0 0
\(637\) 12.9188 15.7192i 0.511863 0.622818i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.24570 2.15761i 0.0492022 0.0852206i −0.840375 0.542005i \(-0.817665\pi\)
0.889578 + 0.456784i \(0.150999\pi\)
\(642\) 0 0
\(643\) −4.31818 + 2.49310i −0.170292 + 0.0983184i −0.582724 0.812670i \(-0.698013\pi\)
0.412431 + 0.910989i \(0.364680\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.16284 0.360229 0.180114 0.983646i \(-0.442353\pi\)
0.180114 + 0.983646i \(0.442353\pi\)
\(648\) 0 0
\(649\) −2.88303 −0.113169
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12.1359 + 21.0201i 0.474916 + 0.822579i 0.999587 0.0287260i \(-0.00914504\pi\)
−0.524671 + 0.851305i \(0.675812\pi\)
\(654\) 0 0
\(655\) 15.2150 + 8.78440i 0.594501 + 0.343235i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −5.82249 + 10.0848i −0.226812 + 0.392850i −0.956862 0.290544i \(-0.906164\pi\)
0.730050 + 0.683394i \(0.239497\pi\)
\(660\) 0 0
\(661\) −30.6874 + 17.7174i −1.19360 + 0.689125i −0.959121 0.282996i \(-0.908672\pi\)
−0.234479 + 0.972121i \(0.575338\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 9.87995i 0.383128i
\(666\) 0 0
\(667\) −5.42840 −0.210188
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.18669 0.685134i 0.0458115 0.0264493i
\(672\) 0 0
\(673\) −23.3151 + 40.3829i −0.898729 + 1.55664i −0.0696090 + 0.997574i \(0.522175\pi\)
−0.829120 + 0.559070i \(0.811158\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 11.0245 19.0950i 0.423707 0.733882i −0.572592 0.819841i \(-0.694062\pi\)
0.996299 + 0.0859589i \(0.0273954\pi\)
\(678\) 0 0
\(679\) 10.0502 + 17.4074i 0.385691 + 0.668036i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 44.9210i 1.71885i 0.511259 + 0.859427i \(0.329179\pi\)
−0.511259 + 0.859427i \(0.670821\pi\)
\(684\) 0 0
\(685\) 22.7037 0.867464
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −6.85950 18.2640i −0.261326 0.695804i
\(690\) 0 0
\(691\) 34.7246 + 20.0482i 1.32099 + 0.762671i 0.983886 0.178798i \(-0.0572209\pi\)
0.337099 + 0.941469i \(0.390554\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −16.6936 9.63806i −0.633225 0.365593i
\(696\) 0 0
\(697\) 11.0445 6.37652i 0.418339 0.241528i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −23.7205 −0.895913 −0.447956 0.894055i \(-0.647848\pi\)
−0.447956 + 0.894055i \(0.647848\pi\)
\(702\) 0 0
\(703\) −22.3138 −0.841583
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −7.90858 + 4.56602i −0.297433 + 0.171723i
\(708\) 0 0
\(709\) −7.38775 4.26532i −0.277453 0.160187i 0.354817 0.934936i \(-0.384543\pi\)
−0.632270 + 0.774748i \(0.717877\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 40.4712 + 23.3660i 1.51566 + 0.875065i
\(714\) 0 0
\(715\) −0.817384 2.17636i −0.0305684 0.0813912i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −24.4342 −0.911240 −0.455620 0.890174i \(-0.650582\pi\)
−0.455620 + 0.890174i \(0.650582\pi\)
\(720\) 0 0
\(721\) 8.19275i 0.305114i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.0415202 0.0719152i −0.00154202 0.00267086i
\(726\) 0 0
\(727\) 6.87491 11.9077i 0.254976 0.441632i −0.709913 0.704290i \(-0.751266\pi\)
0.964889 + 0.262658i \(0.0845990\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.78752 6.56018i 0.140086 0.242637i
