Properties

Label 2808.1.fi.b.1507.2
Level $2808$
Weight $1$
Character 2808.1507
Analytic conductor $1.401$
Analytic rank $0$
Dimension $18$
Projective image $D_{27}$
CM discriminant -104
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2808,1,Mod(259,2808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2808.259"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 9, 4, 9])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2808.fi (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,0,0,0,0,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40137455547\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{54})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{9} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{27}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{27} + \cdots)\)

Embedding invariants

Embedding label 1507.2
Root \(-0.973045 - 0.230616i\) of defining polynomial
Character \(\chi\) \(=\) 2808.1507
Dual form 2808.1.fi.b.259.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.766044 + 0.642788i) q^{2} +(-0.0581448 + 0.998308i) q^{3} +(0.173648 - 0.984808i) q^{4} +(-1.57020 + 0.571507i) q^{5} +(-0.597159 - 0.802123i) q^{6} +(0.344948 + 1.95630i) q^{7} +(0.500000 + 0.866025i) q^{8} +(-0.993238 - 0.116093i) q^{9} +(0.835488 - 1.44711i) q^{10} +(0.973045 + 0.230616i) q^{12} +(-0.766044 - 0.642788i) q^{13} +(-1.52173 - 1.27688i) q^{14} +(-0.479241 - 1.60078i) q^{15} +(-0.939693 - 0.342020i) q^{16} +(-0.973045 + 1.68536i) q^{17} +(0.835488 - 0.549509i) q^{18} +(0.290162 + 1.64559i) q^{20} +(-1.97304 + 0.230616i) q^{21} +(-0.893633 + 0.448799i) q^{24} +(1.37287 - 1.15198i) q^{25} +1.00000 q^{26} +(0.173648 - 0.984808i) q^{27} +1.98648 q^{28} +(1.39608 + 0.918216i) q^{30} +(-0.0603074 + 0.342020i) q^{31} +(0.939693 - 0.342020i) q^{32} +(-0.337935 - 1.91652i) q^{34} +(-1.65968 - 2.87465i) q^{35} +(-0.286803 + 0.957990i) q^{36} +(-0.0581448 + 0.100710i) q^{37} +(0.686242 - 0.727374i) q^{39} +(-1.28004 - 1.07408i) q^{40} +(1.36320 - 1.44491i) q^{42} +(1.28971 + 0.469417i) q^{43} +(1.62593 - 0.385353i) q^{45} +(0.0996057 + 0.564892i) q^{47} +(0.396080 - 0.918216i) q^{48} +(-2.76842 + 1.00762i) q^{49} +(-0.311205 + 1.76493i) q^{50} +(-1.62593 - 1.06939i) q^{51} +(-0.766044 + 0.642788i) q^{52} +(0.500000 + 0.866025i) q^{54} +(-1.52173 + 1.27688i) q^{56} +(-1.65968 + 0.193988i) q^{60} +(-0.173648 - 0.300767i) q^{62} +(-0.115503 - 1.98312i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(1.57020 + 0.571507i) q^{65} +(1.49079 + 1.25092i) q^{68} +(3.11917 + 1.13529i) q^{70} +(0.597159 - 1.03431i) q^{71} +(-0.396080 - 0.918216i) q^{72} +(-0.0201935 - 0.114523i) q^{74} +(1.07020 + 1.43753i) q^{75} +(-0.0581448 + 0.998308i) q^{78} +1.67098 q^{80} +(0.973045 + 0.230616i) q^{81} +(-0.115503 + 1.98312i) q^{84} +(0.564681 - 3.20247i) q^{85} +(-1.28971 + 0.469417i) q^{86} +(-0.997837 + 1.34033i) q^{90} +(0.993238 - 1.72034i) q^{91} +(-0.337935 - 0.0800921i) q^{93} +(-0.439408 - 0.368707i) q^{94} +(0.286803 + 0.957990i) q^{96} +(1.47304 - 2.55139i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 9 q^{8} - 18 q^{21} + 18 q^{26} + 18 q^{30} - 18 q^{31} + 9 q^{54} - 9 q^{64} + 9 q^{70} - 9 q^{75} + 9 q^{85} + 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2808\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(1081\) \(1405\) \(2081\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(3\) −0.0581448 + 0.998308i −0.0581448 + 0.998308i
\(4\) 0.173648 0.984808i 0.173648 0.984808i
\(5\) −1.57020 + 0.571507i −1.57020 + 0.571507i −0.973045 0.230616i \(-0.925926\pi\)
−0.597159 + 0.802123i \(0.703704\pi\)
\(6\) −0.597159 0.802123i −0.597159 0.802123i
\(7\) 0.344948 + 1.95630i 0.344948 + 1.95630i 0.286803 + 0.957990i \(0.407407\pi\)
0.0581448 + 0.998308i \(0.481481\pi\)
\(8\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(9\) −0.993238 0.116093i −0.993238 0.116093i
\(10\) 0.835488 1.44711i 0.835488 1.44711i
\(11\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(12\) 0.973045 + 0.230616i 0.973045 + 0.230616i
\(13\) −0.766044 0.642788i −0.766044 0.642788i
\(14\) −1.52173 1.27688i −1.52173 1.27688i
\(15\) −0.479241 1.60078i −0.479241 1.60078i
\(16\) −0.939693 0.342020i −0.939693 0.342020i
\(17\) −0.973045 + 1.68536i −0.973045 + 1.68536i −0.286803 + 0.957990i \(0.592593\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(18\) 0.835488 0.549509i 0.835488 0.549509i
\(19\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(20\) 0.290162 + 1.64559i 0.290162 + 1.64559i
\(21\) −1.97304 + 0.230616i −1.97304 + 0.230616i
\(22\) 0 0
\(23\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(24\) −0.893633 + 0.448799i −0.893633 + 0.448799i
\(25\) 1.37287 1.15198i 1.37287 1.15198i
\(26\) 1.00000 1.00000
\(27\) 0.173648 0.984808i 0.173648 0.984808i
\(28\) 1.98648 1.98648
