Properties

Label 2808.2.c.e.649.14
Level $2808$
Weight $2$
Character 2808.649
Analytic conductor $22.422$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2808,2,Mod(649,2808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2808.649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2808.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4219928876\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 44x^{12} + 708x^{10} + 5026x^{8} + 15252x^{6} + 19688x^{4} + 8857x^{2} + 576 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.14
Root \(3.85219i\) of defining polynomial
Character \(\chi\) \(=\) 2808.649
Dual form 2808.2.c.e.649.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.85219i q^{5} +2.37854i q^{7} -0.733693i q^{11} +(-2.87661 - 2.17374i) q^{13} -4.14932 q^{17} +1.41046i q^{19} -5.23182 q^{23} -9.83934 q^{25} +1.20734 q^{29} -5.01326i q^{31} -9.16258 q^{35} -10.8085i q^{37} +4.46104i q^{41} +0.930997 q^{43} +6.57560i q^{47} +1.34255 q^{49} +4.81510 q^{53} +2.82632 q^{55} +0.634721i q^{59} -7.96040 q^{61} +(8.37364 - 11.0812i) q^{65} +5.70649i q^{67} -7.09577i q^{71} -7.60540i q^{73} +1.74512 q^{77} -13.5139 q^{79} +14.4942i q^{83} -15.9839i q^{85} -4.41066i q^{89} +(5.17032 - 6.84212i) q^{91} -5.43335 q^{95} +4.09129i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 16 q^{17} + 8 q^{23} - 18 q^{25} - 14 q^{29} - 16 q^{35} - 12 q^{43} - 10 q^{49} + 4 q^{53} - 4 q^{55} - 16 q^{61} - 8 q^{65} - 34 q^{79} - 32 q^{91} + 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2808\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(1081\) \(1405\) \(2081\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.85219i 1.72275i 0.507969 + 0.861375i \(0.330396\pi\)
−0.507969 + 0.861375i \(0.669604\pi\)
\(6\) 0 0
\(7\) 2.37854i 0.899003i 0.893280 + 0.449502i \(0.148398\pi\)
−0.893280 + 0.449502i \(0.851602\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.733693i 0.221217i −0.993864 0.110608i \(-0.964720\pi\)
0.993864 0.110608i \(-0.0352799\pi\)
\(12\) 0 0
\(13\) −2.87661 2.17374i −0.797827 0.602886i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.14932 −1.00636 −0.503178 0.864183i \(-0.667836\pi\)
−0.503178 + 0.864183i \(0.667836\pi\)
\(18\) 0 0
\(19\) 1.41046i 0.323581i 0.986825 + 0.161791i \(0.0517269\pi\)
−0.986825 + 0.161791i \(0.948273\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.23182 −1.09091 −0.545455 0.838140i \(-0.683643\pi\)
−0.545455 + 0.838140i \(0.683643\pi\)
\(24\) 0 0
\(25\) −9.83934 −1.96787
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.20734 0.224198 0.112099 0.993697i \(-0.464243\pi\)
0.112099 + 0.993697i \(0.464243\pi\)
\(30\) 0 0
\(31\) 5.01326i 0.900408i −0.892926 0.450204i \(-0.851351\pi\)
0.892926 0.450204i \(-0.148649\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −9.16258 −1.54876
\(36\) 0 0
\(37\) 10.8085i 1.77691i −0.458964 0.888455i \(-0.651779\pi\)
0.458964 0.888455i \(-0.348221\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.46104i 0.696698i 0.937365 + 0.348349i \(0.113258\pi\)
−0.937365 + 0.348349i \(0.886742\pi\)
\(42\) 0 0
\(43\) 0.930997 0.141976 0.0709879 0.997477i \(-0.477385\pi\)
0.0709879 + 0.997477i \(0.477385\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.57560i 0.959150i 0.877501 + 0.479575i \(0.159209\pi\)
−0.877501 + 0.479575i \(0.840791\pi\)
\(48\) 0 0
\(49\) 1.34255 0.191793
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.81510 0.661405 0.330703 0.943735i \(-0.392714\pi\)
0.330703 + 0.943735i \(0.392714\pi\)
\(54\) 0 0
\(55\) 2.82632 0.381101
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.634721i 0.0826337i 0.999146 + 0.0413168i \(0.0131553\pi\)
−0.999146 + 0.0413168i \(0.986845\pi\)
\(60\) 0 0
\(61\) −7.96040 −1.01922 −0.509612 0.860404i \(-0.670211\pi\)
−0.509612 + 0.860404i \(0.670211\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8.37364 11.0812i 1.03862 1.37446i
\(66\) 0 0
\(67\) 5.70649i 0.697159i 0.937279 + 0.348579i \(0.113336\pi\)
−0.937279 + 0.348579i \(0.886664\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.09577i 0.842113i −0.907035 0.421056i \(-0.861659\pi\)