\(732\) 0 0
\(733\) 30.1277 17.3942i 1.11279 0.642470i 0.173240 0.984880i \(-0.444576\pi\)
0.939551 + 0.342410i \(0.111243\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.51798 0.0927511
\(738\) 0 0
\(739\) 16.3259i 0.600560i 0.953851 + 0.300280i \(0.0970800\pi\)
−0.953851 + 0.300280i \(0.902920\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 45.0029 25.9824i 1.65100 0.953203i 0.674333 0.738427i \(-0.264431\pi\)
0.976663 0.214776i \(-0.0689022\pi\)
\(744\) 0 0
\(745\) 8.33680 14.4398i 0.305437 0.529032i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 7.74659 + 4.47249i 0.283054 + 0.163421i
\(750\) 0 0
\(751\) −12.2956 21.2966i −0.448674 0.777126i 0.549626 0.835411i \(-0.314770\pi\)
−0.998300 + 0.0582850i \(0.981437\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 33.0193 1.20170
\(756\) 0 0
\(757\) 13.3525 0.485305 0.242652 0.970113i \(-0.421983\pi\)
0.242652 + 0.970113i \(0.421983\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 32.6916 18.8745i 1.18507 0.684201i 0.227888 0.973687i \(-0.426818\pi\)
0.957182 + 0.289487i \(0.0934846\pi\)
\(762\) 0 0
\(763\) 1.58647 2.74784i 0.0574340 0.0994787i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −27.5367 22.6311i −0.994293 0.817161i
\(768\) 0 0
\(769\) 24.9841 14.4246i 0.900950 0.520164i 0.0234417 0.999725i \(-0.492538\pi\)
0.877508 + 0.479561i \(0.159204\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 7.64931i 0.275127i 0.990493 + 0.137563i \(0.0439270\pi\)
−0.990493 + 0.137563i \(0.956073\pi\)
\(774\) 0 0
\(775\) 0.714881i 0.0256793i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 11.3493 + 19.6575i 0.406629 + 0.704302i
\(780\) 0 0
\(781\) 0.229230 0.397038i 0.00820250 0.0142072i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 17.4026 + 10.0474i 0.621125 + 0.358607i
\(786\) 0 0
\(787\) −37.0064 + 21.3656i −1.31913 + 0.761602i −0.983589 0.180422i \(-0.942254\pi\)
−0.335545 + 0.942024i \(0.608920\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 7.01055i 0.249266i
\(792\) 0 0
\(793\) 16.7126 + 2.77128i 0.593481 + 0.0984109i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 22.8947 + 39.6549i 0.810974 + 1.40465i 0.912183 + 0.409782i \(0.134395\pi\)
−0.101210 + 0.994865i \(0.532271\pi\)
\(798\) 0 0
\(799\) 17.4807 + 10.0925i 0.618422 + 0.357046i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.261657 0.453203i 0.00923368 0.0159932i
\(804\) 0 0
\(805\) 9.42210 + 16.3196i 0.332085 + 0.575189i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −28.9221 −1.01685 −0.508424 0.861107i \(-0.669772\pi\)
−0.508424 + 0.861107i \(0.669772\pi\)
\(810\) 0 0
\(811\) 23.5093i 0.825521i −0.910839 0.412761i \(-0.864565\pi\)
0.910839 0.412761i \(-0.135435\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −19.7845 34.2678i −0.693022 1.20035i
\(816\) 0 0
\(817\) 11.6761 + 6.74122i 0.408496 + 0.235845i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.471666 0.272317i −0.0164613 0.00950392i 0.491747 0.870738i \(-0.336359\pi\)
−0.508208 + 0.861234i \(0.669692\pi\)
\(822\) 0 0
\(823\) 5.13512 + 8.89429i 0.178999 + 0.310035i 0.941538 0.336907i \(-0.109381\pi\)
−0.762539 + 0.646942i \(0.776047\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 27.5250i 0.957138i −0.878050 0.478569i \(-0.841156\pi\)