\(29\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(30\) 1.39608 + 0.918216i 1.39608 + 0.918216i
\(31\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i 0.939693 + 0.342020i \(0.111111\pi\)
−1.00000 \(\pi\)
\(32\) 0.939693 0.342020i 0.939693 0.342020i
\(33\) 0 0
\(34\) −0.337935 1.91652i −0.337935 1.91652i
\(35\) −1.65968 2.87465i −1.65968 2.87465i
\(36\) −0.286803 + 0.957990i −0.286803 + 0.957990i
\(37\) −0.0581448 + 0.100710i −0.0581448 + 0.100710i −0.893633 0.448799i \(-0.851852\pi\)
0.835488 + 0.549509i \(0.185185\pi\)
\(38\) 0 0
\(39\) 0.686242 0.727374i 0.686242 0.727374i
\(40\) −1.28004 1.07408i −1.28004 1.07408i
\(41\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(42\) 1.36320 1.44491i 1.36320 1.44491i
\(43\) 1.28971 + 0.469417i 1.28971 + 0.469417i 0.893633 0.448799i \(-0.148148\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(44\) 0 0
\(45\) 1.62593 0.385353i 1.62593 0.385353i
\(46\) 0 0
\(47\) 0.0996057 + 0.564892i 0.0996057 + 0.564892i 0.993238 + 0.116093i \(0.0370370\pi\)
−0.893633 + 0.448799i \(0.851852\pi\)
\(48\) 0.396080 0.918216i 0.396080 0.918216i
\(49\) −2.76842 + 1.00762i −2.76842 + 1.00762i
\(50\) −0.311205 + 1.76493i −0.311205 + 1.76493i
\(51\) −1.62593 1.06939i −1.62593 1.06939i
\(52\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(55\) 0 0
\(56\) −1.52173 + 1.27688i −1.52173 + 1.27688i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(60\) −1.65968 + 0.193988i −1.65968 + 0.193988i
\(61\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(62\) −0.173648 0.300767i −0.173648 0.300767i
\(63\) −0.115503 1.98312i −0.115503 1.98312i
\(64\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(65\) 1.57020 + 0.571507i 1.57020 + 0.571507i
\(66\) 0 0
\(67\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(68\) 1.49079 + 1.25092i 1.49079 + 1.25092i
\(69\) 0 0
\(70\) 3.11917 + 1.13529i 3.11917 + 1.13529i
\(71\) 0.597159 1.03431i 0.597159 1.03431i −0.396080 0.918216i \(-0.629630\pi\)
0.993238 0.116093i \(-0.0370370\pi\)
\(72\) −0.396080 0.918216i −0.396080 0.918216i
\(73\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(74\) −0.0201935 0.114523i −0.0201935 0.114523i
\(75\) 1.07020 + 1.43753i 1.07020 + 1.43753i
\(76\) 0 0
\(77\) 0 0
\(78\) −0.0581448 + 0.998308i −0.0581448 + 0.998308i
\(79\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(80\) 1.67098 1.67098
\(81\) 0.973045 + 0.230616i 0.973045 + 0.230616i
\(82\) 0 0
\(83\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(84\) −0.115503 + 1.98312i −0.115503 + 1.98312i
\(85\) 0.564681 3.20247i 0.564681 3.20247i
\(86\) −1.28971 + 0.469417i −1.28971 + 0.469417i
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(90\) −0.997837 + 1.34033i −0.997837 + 1.34033i
\(91\) 0.993238 1.72034i 0.993238 1.72034i
\(92\) 0 0
\(93\) −0.337935 0.0800921i −0.337935 0.0800921i
\(94\) −0.439408 0.368707i −0.439408 0.368707i
\(95\) 0 0
\(96\) 0.286803 + 0.957990i 0.286803 + 0.957990i
\(97\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(98\) 1.47304 2.55139i 1.47304 2.55139i
\(99\) 0 0
\(100\) −0.896080 1.55206i −0.896080 1.55206i
\(101\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(102\) 1.93293 0.225927i 1.93293 0.225927i
\(103\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(104\) 0.173648 0.984808i 0.173648 0.984808i
\(105\) 2.96628 1.48972i 2.96628 1.48972i
\(106\) 0 0
\(107\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) −0.939693 0.342020i −0.939693 0.342020i
\(109\) 0.573606 0.573606 0.286803 0.957990i \(-0.407407\pi\)
0.286803 + 0.957990i \(0.407407\pi\)
\(110\) 0 0
\(111\) −0.0971586 0.0639022i −0.0971586 0.0639022i
\(112\) 0.344948 1.95630i 0.344948 1.95630i
\(113\) 1.76604 0.642788i 1.76604 0.642788i 0.766044 0.642788i \(-0.222222\pi\)
1.00000 \(0\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.686242 + 0.727374i 0.686242 + 0.727374i
\(118\) 0 0
\(119\) −3.63272 1.32220i −3.63272 1.32220i
\(120\) 1.14669 1.21542i 1.14669 1.21542i
\(121\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(122\) 0 0
\(123\) 0 0
\(124\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(125\) −0.661840 + 1.14634i −0.661840 + 1.14634i
\(126\) 1.36320 + 1.44491i 1.36320 + 1.44491i
\(127\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(128\) −0.173648 0.984808i −0.173648 0.984808i
\(129\) −0.543613 + 1.26024i −0.543613 + 1.26024i
\(130\) −1.57020 + 0.571507i −1.57020 + 0.571507i
\(131\) −0.0996057 + 0.564892i −0.0996057 + 0.564892i 0.893633 + 0.448799i \(0.148148\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0.290162 + 1.64559i 0.290162 + 1.64559i
\(136\) −1.94609 −1.94609
\(137\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(138\) 0 0
\(139\) 0.207391 1.17617i 0.207391 1.17617i −0.686242 0.727374i \(-0.740741\pi\)
0.893633 0.448799i \(-0.148148\pi\)
\(140\) −3.11917 + 1.13529i −3.11917 + 1.13529i
\(141\) −0.569728 + 0.0665916i −0.569728 + 0.0665916i