0.907035 0.421056i \(-0.138341\pi\)
\(72\) 0 0
\(73\) 7.60540i 0.890145i −0.895495 0.445072i \(-0.853178\pi\)
0.895495 0.445072i \(-0.146822\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.74512 0.198875
\(78\) 0 0
\(79\) −13.5139 −1.52043 −0.760217 0.649669i \(-0.774907\pi\)
−0.760217 + 0.649669i \(0.774907\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 14.4942i 1.59095i 0.605988 + 0.795474i \(0.292778\pi\)
−0.605988 + 0.795474i \(0.707222\pi\)
\(84\) 0 0
\(85\) 15.9839i 1.73370i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.41066i 0.467529i −0.972293 0.233765i \(-0.924895\pi\)
0.972293 0.233765i \(-0.0751045\pi\)
\(90\) 0 0
\(91\) 5.17032 6.84212i 0.541997 0.717249i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −5.43335 −0.557450
\(96\) 0 0
\(97\) 4.09129i 0.415408i 0.978192 + 0.207704i \(0.0665990\pi\)
−0.978192 + 0.207704i \(0.933401\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.86976 0.186048 0.0930239 0.995664i \(-0.470347\pi\)
0.0930239 + 0.995664i \(0.470347\pi\)
\(102\) 0 0
\(103\) −0.134968 −0.0132988 −0.00664941 0.999978i \(-0.502117\pi\)
−0.00664941 + 0.999978i \(0.502117\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.7307 1.42407 0.712034 0.702145i \(-0.247774\pi\)
0.712034 + 0.702145i \(0.247774\pi\)
\(108\) 0 0
\(109\) 13.4007i 1.28355i −0.766893 0.641775i \(-0.778198\pi\)
0.766893 0.641775i \(-0.221802\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.5834 1.56003 0.780016 0.625759i \(-0.215211\pi\)
0.780016 + 0.625759i \(0.215211\pi\)
\(114\) 0 0
\(115\) 20.1540i 1.87937i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 9.86931i 0.904718i
\(120\) 0 0
\(121\) 10.4617 0.951063
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 18.6420i 1.66740i
\(126\) 0 0
\(127\) 4.41855 0.392083 0.196041 0.980596i \(-0.437191\pi\)
0.196041 + 0.980596i \(0.437191\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −0.0542482 −0.00473968 −0.00236984 0.999997i \(-0.500754\pi\)
−0.00236984 + 0.999997i \(0.500754\pi\)
\(132\) 0 0
\(133\) −3.35483 −0.290901
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 16.3361i 1.39569i −0.716249 0.697845i \(-0.754142\pi\)
0.716249 0.697845i \(-0.245858\pi\)
\(138\) 0 0
\(139\) −15.1322 −1.28349 −0.641747 0.766917i \(-0.721790\pi\)
−0.641747 + 0.766917i \(0.721790\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.59486 + 2.11055i −0.133369 + 0.176493i
\(144\) 0 0
\(145\) 4.65090i 0.386236i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 10.4869i 0.859121i 0.903038 + 0.429560i \(0.141332\pi\)
−0.903038 + 0.429560i \(0.858668\pi\)
\(150\) 0 0
\(151\) 5.52378i 0.449519i 0.974414 + 0.224759i \(0.0721596\pi\)
−0.974414 + 0.224759i \(0.927840\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 19.3120 1.55118
\(156\) 0 0
\(157\) −11.3891 −0.908947 −0.454474 0.890760i \(-0.650173\pi\)
−0.454474 + 0.890760i \(0.650173\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 12.4441i 0.980732i
\(162\) 0 0
\(163\) 4.80958i 0.376715i −0.982100 0.188358i \(-0.939684\pi\)
0.982100 0.188358i \(-0.0603164\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.04538i 0.699953i 0.936759 + 0.349976i \(0.113810\pi\)
−0.936759 + 0.349976i \(0.886190\pi\)
\(168\) 0 0
\(169\) 3.54974 + 12.5060i 0.273057 + 0.961998i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −24.7847 −1.88435 −0.942174 0.335125i \(-0.891221\pi\)
−0.942174 + 0.335125i \(0.891221\pi\)
\(174\) 0 0
\(175\) 23.4033i 1.76912i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −25.6251 −1.91531 −0.957654 0.287920i \(-0.907036\pi\)
−0.957654 + 0.287920i \(0.907036\pi\)
\(180\) 0 0
\(181\) −16.1523 −1.20059 −0.600296 0.799778i \(-0.704951\pi\)
−0.600296 + 0.799778i \(0.704951\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 41.6364 3.06117
\(186\) 0 0
\(187\) 3.04433i 0.222623i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −19.0765 −1.38033 −0.690163 0.723654i \(-0.742461\pi\)
−0.690163 + 0.723654i \(0.742461\pi\)
\(192\) 0 0
\(193\) 19.7204i 1.41951i 0.704450 + 0.709754i \(0.251194\pi\)