0.878050 0.478569i \(-0.158844\pi\)
\(828\) 0 0
\(829\) 35.9132 1.24732 0.623658 0.781697i \(-0.285646\pi\)
0.623658 + 0.781697i \(0.285646\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.08182 + 10.5340i 0.210722 + 0.364982i
\(834\) 0 0
\(835\) −13.6004 + 23.5565i −0.470660 + 0.815207i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 36.6064 + 21.1347i 1.26379 + 0.729652i 0.973807 0.227378i \(-0.0730153\pi\)
0.289988 + 0.957030i \(0.406349\pi\)
\(840\) 0 0
\(841\) 14.2248 + 24.6381i 0.490511 + 0.849590i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 9.27680 27.2034i 0.319132 0.935825i
\(846\) 0 0
\(847\) 12.7141i 0.436860i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 36.8577 21.2798i 1.26347 0.729462i
\(852\) 0 0
\(853\) −41.9467 24.2179i −1.43623 0.829206i −0.438642 0.898662i \(-0.644540\pi\)
−0.997585 + 0.0694563i \(0.977874\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −21.4039 + 37.0727i −0.731145 + 1.26638i 0.225250 + 0.974301i \(0.427680\pi\)
−0.956394 + 0.292078i \(0.905653\pi\)
\(858\) 0 0
\(859\) −19.8720 34.4194i −0.678025 1.17437i −0.975575 0.219668i \(-0.929503\pi\)
0.297549 0.954706i \(-0.403831\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 12.1271i 0.412810i −0.978467 0.206405i \(-0.933824\pi\)
0.978467 0.206405i \(-0.0661765\pi\)
\(864\) 0 0
\(865\) 47.6036i 1.61857i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.41825 + 0.818827i −0.0481108 + 0.0277768i
\(870\) 0 0
\(871\) 24.0501 + 19.7656i 0.814906 + 0.669731i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −6.58243 + 11.4011i −0.222527 + 0.385428i
\(876\) 0 0
\(877\) −46.7146 + 26.9707i −1.57744 + 0.910735i −0.582224 + 0.813029i \(0.697817\pi\)
−0.995215 + 0.0977062i \(0.968849\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −33.2571 −1.12046 −0.560230 0.828337i \(-0.689287\pi\)
−0.560230 + 0.828337i \(0.689287\pi\)
\(882\) 0 0
\(883\) −41.6999 −1.40331 −0.701656 0.712516i \(-0.747556\pi\)
−0.701656 + 0.712516i \(0.747556\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −5.88946 10.2008i −0.197749 0.342511i 0.750049 0.661382i \(-0.230030\pi\)
−0.947798 + 0.318871i \(0.896696\pi\)
\(888\) 0 0
\(889\) 4.37063 + 2.52338i 0.146586 + 0.0846315i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −17.9631 + 31.1130i −0.601113 + 1.04116i
\(894\) 0 0
\(895\) −28.4875 + 16.4473i −0.952234 + 0.549772i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 4.73798i 0.158020i
\(900\) 0 0
\(901\) 11.6632 0.388558
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 22.5440 13.0158i 0.749388 0.432659i
\(906\) 0 0
\(907\) −6.54410 + 11.3347i −0.217293 + 0.376363i −0.953980 0.299872i \(-0.903056\pi\)
0.736686 + 0.676235i \(0.236389\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 13.2230 22.9029i 0.438097 0.758806i −0.559446 0.828867i \(-0.688986\pi\)
0.997543 + 0.0700608i \(0.0223193\pi\)
\(912\) 0 0
\(913\) −1.20746 2.09137i −0.0399609 0.0692144i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 9.25628i 0.305669i
\(918\) 0 0
\(919\) 21.1580 0.697939 0.348970 0.937134i \(-0.386532\pi\)
0.348970 + 0.937134i \(0.386532\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 5.30611 1.99284i 0.174653 0.0655951i