\(142\) 0.207391 + 1.17617i 0.207391 + 1.17617i
\(143\) 0 0
\(144\) 0.893633 + 0.448799i 0.893633 + 0.448799i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.844948 2.82232i −0.844948 2.82232i
\(148\) 0.0890830 + 0.0747496i 0.0890830 + 0.0747496i
\(149\) −1.17365 0.984808i −1.17365 0.984808i −0.173648 0.984808i \(-0.555556\pi\)
−1.00000 \(\pi\)
\(150\) −1.74385 0.413300i −1.74385 0.413300i
\(151\) −1.57020 0.571507i −1.57020 0.571507i −0.597159 0.802123i \(-0.703704\pi\)
−0.973045 + 0.230616i \(0.925926\pi\)
\(152\) 0 0
\(153\) 1.16212 1.56100i 1.16212 1.56100i
\(154\) 0 0
\(155\) −0.100772 0.571507i −0.100772 0.571507i
\(156\) −0.597159 0.802123i −0.597159 0.802123i
\(157\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −1.28004 + 1.07408i −1.28004 + 1.07408i
\(161\) 0 0
\(162\) −0.893633 + 0.448799i −0.893633 + 0.448799i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.43969 0.524005i 1.43969 0.524005i 0.500000 0.866025i \(-0.333333\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(168\) −1.18624 1.59340i −1.18624 1.59340i
\(169\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(170\) 1.62593 + 2.81620i 1.62593 + 2.81620i
\(171\) 0 0
\(172\) 0.686242 1.18861i 0.686242 1.18861i
\(173\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(174\) 0 0
\(175\) 2.72718 + 2.28838i 2.72718 + 2.28838i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.597159 + 1.03431i −0.597159 + 1.03431i 0.396080 + 0.918216i \(0.370370\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(180\) −0.0971586 1.66815i −0.0971586 1.66815i
\(181\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(182\) 0.344948 + 1.95630i 0.344948 + 1.95630i
\(183\) 0 0
\(184\) 0 0
\(185\) 0.0337428 0.191365i 0.0337428 0.191365i
\(186\) 0.310355 0.155866i 0.310355 0.155866i
\(187\) 0 0
\(188\) 0.573606 0.573606
\(189\) 1.98648 1.98648
\(190\) 0 0
\(191\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(192\) −0.835488 0.549509i −0.835488 0.549509i
\(193\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(194\) 0 0
\(195\) −0.661840 + 1.53432i −0.661840 + 1.53432i
\(196\) 0.511583 + 2.90133i 0.511583 + 2.90133i
\(197\) −0.993238 1.72034i −0.993238 1.72034i −0.597159 0.802123i \(-0.703704\pi\)
−0.396080 0.918216i \(-0.629630\pi\)
\(198\) 0 0
\(199\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) 1.68408 + 0.612955i 1.68408 + 0.612955i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) −1.33549 + 1.41553i −1.33549 + 1.41553i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(209\) 0 0
\(210\) −1.31473 + 3.04788i −1.31473 + 3.04788i
\(211\) −1.67948 + 0.611281i −1.67948 + 0.611281i −0.993238 0.116093i \(-0.962963\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(212\) 0 0
\(213\) 0.997837 + 0.656288i 0.997837 + 0.656288i
\(214\) 0.766044 0.642788i 0.766044 0.642788i
\(215\) −2.29339 −2.29339
\(216\) 0.939693 0.342020i 0.939693 0.342020i
\(217\) −0.689896 −0.689896
\(218\) −0.439408 + 0.368707i −0.439408 + 0.368707i
\(219\) 0 0
\(220\) 0 0
\(221\) 1.82873 0.665602i 1.82873 0.665602i
\(222\) 0.115503 0.0135004i 0.115503 0.0135004i
\(223\) 0.238329 + 1.35163i 0.238329 + 1.35163i 0.835488 + 0.549509i \(0.185185\pi\)
−0.597159 + 0.802123i \(0.703704\pi\)
\(224\) 0.993238 + 1.72034i 0.993238 + 1.72034i
\(225\) −1.49733 + 0.984808i −1.49733 + 0.984808i
\(226\) −0.939693 + 1.62760i −0.939693 + 1.62760i
\(227\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(228\) 0 0
\(229\) 1.28004 + 1.07408i 1.28004 + 1.07408i 0.993238 + 0.116093i \(0.0370370\pi\)
0.286803 + 0.957990i \(0.407407\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.396080 + 0.686030i −0.396080 + 0.686030i −0.993238 0.116093i \(-0.962963\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(234\) −0.993238 0.116093i −0.993238 0.116093i
\(235\) −0.479241 0.830070i −0.479241 0.830070i
\(236\) 0 0
\(237\) 0 0
\(238\) 3.63272 1.32220i 3.63272 1.32220i
\(239\) 0.238329 1.35163i 0.238329 1.35163i −0.597159 0.802123i \(-0.703704\pi\)
0.835488 0.549509i \(-0.185185\pi\)
\(240\) −0.0971586 + 1.66815i −0.0971586 + 1.66815i
\(241\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(242\) −1.00000 −1.00000
\(243\) −0.286803 + 0.957990i −0.286803 + 0.957990i
\(244\) 0 0
\(245\) 3.77112 3.16434i 3.77112 3.16434i
\(246\) 0 0
\(247\) 0 0
\(248\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(249\) 0 0
\(250\) −0.229854 1.30357i −0.229854 1.30357i
\(251\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(252\) −1.97304 0.230616i −1.97304 0.230616i
\(253\) 0 0
\(254\) 0 0
\(255\) 3.16421 + 0.749932i 3.16421 + 0.749932i
\(256\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(257\) −0.0890830 0.0747496i −0.0890830 0.0747496i 0.597159 0.802123i \(-0.296296\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(258\) −0.393633 1.31482i −0.393633 1.31482i
\(259\) −0.217075 0.0790089i −0.217075 0.0790089i