−0.704450 + 0.709754i \(0.748806\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.73609i 0.123691i −0.998086 0.0618457i \(-0.980301\pi\)
0.998086 0.0618457i \(-0.0196987\pi\)
\(198\) 0 0
\(199\) −20.7472 −1.47073 −0.735365 0.677672i \(-0.762989\pi\)
−0.735365 + 0.677672i \(0.762989\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.87171i 0.201554i
\(204\) 0 0
\(205\) −17.1848 −1.20024
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.03484 0.0715817
\(210\) 0 0
\(211\) −6.82222 −0.469661 −0.234830 0.972036i \(-0.575453\pi\)
−0.234830 + 0.972036i \(0.575453\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.58637i 0.244589i
\(216\) 0 0
\(217\) 11.9242 0.809470
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 11.9360 + 9.01952i 0.802899 + 0.606719i
\(222\) 0 0
\(223\) 14.2154i 0.951931i −0.879464 0.475966i \(-0.842099\pi\)
0.879464 0.475966i \(-0.157901\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 29.3012i 1.94479i 0.233342 + 0.972395i \(0.425034\pi\)
−0.233342 + 0.972395i \(0.574966\pi\)
\(228\) 0 0
\(229\) 11.4767i 0.758399i −0.925315 0.379199i \(-0.876199\pi\)
0.925315 0.379199i \(-0.123801\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.84128 0.579212 0.289606 0.957146i \(-0.406476\pi\)
0.289606 + 0.957146i \(0.406476\pi\)
\(234\) 0 0
\(235\) −25.3304 −1.65238
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.12638i 0.266913i −0.991055 0.133457i \(-0.957392\pi\)
0.991055 0.133457i \(-0.0426077\pi\)
\(240\) 0 0
\(241\) 20.0511i 1.29161i −0.763503 0.645804i \(-0.776522\pi\)
0.763503 0.645804i \(-0.223478\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 5.17176i 0.330412i
\(246\) 0 0
\(247\) 3.06597 4.05733i 0.195083 0.258162i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −29.0266 −1.83214 −0.916072 0.401013i \(-0.868658\pi\)
−0.916072 + 0.401013i \(0.868658\pi\)
\(252\) 0 0
\(253\) 3.83855i 0.241328i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −15.9551 −0.995249 −0.497625 0.867393i \(-0.665794\pi\)
−0.497625 + 0.867393i \(0.665794\pi\)
\(258\) 0 0
\(259\) 25.7085 1.59745
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.00100 0.0617243 0.0308622 0.999524i \(-0.490175\pi\)
0.0308622 + 0.999524i \(0.490175\pi\)
\(264\) 0 0
\(265\) 18.5487i 1.13944i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −26.6615 −1.62558 −0.812791 0.582555i \(-0.802053\pi\)
−0.812791 + 0.582555i \(0.802053\pi\)
\(270\) 0 0
\(271\) 10.8679i 0.660176i −0.943950 0.330088i \(-0.892922\pi\)
0.943950 0.330088i \(-0.107078\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.21906i 0.435326i
\(276\) 0 0
\(277\) 17.8278 1.07117 0.535584 0.844482i \(-0.320092\pi\)
0.535584 + 0.844482i \(0.320092\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.64894i 0.575607i 0.957689 + 0.287804i \(0.0929251\pi\)
−0.957689 + 0.287804i \(0.907075\pi\)
\(282\) 0 0
\(283\) −24.6395 −1.46467 −0.732333 0.680947i \(-0.761568\pi\)
−0.732333 + 0.680947i \(0.761568\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −10.6108 −0.626334
\(288\) 0 0
\(289\) 0.216825 0.0127544
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.40432i 0.198883i 0.995043 + 0.0994413i \(0.0317055\pi\)
−0.995043 + 0.0994413i \(0.968294\pi\)
\(294\) 0 0
\(295\) −2.44506 −0.142357
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 15.0499 + 11.3726i 0.870358 + 0.657695i
\(300\) 0 0
\(301\) 2.21441i 0.127637i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 30.6649i 1.75587i
\(306\) 0 0
\(307\) 32.2702i 1.84176i 0.389851 + 0.920878i \(0.372527\pi\)
−0.389851 + 0.920878i \(0.627473\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.13005 −0.0640791 −0.0320395 0.999487i \(-0.510200\pi\)
−0.0320395 + 0.999487i \(0.510200\pi\)
\(312\) 0 0
\(313\) 3.34519 0.189081 0.0945407 0.995521i \(-0.469862\pi\)
0.0945407 + 0.995521i \(0.469862\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.04934i 0.508262i 0.967170 + 0.254131i \(0.0817894\pi\)
−0.967170 + 0.254131i \(0.918211\pi\)
\(318\) 0 0
\(319\) 0.885818i 0.0495963i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.85244i 0.325638i
\(324\) 0 0