\(924\) 0 0
\(925\) 0.563828 + 0.325526i 0.0185385 + 0.0107032i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −33.6129 19.4064i −1.10281 0.636705i −0.165849 0.986151i \(-0.553036\pi\)
−0.936956 + 0.349446i \(0.886370\pi\)
\(930\) 0 0
\(931\) −18.7490 + 10.8247i −0.614473 + 0.354766i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.38980 0.0454513
\(936\) 0 0
\(937\) 30.4501 0.994762 0.497381 0.867532i \(-0.334295\pi\)
0.497381 + 0.867532i \(0.334295\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 5.89665 3.40443i 0.192225 0.110981i −0.400799 0.916166i \(-0.631267\pi\)
0.593024 + 0.805185i \(0.297934\pi\)
\(942\) 0 0
\(943\) −37.4931 21.6466i −1.22094 0.704911i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 44.8064 + 25.8690i 1.45601 + 0.840629i 0.998812 0.0487345i \(-0.0155188\pi\)
0.457201 + 0.889364i \(0.348852\pi\)
\(948\) 0 0
\(949\) 6.05671 2.27474i 0.196609 0.0738413i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −57.7337 −1.87018 −0.935090 0.354412i \(-0.884681\pi\)
−0.935090 + 0.354412i \(0.884681\pi\)
\(954\) 0 0
\(955\) 3.27787i 0.106069i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5.98082 + 10.3591i 0.193131 + 0.334512i
\(960\) 0 0
\(961\) 4.89421 8.47701i 0.157878 0.273452i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 15.6903 27.1764i 0.505089 0.874839i
\(966\) 0 0
\(967\) −38.4590 + 22.2043i −1.23676 + 0.714042i −0.968430 0.249286i \(-0.919804\pi\)
−0.268327 + 0.963328i \(0.586471\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 41.2827 1.32482 0.662412 0.749140i \(-0.269533\pi\)
0.662412 + 0.749140i \(0.269533\pi\)
\(972\) 0 0
\(973\) 10.1558i 0.325580i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.44748 + 1.41306i −0.0783019 + 0.0452076i −0.538640 0.842536i \(-0.681062\pi\)
0.460338 + 0.887744i \(0.347728\pi\)
\(978\) 0 0
\(979\) −2.33512 + 4.04455i −0.0746309 + 0.129264i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 9.36302 + 5.40574i 0.298634 + 0.172416i 0.641829 0.766848i \(-0.278176\pi\)
−0.343195 + 0.939264i \(0.611509\pi\)
\(984\) 0 0
\(985\) 16.8570 + 29.1971i 0.537108 + 0.930298i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −25.7153 −0.817699
\(990\) 0 0
\(991\) −21.3052 −0.676782 −0.338391 0.941006i \(-0.609883\pi\)
−0.338391 + 0.941006i \(0.609883\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −23.5042 + 13.5702i −0.745134 + 0.430203i
\(996\) 0 0
\(997\) 4.63121 8.02150i 0.146672 0.254043i −0.783323 0.621614i \(-0.786477\pi\)
0.929996 + 0.367571i \(0.119810\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2808.2.cw.b.1585.10 80
3.2 odd 2 936.2.cw.b.25.4 yes 80
9.4 even 3 inner 2808.2.cw.b.2521.31 80
9.5 odd 6 936.2.cw.b.337.3 yes 80
13.12 even 2 inner 2808.2.cw.b.1585.31 80
39.38 odd 2 936.2.cw.b.25.3 80
117.77 odd 6 936.2.cw.b.337.4 yes 80
117.103 even 6 inner 2808.2.cw.b.2521.10 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.cw.b.25.3 80 39.38 odd 2
936.2.cw.b.25.4 yes 80 3.2 odd 2
936.2.cw.b.337.3 yes 80 9.5 odd 6
936.2.cw.b.337.4 yes 80 117.77 odd 6
2808.2.cw.b.1585.10 80 1.1 even 1 trivial
2808.2.cw.b.1585.31 80 13.12 even 2 inner
2808.2.cw.b.2521.10 80 117.103 even 6 inner
2808.2.cw.b.2521.31 80 9.4 even 3 inner