\(260\) 0.835488 1.44711i 0.835488 1.44711i
\(261\) 0 0
\(262\) −0.286803 0.496758i −0.286803 0.496758i
\(263\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) −1.28004 1.07408i −1.28004 1.07408i
\(271\) −1.78727 −1.78727 −0.893633 0.448799i \(-0.851852\pi\)
−0.893633 + 0.448799i \(0.851852\pi\)
\(272\) 1.49079 1.25092i 1.49079 1.25092i
\(273\) 1.65968 + 1.09159i 1.65968 + 1.09159i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(278\) 0.597159 + 1.03431i 0.597159 + 1.03431i
\(279\) 0.0996057 0.332706i 0.0996057 0.332706i
\(280\) 1.65968 2.87465i 1.65968 2.87465i
\(281\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(282\) 0.393633 0.417226i 0.393633 0.417226i
\(283\) −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(284\) −0.914900 0.767692i −0.914900 0.767692i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.973045 + 0.230616i −0.973045 + 0.230616i
\(289\) −1.39363 2.41384i −1.39363 2.41384i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.207391 + 1.17617i −0.207391 + 1.17617i 0.686242 + 0.727374i \(0.259259\pi\)
−0.893633 + 0.448799i \(0.851852\pi\)
\(294\) 2.46142 + 1.61890i 2.46142 + 1.61890i
\(295\) 0 0
\(296\) −0.116290 −0.116290
\(297\) 0 0
\(298\) 1.53209 1.53209
\(299\) 0 0
\(300\) 1.60153 0.804320i 1.60153 0.804320i
\(301\) −0.473435 + 2.68499i −0.473435 + 2.68499i
\(302\) 1.57020 0.571507i 1.57020 0.571507i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0.113155 + 1.94280i 0.113155 + 1.94280i
\(307\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0.444554 + 0.373025i 0.444554 + 0.373025i
\(311\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(312\) 0.973045 + 0.230616i 0.973045 + 0.230616i
\(313\) −1.67948 0.611281i −1.67948 0.611281i −0.686242 0.727374i \(-0.740741\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(314\) 0 0
\(315\) 1.31473 + 3.04788i 1.31473 + 3.04788i
\(316\) 0 0
\(317\) 0.326352 + 1.85083i 0.326352 + 1.85083i 0.500000 + 0.866025i \(0.333333\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.290162 1.64559i 0.290162 1.64559i
\(321\) 0.0581448 0.998308i 0.0581448 0.998308i
\(322\) 0 0
\(323\) 0 0
\(324\) 0.396080 0.918216i 0.396080 0.918216i
\(325\) −1.79216 −1.79216
\(326\) 0 0
\(327\) −0.0333522 + 0.572636i −0.0333522 + 0.572636i
\(328\) 0 0
\(329\) −1.07074 + 0.389717i −1.07074 + 0.389717i
\(330\) 0 0
\(331\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(332\) 0 0
\(333\) 0.0694434 0.0932786i 0.0694434 0.0932786i
\(334\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(335\) 0 0
\(336\) 1.93293 + 0.458113i 1.93293 + 0.458113i
\(337\) 0.914900 + 0.767692i 0.914900 + 0.767692i 0.973045 0.230616i \(-0.0740741\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(338\) −0.766044 0.642788i −0.766044 0.642788i
\(339\) 0.539014 + 1.80043i 0.539014 + 1.80043i
\(340\) −3.05576 1.11220i −3.05576 1.11220i
\(341\) 0 0
\(342\) 0 0
\(343\) −1.93293 3.34793i −1.93293 3.34793i
\(344\) 0.238329 + 1.35163i 0.238329 + 1.35163i
\(345\) 0 0
\(346\) 0 0
\(347\) −0.0201935 + 0.114523i −0.0201935 + 0.114523i −0.993238 0.116093i \(-0.962963\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(348\) 0 0
\(349\) −1.36912 + 1.14883i −1.36912 + 1.14883i −0.396080 + 0.918216i \(0.629630\pi\)
−0.973045 + 0.230616i \(0.925926\pi\)
\(350\) −3.56008 −3.56008
\(351\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(352\) 0 0
\(353\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(354\) 0 0
\(355\) −0.346545 + 1.96536i −0.346545 + 1.96536i
\(356\) 0 0
\(357\) 1.53119 3.54970i 1.53119 3.54970i
\(358\) −0.207391 1.17617i −0.207391 1.17617i
\(359\) 0.173648 + 0.300767i 0.173648 + 0.300767i 0.939693 0.342020i \(-0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(360\) 1.14669 + 1.21542i 1.14669 + 1.21542i
\(361\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(362\) 0 0
\(363\) −0.686242 + 0.727374i −0.686242 + 0.727374i
\(364\) −1.52173 1.27688i −1.52173 1.27688i
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0.0971586 + 0.168284i 0.0971586 + 0.168284i
\(371\) 0 0
\(372\) −0.137557 + 0.318893i −0.137557 + 0.318893i
\(373\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(374\) 0 0
\(375\) −1.10592 0.727374i −1.10592 0.727374i
\(376\) −0.439408 + 0.368707i −0.439408 + 0.368707i
\(377\) 0 0
\(378\) −1.52173 + 1.27688i −1.52173 + 1.27688i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.744386 0.270935i 0.744386 0.270935i 0.0581448 0.998308i \(-0.481481\pi\)
0.686242 + 0.727374i \(0.259259\pi\)
\(384\) 0.993238 0.116093i 0.993238 0.116093i
\(385\) 0 0
\(386\) 0 0
\(387\) −1.22650 0.615969i −1.22650 0.615969i
\(388\) 0 0
\(389\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(390\) −0.479241 1.60078i −0.479241 1.60078i
\(391\) 0 0
\(392\) −2.25684 1.89371i −2.25684 1.89371i
\(393\) −0.558145 0.132283i −0.558145 0.132283i
\(394\) 1.86668 + 0.679415i 1.86668 + 0.679415i