\(325\) 28.3039 + 21.3881i 1.57002 + 1.18640i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −15.6403 −0.862279
\(330\) 0 0
\(331\) 35.8544i 1.97074i −0.170435 0.985369i \(-0.554517\pi\)
0.170435 0.985369i \(-0.445483\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −21.9825 −1.20103
\(336\) 0 0
\(337\) 27.5377 1.50007 0.750037 0.661396i \(-0.230036\pi\)
0.750037 + 0.661396i \(0.230036\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3.67820 −0.199185
\(342\) 0 0
\(343\) 19.8431i 1.07143i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −17.9831 −0.965383 −0.482691 0.875791i \(-0.660341\pi\)
−0.482691 + 0.875791i \(0.660341\pi\)
\(348\) 0 0
\(349\) 5.61325i 0.300471i 0.988650 + 0.150235i \(0.0480031\pi\)
−0.988650 + 0.150235i \(0.951997\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.64582i 0.140823i 0.997518 + 0.0704114i \(0.0224312\pi\)
−0.997518 + 0.0704114i \(0.977569\pi\)
\(354\) 0 0
\(355\) 27.3342 1.45075
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 21.3409i 1.12633i 0.826345 + 0.563164i \(0.190416\pi\)
−0.826345 + 0.563164i \(0.809584\pi\)
\(360\) 0 0
\(361\) 17.0106 0.895295
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 29.2974 1.53350
\(366\) 0 0
\(367\) 33.6037 1.75410 0.877048 0.480402i \(-0.159509\pi\)
0.877048 + 0.480402i \(0.159509\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 11.4529i 0.594605i
\(372\) 0 0
\(373\) −32.4930 −1.68242 −0.841211 0.540707i \(-0.818157\pi\)
−0.841211 + 0.540707i \(0.818157\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3.47305 2.62444i −0.178871 0.135166i
\(378\) 0 0
\(379\) 11.8138i 0.606834i 0.952858 + 0.303417i \(0.0981276\pi\)
−0.952858 + 0.303417i \(0.901872\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.5717i 0.846772i 0.905949 + 0.423386i \(0.139159\pi\)
−0.905949 + 0.423386i \(0.860841\pi\)
\(384\) 0 0
\(385\) 6.72252i 0.342611i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 27.7080 1.40485 0.702425 0.711758i \(-0.252101\pi\)
0.702425 + 0.711758i \(0.252101\pi\)
\(390\) 0 0
\(391\) 21.7085 1.09785
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 52.0581i 2.61933i
\(396\) 0 0
\(397\) 15.8526i 0.795618i −0.917468 0.397809i \(-0.869771\pi\)
0.917468 0.397809i \(-0.130229\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 16.9221i 0.845049i 0.906352 + 0.422524i \(0.138856\pi\)
−0.906352 + 0.422524i \(0.861144\pi\)
\(402\) 0 0
\(403\) −10.8975 + 14.4212i −0.542844 + 0.718370i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.93014 −0.393082
\(408\) 0 0
\(409\) 16.8358i 0.832479i −0.909255 0.416240i \(-0.863348\pi\)
0.909255 0.416240i \(-0.136652\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.50971 −0.0742879
\(414\) 0 0
\(415\) −55.8345 −2.74081
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 13.6515 0.666920 0.333460 0.942764i \(-0.391784\pi\)
0.333460 + 0.942764i \(0.391784\pi\)
\(420\) 0 0
\(421\) 17.6913i 0.862222i −0.902299 0.431111i \(-0.858122\pi\)
0.902299 0.431111i \(-0.141878\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 40.8265 1.98038
\(426\) 0 0
\(427\) 18.9341i 0.916286i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.0763i 0.485356i −0.970107 0.242678i \(-0.921974\pi\)
0.970107 0.242678i \(-0.0780259\pi\)
\(432\) 0 0
\(433\) −6.92199 −0.332649 −0.166325 0.986071i \(-0.553190\pi\)
−0.166325 + 0.986071i \(0.553190\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7.37927i 0.352998i
\(438\) 0 0
\(439\) 37.2107 1.77597 0.887986 0.459871i \(-0.152104\pi\)
0.887986 + 0.459871i \(0.152104\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −22.1257 −1.05122 −0.525612 0.850725i \(-0.676164\pi\)
−0.525612 + 0.850725i \(0.676164\pi\)
\(444\) 0 0
\(445\) 16.9907 0.805436
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0.497997i 0.0235019i 0.999931 + 0.0117510i \(0.00374053\pi\)
−0.999931 + 0.0117510i \(0.996259\pi\)
\(450\) 0 0
\(451\) 3.27304 0.154121
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 26.3571 + 19.9170i 1.23564 + 0.933725i
\(456\) 0 0
\(457\) 18.7599i 0.877549i 0.898597 + 0.438775i \(0.144587\pi\)
−0.898597 + 0.438775i \(0.855413\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 34.2255i 1.59404i −0.603952 0.797021i \(-0.706408\pi\)
0.603952 0.797021i \(-0.293592\pi\)
\(462\) 0 0
\(463\) 35.5281i 1.65113i 0.564308 + 0.825564i \(0.309143\pi\)
−0.564308 + 0.825564i \(0.690857\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −30.9860 −1.43386 −0.716929 0.697146i \(-0.754453\pi\)
−0.716929 + 0.697146i \(0.754453\pi\)
\(468\) 0 0
\(469\) −13.5731 −0.626748
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.683066i 0.0314074i
\(474\) 0 0
\(475\) 13.8780i 0.636765i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 34.8803i 1.59372i −0.604162 0.796861i \(-0.706492\pi\)
0.604162 0.796861i \(-0.293508\pi\)
\(480\) 0 0
\(481\) −23.4949 + 31.0919i −1.07127 + 1.41767i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −15.7604 −0.715644
\(486\) 0 0
\(487\) 3.61355i 0.163745i 0.996643 + 0.0818727i \(0.0260901\pi\)
−0.996643 + 0.0818727i \(0.973910\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 17.7771 0.802267 0.401134 0.916020i \(-0.368616\pi\)
0.401134 + 0.916020i \(0.368616\pi\)
\(492\) 0 0
\(493\) −5.00964 −0.225623
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 16.8776 0.757062
\(498\) 0 0
\(499\) 26.2876i 1.17680i 0.808571 + 0.588398i \(0.200241\pi\)
−0.808571 + 0.588398i \(0.799759\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −5.52208 −0.246217 −0.123109 0.992393i \(-0.539286\pi\)
−0.123109 + 0.992393i \(0.539286\pi\)
\(504\) 0 0
\(505\) 7.20266i 0.320514i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5.61785i 0.249007i 0.992219 + 0.124503i \(0.0397338\pi\)
−0.992219 + 0.124503i \(0.960266\pi\)
\(510\) 0 0
\(511\) 18.0897 0.800243
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.519923i 0.0229105i
\(516\) 0 0
\(517\) 4.82447 0.212180
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 30.2394 1.32481 0.662406 0.749145i \(-0.269535\pi\)
0.662406 + 0.749145i \(0.269535\pi\)
\(522\) 0 0
\(523\) 5.83073 0.254960 0.127480 0.991841i \(-0.459311\pi\)
0.127480 + 0.991841i \(0.459311\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 20.8016i 0.906132i
\(528\) 0 0
\(529\) 4.37196 0.190085
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 9.69714 12.8327i 0.420030 0.555845i
\(534\) 0 0
\(535\) 56.7453i 2.45331i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.985021i 0.0424279i
\(540\) 0 0
\(541\) 19.1521i 0.823413i −0.911317 0.411706i \(-0.864933\pi\)
0.911317 0.411706i \(-0.135067\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 51.6218 2.21124
\(546\) 0 0
\(547\) 28.2196 1.20658 0.603292 0.797520i \(-0.293855\pi\)
0.603292 + 0.797520i \(0.293855\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.70290i 0.0725462i
\(552\) 0 0
\(553\) 32.1434i 1.36688i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 31.6364i 1.34048i −0.742145 0.670239i \(-0.766192\pi\)
0.742145 0.670239i \(-0.233808\pi\)
\(558\) 0 0
\(559\) −2.67811 2.02374i −0.113272 0.0855952i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4.42031 0.186294 0.0931469 0.995652i \(-0.470307\pi\)
0.0931469 + 0.995652i \(0.470307\pi\)
\(564\) 0 0
\(565\) 63.8822i 2.68755i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −35.5777 −1.49150 −0.745748 0.666228i \(-0.767908\pi\)
−0.745748 + 0.666228i \(0.767908\pi\)
\(570\) 0 0
\(571\) 27.0643 1.13260 0.566302 0.824198i \(-0.308373\pi\)
0.566302 + 0.824198i \(0.308373\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 51.4777 2.14677
\(576\) 0 0
\(577\) 0.0886048i 0.00368866i 0.999998 + 0.00184433i \(0.000587069\pi\)
−0.999998 + 0.00184433i \(0.999413\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −34.4751 −1.43027
\(582\) 0 0
\(583\) 3.53281i 0.146314i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.27073i 0.217546i −0.994067 0.108773i \(-0.965308\pi\)
0.994067 0.108773i \(-0.0346922\pi\)
\(588\) 0 0
\(589\) 7.07100 0.291355
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 25.1204i 1.03157i −0.856717 0.515786i \(-0.827500\pi\)
0.856717 0.515786i \(-0.172500\pi\)
\(594\) 0 0
\(595\) 38.0184 1.55860
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5.14359 0.210162 0.105081 0.994464i \(-0.466490\pi\)