\(395\) 0 0
\(396\) 0 0
\(397\) 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i \(0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −1.68408 + 0.612955i −1.68408 + 0.612955i
\(401\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(402\) 0 0
\(403\) 0.266044 0.223238i 0.266044 0.223238i
\(404\) 0 0
\(405\) −1.65968 + 0.193988i −1.65968 + 0.193988i
\(406\) 0 0
\(407\) 0 0
\(408\) 0.113155 1.94280i 0.113155 1.94280i
\(409\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −0.939693 0.342020i −0.939693 0.342020i
\(417\) 1.16212 + 0.275428i 1.16212 + 0.275428i
\(418\) 0 0
\(419\) −1.28004 1.07408i −1.28004 1.07408i −0.993238 0.116093i \(-0.962963\pi\)
−0.286803 0.957990i \(-0.592593\pi\)
\(420\) −0.952002 3.17991i −0.952002 3.17991i
\(421\) 0.744386 + 0.270935i 0.744386 + 0.270935i 0.686242 0.727374i \(-0.259259\pi\)
0.0581448 + 0.998308i \(0.481481\pi\)
\(422\) 0.893633 1.54782i 0.893633 1.54782i
\(423\) −0.0333522 0.572636i −0.0333522 0.572636i
\(424\) 0 0
\(425\) 0.605633 + 3.43472i 0.605633 + 3.43472i
\(426\) −1.18624 + 0.138652i −1.18624 + 0.138652i
\(427\) 0 0
\(428\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(429\) 0 0
\(430\) 1.75684 1.47416i 1.75684 1.47416i
\(431\) 0.116290 0.116290 0.0581448 0.998308i \(-0.481481\pi\)
0.0581448 + 0.998308i \(0.481481\pi\)
\(432\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(433\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(434\) 0.528491 0.443457i 0.528491 0.443457i
\(435\) 0 0
\(436\) 0.0996057 0.564892i 0.0996057 0.564892i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(440\) 0 0
\(441\) 2.86668 0.679415i 2.86668 0.679415i
\(442\) −0.973045 + 1.68536i −0.973045 + 1.68536i
\(443\) −1.12229 0.408481i −1.12229 0.408481i −0.286803 0.957990i \(-0.592593\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(444\) −0.0798028 + 0.0845860i −0.0798028 + 0.0845860i
\(445\) 0 0
\(446\) −1.05138 0.882215i −1.05138 0.882215i
\(447\) 1.05138 1.11440i 1.05138 1.11440i
\(448\) −1.86668 0.679415i −1.86668 0.679415i
\(449\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(450\) 0.513997 1.71687i 0.513997 1.71687i
\(451\) 0 0
\(452\) −0.326352 1.85083i −0.326352 1.85083i
\(453\) 0.661840 1.53432i 0.661840 1.53432i
\(454\) 0 0
\(455\) −0.576400 + 3.26893i −0.576400 + 3.26893i
\(456\) 0 0
\(457\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(458\) −1.67098 −1.67098
\(459\) 1.49079 + 1.25092i 1.49079 + 1.25092i
\(460\) 0 0
\(461\) −0.606829 + 0.509190i −0.606829 + 0.509190i −0.893633 0.448799i \(-0.851852\pi\)
0.286803 + 0.957990i \(0.407407\pi\)
\(462\) 0 0
\(463\) −0.266044 + 1.50881i −0.266044 + 1.50881i 0.500000 + 0.866025i \(0.333333\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(464\) 0 0
\(465\) 0.576400 0.0673715i 0.576400 0.0673715i
\(466\) −0.137557 0.780125i −0.137557 0.780125i
\(467\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(468\) 0.835488 0.549509i 0.835488 0.549509i
\(469\) 0 0
\(470\) 0.900679 + 0.327820i 0.900679 + 0.327820i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) −1.93293 + 3.34793i −1.93293 + 3.34793i
\(477\) 0 0
\(478\) 0.686242 + 1.18861i 0.686242 + 1.18861i
\(479\) −0.310355 1.76011i −0.310355 1.76011i −0.597159 0.802123i \(-0.703704\pi\)
0.286803 0.957990i \(-0.407407\pi\)
\(480\) −0.997837 1.34033i −0.997837 1.34033i
\(481\) 0.109277 0.0397734i 0.109277 0.0397734i
\(482\) 0 0
\(483\) 0 0
\(484\) 0.766044 0.642788i 0.766044 0.642788i
\(485\) 0 0
\(486\) −0.396080 0.918216i −0.396080 0.918216i
\(487\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −0.854843 + 4.84806i −0.854843 + 4.84806i
\(491\) 1.28971 0.469417i 1.28971 0.469417i 0.396080 0.918216i \(-0.370370\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.173648 0.300767i 0.173648 0.300767i
\(497\) 2.22941 + 0.811437i 2.22941 + 0.811437i
\(498\) 0 0
\(499\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(500\) 1.01400 + 0.850845i 1.01400 + 0.850845i
\(501\) 0.439408 + 1.46773i 0.439408 + 1.46773i
\(502\) −1.76604 0.642788i −1.76604 0.642788i
\(503\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(504\) 1.65968 1.09159i 1.65968 1.09159i
\(505\) 0 0
\(506\) 0 0
\(507\) −0.993238 + 0.116093i −0.993238 + 0.116093i
\(508\) 0 0
\(509\) −0.266044 + 1.50881i −0.266044 + 1.50881i 0.500000 + 0.866025i \(0.333333\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(510\) −2.90598 + 1.45944i −2.90598 + 1.45944i
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) 0 0
\(514\) 0.116290 0.116290
\(515\) 0 0
\(516\) 1.14669 + 0.754192i 1.14669 + 0.754192i
\(517\) 0 0
\(518\) 0.217075 0.0790089i 0.217075 0.0790089i
\(519\) 0 0
\(520\) 0.290162 + 1.64559i 0.290162 + 1.64559i
\(521\) 0.0581448 + 0.100710i 0.0581448 + 0.100710i 0.893633 0.448799i \(-0.148148\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(522\) 0 0
\(523\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(524\) 0.539014 + 0.196185i 0.539014 + 0.196185i
\(525\) −2.44308 + 2.58951i −2.44308 + 2.58951i
\(526\) 0 0
\(527\) −0.517746 0.434441i −0.517746 0.434441i
\(528\) 0 0
\(529\) −0.939693 0.342020i −0.939693 0.342020i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.57020 0.571507i 1.57020 0.571507i
\(536\) 0 0
\(537\) −0.997837 0.656288i −0.997837 0.656288i
\(538\) 0 0
\(539\) 0 0
\(540\) 1.67098 1.67098
\(541\) −1.19432 −1.19432 −0.597159 0.802123i \(-0.703704\pi\)
−0.597159 + 0.802123i \(0.703704\pi\)
\(542\) 1.36912 1.14883i 1.36912 1.14883i
\(543\) 0 0
\(544\) −0.337935 + 1.91652i −0.337935 + 1.91652i
\(545\) −0.900679 + 0.327820i −0.900679 + 0.327820i
\(546\) −1.97304 + 0.230616i −1.97304 + 0.230616i
\(547\) 0.310355 + 1.76011i 0.310355 + 1.76011i 0.597159 + 0.802123i \(0.296296\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0.189079 + 0.0448126i 0.189079 + 0.0448126i
\(556\) −1.12229 0.408481i −1.12229 0.408481i
\(557\) −0.286803 + 0.496758i −0.286803 + 0.496758i −0.973045 0.230616i \(-0.925926\pi\)
0.686242 + 0.727374i \(0.259259\pi\)
\(558\) 0.137557 + 0.318893i 0.137557 + 0.318893i
\(559\) −0.686242 1.18861i −0.686242 1.18861i
\(560\) 0.576400 + 3.26893i 0.576400 + 3.26893i
\(561\) 0 0
\(562\) 0 0
\(563\) 0.137557 0.780125i 0.137557 0.780125i −0.835488 0.549509i \(-0.814815\pi\)
0.973045 0.230616i \(-0.0740741\pi\)
\(564\) −0.0333522 + 0.572636i −0.0333522 + 0.572636i
\(565\) −2.40569 + 2.01861i −2.40569 + 2.01861i
\(566\) 1.87939 1.87939
\(567\) −0.115503 + 1.98312i −0.115503 + 1.98312i
\(568\) 1.19432 1.19432
\(569\) 1.36912 1.14883i 1.36912 1.14883i 0.396080 0.918216i \(-0.370370\pi\)
0.973045 0.230616i \(-0.0740741\pi\)
\(570\) 0 0
\(571\) 0.337935 1.91652i 0.337935 1.91652i −0.0581448 0.998308i \(-0.518519\pi\)
0.396080 0.918216i \(-0.370370\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.597159 0.802123i 0.597159 0.802123i
\(577\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) 2.61917 + 0.953301i 2.61917 + 0.953301i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −1.49324 0.749932i −1.49324 0.749932i
\(586\) −0.597159 1.03431i −0.597159 1.03431i
\(587\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(588\) −2.92617 + 0.342020i −2.92617 + 0.342020i
\(589\) 0 0
\(590\) 0 0
\(591\) 1.77518 0.891529i 1.77518 0.891529i
\(592\) 0.0890830 0.0747496i 0.0890830 0.0747496i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 6.45976 6.45976
\(596\) −1.17365 + 0.984808i −1.17365 + 0.984808i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(600\) −0.709838 + 1.64559i −0.709838 + 1.64559i
\(601\) −0.238329 1.35163i −0.238329 1.35163i −0.835488 0.549509i \(-0.814815\pi\)
0.597159 0.802123i \(-0.296296\pi\)
\(602\) −1.36320 2.36114i −1.36320 2.36114i
\(603\) 0 0
\(604\) −0.835488 + 1.44711i −0.835488 + 1.44711i
\(605\) −1.57020 0.571507i −1.57020 0.571507i
\(606\) 0 0
\(607\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.286803 0.496758i 0.286803 0.496758i
\(612\) −1.33549 1.41553i −1.33549 1.41553i
\(613\) 0.173648 + 0.300767i 0.173648 + 0.300767i 0.939693 0.342020i \(-0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(618\) 0 0
\(619\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(620\) −0.580324 −0.580324
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) −0.893633 + 0.448799i −0.893633 + 0.448799i
\(625\) 0.0728760 0.413300i 0.0728760 0.413300i
\(626\) 1.67948 0.611281i 1.67948 0.611281i
\(627\) 0 0
\(628\) 0 0
\(629\) −0.113155 0.195990i −0.113155 0.195990i
\(630\) −2.96628 1.48972i −2.96628 1.48972i
\(631\) 0.973045 1.68536i 0.973045 1.68536i 0.286803 0.957990i \(-0.407407\pi\)
0.686242 0.727374i \(-0.259259\pi\)
\(632\) 0 0
\(633\) −0.512593 1.71218i −0.512593 1.71218i
\(634\) −1.43969 1.20805i −1.43969 1.20805i
\(635\) 0 0
\(636\) 0 0
\(637\) 2.76842 + 1.00762i 2.76842 + 1.00762i
\(638\) 0 0
\(639\) −0.713197 + 0.957990i −0.713197 + 0.957990i
\(640\) 0.835488 + 1.44711i 0.835488 + 1.44711i
\(641\) 0.266044 + 1.50881i 0.266044 + 1.50881i 0.766044 + 0.642788i \(0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) 0.597159 + 0.802123i 0.597159 + 0.802123i
\(643\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(644\) 0 0
\(645\) 0.133349 2.28951i 0.133349 2.28951i
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0.286803 + 0.957990i 0.286803 + 0.957990i
\(649\) 0 0
\(650\) 1.37287 1.15198i 1.37287 1.15198i
\(651\) 0.0401139 0.688729i 0.0401139 0.688729i
\(652\) 0 0
\(653\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(654\) −0.342534 0.460103i −0.342534 0.460103i
\(655\) −0.166439 0.943921i −0.166439 0.943921i
\(656\) 0 0
\(657\) 0 0
\(658\) 0.569728 0.986798i 0.569728 0.986798i
\(659\) −0.326352 0.118782i −0.326352 0.118782i 0.173648 0.984808i \(-0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(660\) 0 0