0.105081 + 0.994464i \(0.466490\pi\)
\(600\) 0 0
\(601\) −20.8652 −0.851110 −0.425555 0.904933i \(-0.639921\pi\)
−0.425555 + 0.904933i \(0.639921\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 40.3004i 1.63844i
\(606\) 0 0
\(607\) −8.48225 −0.344284 −0.172142 0.985072i \(-0.555069\pi\)
−0.172142 + 0.985072i \(0.555069\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 14.2936 18.9154i 0.578258 0.765236i
\(612\) 0 0
\(613\) 40.5600i 1.63820i 0.573649 + 0.819101i \(0.305527\pi\)
−0.573649 + 0.819101i \(0.694473\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4.68479i 0.188602i −0.995544 0.0943012i \(-0.969938\pi\)
0.995544 0.0943012i \(-0.0300617\pi\)
\(618\) 0 0
\(619\) 42.6310i 1.71349i 0.515744 + 0.856743i \(0.327515\pi\)
−0.515744 + 0.856743i \(0.672485\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 10.4909 0.420310
\(624\) 0 0
\(625\) 22.6159 0.904637
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 44.8480i 1.78821i
\(630\) 0 0
\(631\) 20.5307i 0.817315i 0.912688 + 0.408657i \(0.134003\pi\)
−0.912688 + 0.408657i \(0.865997\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 17.0211i 0.675460i
\(636\) 0 0
\(637\) −3.86199 2.91835i −0.153018 0.115629i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7.93699 0.313492 0.156746 0.987639i \(-0.449900\pi\)
0.156746 + 0.987639i \(0.449900\pi\)
\(642\) 0 0
\(643\) 15.5249i 0.612243i 0.951993 + 0.306121i \(0.0990313\pi\)
−0.951993 + 0.306121i \(0.900969\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.0481431 −0.00189270 −0.000946350 1.00000i \(-0.500301\pi\)
−0.000946350 1.00000i \(0.500301\pi\)
\(648\) 0 0
\(649\) 0.465691 0.0182800
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −42.2517 −1.65344 −0.826719 0.562615i \(-0.809795\pi\)
−0.826719 + 0.562615i \(0.809795\pi\)
\(654\) 0 0
\(655\) 0.208974i 0.00816529i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 19.3704 0.754563 0.377281 0.926099i \(-0.376859\pi\)
0.377281 + 0.926099i \(0.376859\pi\)
\(660\) 0 0
\(661\) 30.8136i 1.19851i −0.800558 0.599255i \(-0.795464\pi\)
0.800558 0.599255i \(-0.204536\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 12.9234i 0.501149i
\(666\) 0 0
\(667\) −6.31659 −0.244579
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.84049i 0.225470i
\(672\) 0 0
\(673\) −35.4926 −1.36814 −0.684069 0.729417i \(-0.739791\pi\)
−0.684069 + 0.729417i \(0.739791\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −14.1009 −0.541942 −0.270971 0.962588i \(-0.587345\pi\)
−0.270971 + 0.962588i \(0.587345\pi\)
\(678\) 0 0
\(679\) −9.73130 −0.373453
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 31.5553i 1.20743i −0.797200 0.603715i \(-0.793686\pi\)
0.797200 0.603715i \(-0.206314\pi\)
\(684\) 0 0
\(685\) 62.9298 2.40442
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −13.8512 10.4668i −0.527687 0.398752i
\(690\) 0 0
\(691\) 23.3407i 0.887923i 0.896046 + 0.443962i \(0.146427\pi\)
−0.896046 + 0.443962i \(0.853573\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 58.2919i 2.21114i
\(696\) 0 0
\(697\) 18.5103i 0.701127i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −23.4201 −0.884565 −0.442283 0.896876i \(-0.645831\pi\)
−0.442283 + 0.896876i \(0.645831\pi\)
\(702\) 0 0
\(703\) 15.2450 0.574975
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.44729i 0.167258i
\(708\) 0 0
\(709\) 7.71832i 0.289868i −0.989441 0.144934i \(-0.953703\pi\)
0.989441 0.144934i \(-0.0462969\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 26.2285i 0.982264i
\(714\) 0 0
\(715\) −8.13022 6.14368i −0.304053 0.229761i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −24.1346 −0.900068 −0.450034 0.893012i \(-0.648588\pi\)
−0.450034 + 0.893012i \(0.648588\pi\)
\(720\) 0 0
\(721\) 0.321027i 0.0119557i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −11.8794 −0.441191
\(726\) 0 0
\(727\) 2.92222 0.108379 0.0541896 0.998531i \(-0.482742\pi\)
0.0541896 + 0.998531i \(0.482742\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −3.86300 −0.142878
\(732\) 0 0
\(733\) 2.28352i 0.0843438i −0.999110 0.0421719i \(-0.986572\pi\)