\(661\) 0.766044 + 0.642788i 0.766044 + 0.642788i 0.939693 0.342020i \(-0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(662\) 0 0
\(663\) 0.558145 + 1.86433i 0.558145 + 1.86433i
\(664\) 0 0
\(665\) 0 0
\(666\) 0.00676164 + 0.116093i 0.00676164 + 0.116093i
\(667\) 0 0
\(668\) −0.266044 1.50881i −0.266044 1.50881i
\(669\) −1.36320 + 0.159336i −1.36320 + 0.159336i
\(670\) 0 0
\(671\) 0 0
\(672\) −1.77518 + 0.891529i −1.77518 + 0.891529i
\(673\) −0.0890830 + 0.0747496i −0.0890830 + 0.0747496i −0.686242 0.727374i \(-0.740741\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(674\) −1.19432 −1.19432
\(675\) −0.896080 1.55206i −0.896080 1.55206i
\(676\) 1.00000 1.00000
\(677\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(678\) −1.57020 1.03274i −1.57020 1.03274i
\(679\) 0 0
\(680\) 3.05576 1.11220i 3.05576 1.11220i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 3.63272 + 1.32220i 3.63272 + 1.32220i
\(687\) −1.14669 + 1.21542i −1.14669 + 1.21542i
\(688\) −1.05138 0.882215i −1.05138 0.882215i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −0.0581448 0.100710i −0.0581448 0.100710i
\(695\) 0.346545 + 1.96536i 0.346545 + 1.96536i
\(696\) 0 0
\(697\) 0 0
\(698\) 0.310355 1.76011i 0.310355 1.76011i
\(699\) −0.661840 0.435299i −0.661840 0.435299i
\(700\) 2.72718 2.28838i 2.72718 2.28838i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0.173648 0.984808i 0.173648 0.984808i
\(703\) 0 0
\(704\) 0 0
\(705\) 0.856531 0.430166i 0.856531 0.430166i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.0603074 0.342020i −0.0603074 0.342020i 0.939693 0.342020i \(-0.111111\pi\)
−1.00000 \(\pi\)
\(710\) −0.997837 1.72831i −0.997837 1.72831i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 1.10874 + 3.70346i 1.10874 + 3.70346i
\(715\) 0 0
\(716\) 0.914900 + 0.767692i 0.914900 + 0.767692i
\(717\) 1.33549 + 0.316516i 1.33549 + 0.316516i
\(718\) −0.326352 0.118782i −0.326352 0.118782i
\(719\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(720\) −1.65968 0.193988i −1.65968 0.193988i
\(721\) 0 0
\(722\) −0.173648 0.984808i −0.173648 0.984808i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0.0581448 0.998308i 0.0581448 0.998308i
\(727\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(728\) 1.98648 1.98648
\(729\) −0.939693 0.342020i −0.939693 0.342020i
\(730\) 0 0
\(731\) −2.04609 + 1.71687i −2.04609 + 1.71687i
\(732\) 0 0
\(733\) −0.137557 + 0.780125i −0.137557 + 0.780125i 0.835488 + 0.549509i \(0.185185\pi\)
−0.973045 + 0.230616i \(0.925926\pi\)
\(734\) 0 0
\(735\) 2.93972 + 3.94873i 2.93972 + 3.94873i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(740\) −0.182598 0.0664604i −0.182598 0.0664604i
\(741\) 0 0
\(742\) 0 0
\(743\) 1.05138 + 0.882215i 1.05138 + 0.882215i 0.993238 0.116093i \(-0.0370370\pi\)
0.0581448 + 0.998308i \(0.481481\pi\)
\(744\) −0.0996057 0.332706i −0.0996057 0.332706i
\(745\) 2.40569 + 0.875600i 2.40569 + 0.875600i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.344948 1.95630i −0.344948 1.95630i
\(750\) 1.31473 0.153670i 1.31473 0.153670i
\(751\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(752\) 0.0996057 0.564892i 0.0996057 0.564892i
\(753\) −1.67948 + 0.843467i −1.67948 + 0.843467i
\(754\) 0 0
\(755\) 2.79216 2.79216
\(756\) 0.344948 1.95630i 0.344948 1.95630i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(762\) 0 0
\(763\) 0.197864 + 1.12214i 0.197864 + 1.12214i
\(764\) 0 0
\(765\) −0.932646 + 3.11526i −0.932646 + 3.11526i
\(766\) −0.396080 + 0.686030i −0.396080 + 0.686030i
\(767\) 0 0
\(768\) −0.686242 + 0.727374i −0.686242 + 0.727374i
\(769\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(770\) 0 0
\(771\) 0.0798028 0.0845860i 0.0798028 0.0845860i
\(772\) 0 0
\(773\) −0.686242 + 1.18861i −0.686242 + 1.18861i 0.286803 + 0.957990i \(0.407407\pi\)
−0.973045 + 0.230616i \(0.925926\pi\)
\(774\) 1.33549 0.316516i 1.33549 0.316516i
\(775\) 0.311205 + 0.539023i 0.311205 + 0.539023i
\(776\) 0 0
\(777\) 0.0914971 0.212114i 0.0914971 0.212114i
\(778\) 0 0
\(779\) 0 0
\(780\) 1.39608 + 0.918216i 1.39608 + 0.918216i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 2.94609 2.94609
\(785\) 0 0
\(786\) 0.512593 0.257434i 0.512593 0.257434i
\(787\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(788\) −1.86668 + 0.679415i −1.86668 + 0.679415i
\(789\) 0 0
\(790\) 0 0
\(791\) 1.86668 + 3.23318i 1.86668 + 3.23318i
\(792\) 0 0
\(793\) 0 0
\(794\) −1.43969 0.524005i −1.43969 0.524005i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(798\) 0 0
\(799\) −1.04897 0.381794i −1.04897 0.381794i
\(800\) 0.896080 1.55206i 0.896080 1.55206i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(807\) 0 0
\(808\) 0 0
\(809\) −0.573606 −0.573606 −0.286803 0.957990i \(-0.592593\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(810\) 1.14669 1.21542i 1.14669 1.21542i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0.103920 1.78424i 0.103920 1.78424i