0.999110 0.0421719i \(-0.0134277\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.18682 0.154223
\(738\) 0 0
\(739\) 19.6635i 0.723333i −0.932307 0.361667i \(-0.882208\pi\)
0.932307 0.361667i \(-0.117792\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 16.4662i 0.604086i 0.953294 + 0.302043i \(0.0976686\pi\)
−0.953294 + 0.302043i \(0.902331\pi\)
\(744\) 0 0
\(745\) −40.3975 −1.48005
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 35.0375i 1.28024i
\(750\) 0 0
\(751\) −33.7213 −1.23051 −0.615254 0.788329i \(-0.710947\pi\)
−0.615254 + 0.788329i \(0.710947\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −21.2786 −0.774408
\(756\) 0 0
\(757\) 16.8620 0.612859 0.306430 0.951893i \(-0.400866\pi\)
0.306430 + 0.951893i \(0.400866\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 26.2971i 0.953269i −0.879102 0.476634i \(-0.841857\pi\)
0.879102 0.476634i \(-0.158143\pi\)
\(762\) 0 0
\(763\) 31.8740 1.15392
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.37972 1.82584i 0.0498187 0.0659274i
\(768\) 0 0
\(769\) 4.84344i 0.174659i 0.996179 + 0.0873295i \(0.0278333\pi\)
−0.996179 + 0.0873295i \(0.972167\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 29.5662i 1.06342i 0.846926 + 0.531711i \(0.178451\pi\)
−0.846926 + 0.531711i \(0.821549\pi\)
\(774\) 0 0
\(775\) 49.3272i 1.77188i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.29212 −0.225439
\(780\) 0 0
\(781\) −5.20612 −0.186290
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 43.8729i 1.56589i
\(786\) 0 0
\(787\) 44.1573i 1.57404i 0.616930 + 0.787018i \(0.288376\pi\)
−0.616930 + 0.787018i \(0.711624\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 39.4442i 1.40247i
\(792\) 0 0
\(793\) 22.8989 + 17.3038i 0.813165 + 0.614476i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −21.8236 −0.773033 −0.386516 0.922283i \(-0.626322\pi\)
−0.386516 + 0.922283i \(0.626322\pi\)
\(798\) 0 0
\(799\) 27.2842i 0.965247i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −5.58003 −0.196915
\(804\) 0 0
\(805\) 47.9370 1.68956
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 12.7001 0.446511 0.223256 0.974760i \(-0.428331\pi\)
0.223256 + 0.974760i \(0.428331\pi\)
\(810\) 0 0
\(811\) 7.33711i 0.257641i −0.991668 0.128820i \(-0.958881\pi\)
0.991668 0.128820i \(-0.0411191\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 18.5274 0.648987
\(816\) 0 0
\(817\) 1.31313i 0.0459407i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 56.8052i 1.98251i 0.131947 + 0.991257i \(0.457877\pi\)
−0.131947 + 0.991257i \(0.542123\pi\)
\(822\) 0 0
\(823\) 48.4651 1.68939 0.844694 0.535249i \(-0.179782\pi\)
0.844694 + 0.535249i \(0.179782\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15.7732i 0.548489i −0.961660 0.274245i \(-0.911572\pi\)
0.961660 0.274245i \(-0.0884278\pi\)
\(828\) 0 0
\(829\) 48.4962 1.68434 0.842171 0.539211i \(-0.181277\pi\)
0.842171 + 0.539211i \(0.181277\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −5.57067 −0.193012
\(834\) 0 0
\(835\) −34.8445 −1.20584
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 35.6874i 1.23207i 0.787721 + 0.616033i \(0.211261\pi\)
−0.787721 + 0.616033i \(0.788739\pi\)
\(840\) 0 0
\(841\) −27.5423 −0.949735
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −48.1753 + 13.6743i −1.65728 + 0.470409i
\(846\) 0 0
\(847\) 24.8835i 0.855009i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 56.5482i 1.93845i
\(852\) 0 0
\(853\) 20.4790i 0.701189i 0.936527 + 0.350595i \(0.114020\pi\)
−0.936527 + 0.350595i \(0.885980\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 23.6485 0.807817 0.403908 0.914799i \(-0.367651\pi\)
0.403908 + 0.914799i \(0.367651\pi\)
\(858\) 0 0
\(859\) −11.8778 −0.405266 −0.202633 0.979255i \(-0.564950\pi\)
−0.202633 + 0.979255i \(0.564950\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 32.3103i 1.09985i 0.835213 + 0.549927i \(0.185345\pi\)
−0.835213 + 0.549927i \(0.814655\pi\)
\(864\) 0 0
\(865\) 95.4754i 3.24626i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 9.91507i 0.336346i
\(870\) 0 0
\(871\) 12.4044 16.4153i 0.420307 0.556212i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 44.3408 1.49899
\(876\) 0 0
\(877\) 56.5079i 1.90814i 0.299591 + 0.954068i \(0.403150\pi\)
−0.299591 + 0.954068i \(0.596850\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −3.67108 −0.123682 −0.0618409 0.998086i \(-0.519697\pi\)
−0.0618409 + 0.998086i \(0.519697\pi\)
\(882\) 0 0
\(883\) −34.6595 −1.16639 −0.583193 0.812334i \(-0.698197\pi\)
−0.583193 + 0.812334i \(0.698197\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −6.25039 −0.209868 −0.104934 0.994479i \(-0.533463\pi\)
−0.104934 + 0.994479i \(0.533463\pi\)
\(888\) 0 0
\(889\) 10.5097i 0.352483i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −9.27461 −0.310363
\(894\) 0 0
\(895\) 98.7126i 3.29960i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.05271i 0.201869i
\(900\) 0 0
\(901\) −19.9794 −0.665610
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 62.2218i 2.06832i
\(906\) 0 0
\(907\) −28.7579 −0.954890 −0.477445 0.878662i \(-0.658437\pi\)
−0.477445 + 0.878662i \(0.658437\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −40.2451 −1.33338 −0.666690 0.745335i \(-0.732290\pi\)
−0.666690 + 0.745335i \(0.732290\pi\)
\(912\) 0 0
\(913\) 10.6343 0.351945
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0.129031i 0.00426099i
\(918\) 0 0
\(919\) 54.7098 1.80471 0.902355 0.430993i \(-0.141837\pi\)
0.902355 + 0.430993i \(0.141837\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −15.4243 + 20.4117i −0.507698 + 0.671860i
\(924\) 0 0
\(925\) 106.349i 3.49672i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 5.77324i 0.189414i 0.995505 + 0.0947069i \(0.0301914\pi\)
−0.995505 + 0.0947069i \(0.969809\pi\)
\(930\) 0 0
\(931\) 1.89361i 0.0620607i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −11.7273 −0.383524
\(936\) 0 0
\(937\) 4.80561 0.156992 0.0784962 0.996914i \(-0.474988\pi\)
0.0784962 + 0.996914i \(0.474988\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 27.1858i 0.886233i 0.896464 + 0.443117i \(0.146127\pi\)
−0.896464 + 0.443117i \(0.853873\pi\)
\(942\) 0 0
\(943\) 23.3394i 0.760035i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23.2238i 0.754672i −0.926076 0.377336i \(-0.876840\pi\)
0.926076 0.377336i \(-0.123160\pi\)
\(948\) 0 0
\(949\) −16.5321 + 21.8778i −0.536656 + 0.710182i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 12.1555 0.393757 0.196878 0.980428i \(-0.436920\pi\)
0.196878 + 0.980428i \(0.436920\pi\)
\(954\) 0 0
\(955\) 73.4862i 2.37796i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 38.8561 1.25473
\(960\) 0 0
\(961\) 5.86722 0.189265
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −75.9668 −2.44546
\(966\) 0 0
\(967\) 12.3286i 0.396460i −0.980156 0.198230i \(-0.936481\pi\)
0.980156 0.198230i \(-0.0635193\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −12.6845 −0.407065 −0.203532 0.979068i \(-0.565242\pi\)
−0.203532 + 0.979068i \(0.565242\pi\)
\(972\) 0 0
\(973\) 35.9924i 1.15386i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.80239i 0.217628i 0.994062 + 0.108814i \(0.0347052\pi\)
−0.994062 + 0.108814i \(0.965295\pi\)
\(978\) 0 0
\(979\) −3.23607 −0.103425
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 20.9510i 0.668233i −0.942532 0.334116i \(-0.891562\pi\)
0.942532 0.334116i \(-0.108438\pi\)
\(984\) 0 0
\(985\) 6.68774 0.213089
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4.87081 −0.154883
\(990\) 0 0
\(991\) −30.2796 −0.961863 −0.480931 0.876758i \(-0.659701\pi\)
−0.480931 + 0.876758i \(0.659701\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 79.9221i 2.53370i
\(996\) 0 0
\(997\) −34.6912 −1.09868 −0.549341 0.835598i \(-0.685121\pi\)
−0.549341 + 0.835598i \(0.685121\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2808.2.c.e.649.14 yes 14
3.2 odd 2 2808.2.c.f.649.1 yes 14
13.12 even 2 inner 2808.2.c.e.649.1 14
39.38 odd 2 2808.2.c.f.649.14 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2808.2.c.e.649.1 14 13.12 even 2 inner
2808.2.c.e.649.14 yes 14 1.1 even 1 trivial
2808.2.c.f.649.1 yes 14 3.2 odd 2
2808.2.c.f.649.14 yes 14 39.38 odd 2