\(814\) 0 0
\(815\) 0 0
\(816\) 1.16212 + 1.56100i 1.16212 + 1.56100i
\(817\) 0 0
\(818\) 0 0
\(819\) −1.18624 + 1.59340i −1.18624 + 1.59340i
\(820\) 0 0
\(821\) 1.82873 + 0.665602i 1.82873 + 0.665602i 0.993238 + 0.116093i \(0.0370370\pi\)
0.835488 + 0.549509i \(0.185185\pi\)
\(822\) 0 0
\(823\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(828\) 0 0
\(829\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.939693 0.342020i 0.939693 0.342020i
\(833\) 0.995587 5.64625i 0.995587 5.64625i
\(834\) −1.06728 + 0.536009i −1.06728 + 0.536009i
\(835\) −1.96114 + 1.64559i −1.96114 + 1.64559i
\(836\) 0 0
\(837\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(838\) 1.67098 1.67098
\(839\) 1.43969 1.20805i 1.43969 1.20805i 0.500000 0.866025i \(-0.333333\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(840\) 2.77328 + 1.82401i 2.77328 + 1.82401i
\(841\) 0.173648 0.984808i 0.173648 0.984808i
\(842\) −0.744386 + 0.270935i −0.744386 + 0.270935i
\(843\) 0 0
\(844\) 0.310355 + 1.76011i 0.310355 + 1.76011i
\(845\) −0.835488 1.44711i −0.835488 1.44711i
\(846\) 0.393633 + 0.417226i 0.393633 + 0.417226i
\(847\) −0.993238 + 1.72034i −0.993238 + 1.72034i
\(848\) 0 0
\(849\) 1.28971 1.36702i 1.28971 1.36702i
\(850\) −2.67174 2.24185i −2.67174 2.24185i
\(851\) 0 0
\(852\) 0.819590 0.868715i 0.819590 0.868715i
\(853\) −0.539014 0.196185i −0.539014 0.196185i 0.0581448 0.998308i \(-0.481481\pi\)
−0.597159 + 0.802123i \(0.703704\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −0.500000 0.866025i −0.500000 0.866025i
\(857\) −0.326352 1.85083i −0.326352 1.85083i −0.500000 0.866025i \(-0.666667\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(858\) 0 0
\(859\) 1.76604 0.642788i 1.76604 0.642788i 0.766044 0.642788i \(-0.222222\pi\)
1.00000 \(0\)
\(860\) −0.398242 + 2.25854i −0.398242 + 2.25854i
\(861\) 0 0
\(862\) −0.0890830 + 0.0747496i −0.0890830 + 0.0747496i
\(863\) −1.78727 −1.78727 −0.893633 0.448799i \(-0.851852\pi\)
−0.893633 + 0.448799i \(0.851852\pi\)
\(864\) −0.173648 0.984808i −0.173648 0.984808i
\(865\) 0 0
\(866\) 1.52173 1.27688i 1.52173 1.27688i
\(867\) 2.49079 1.25092i 2.49079 1.25092i
\(868\) −0.119799 + 0.679415i −0.119799 + 0.679415i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0.286803 + 0.496758i 0.286803 + 0.496758i
\(873\) 0 0
\(874\) 0 0
\(875\) −2.47088 0.899328i −2.47088 0.899328i
\(876\) 0 0
\(877\) −1.36912 1.14883i −1.36912 1.14883i −0.973045 0.230616i \(-0.925926\pi\)
−0.396080 0.918216i \(-0.629630\pi\)
\(878\) 0 0
\(879\) −1.16212 0.275428i −1.16212 0.275428i
\(880\) 0 0
\(881\) −0.893633 + 1.54782i −0.893633 + 1.54782i −0.0581448 + 0.998308i \(0.518519\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(882\) −1.75928 + 2.36313i −1.75928 + 2.36313i
\(883\) 0.0581448 + 0.100710i 0.0581448 + 0.100710i 0.893633 0.448799i \(-0.148148\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(884\) −0.337935 1.91652i −0.337935 1.91652i
\(885\) 0 0
\(886\) 1.12229 0.408481i 1.12229 0.408481i
\(887\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(888\) 0.00676164 0.116093i 0.00676164 0.116093i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 1.37248 1.37248
\(893\) 0 0
\(894\) −0.0890830 + 1.52950i −0.0890830 + 1.52950i
\(895\) 0.346545 1.96536i 0.346545 1.96536i
\(896\) 1.86668 0.679415i 1.86668 0.679415i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0.709838 + 1.64559i 0.709838 + 1.64559i
\(901\) 0 0
\(902\) 0 0
\(903\) −2.65292 0.628753i −2.65292 0.628753i
\(904\) 1.43969 + 1.20805i 1.43969 + 1.20805i
\(905\) 0 0
\(906\) 0.479241 + 1.60078i 0.479241 + 1.60078i
\(907\) −0.744386 0.270935i −0.744386 0.270935i −0.0581448 0.998308i \(-0.518519\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) −1.65968 2.87465i −1.65968 2.87465i
\(911\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 1.28004 1.07408i 1.28004 1.07408i
\(917\) −1.13946 −1.13946
\(918\) −1.94609 −1.94609
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0.137557 0.780125i 0.137557 0.780125i
\(923\) −1.12229 + 0.408481i −1.12229 + 0.408481i
\(924\) 0 0
\(925\) 0.0361900 + 0.205243i 0.0361900 + 0.205243i
\(926\) −0.766044 1.32683i −0.766044 1.32683i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(930\) −0.398242 + 0.422112i −0.398242 + 0.422112i
\(931\) 0 0
\(932\) 0.606829 + 0.509190i 0.606829 + 0.509190i
\(933\) 0 0
\(934\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(935\) 0 0
\(936\) −0.286803 + 0.957990i −0.286803 + 0.957990i
\(937\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(938\) 0 0
\(939\) 0.707900 1.64110i 0.707900 1.64110i
\(940\) −0.900679 + 0.327820i −0.900679 + 0.327820i
\(941\) 0.344948 1.95630i 0.344948 1.95630i 0.0581448 0.998308i \(-0.481481\pi\)
0.286803 0.957990i \(-0.407407\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −3.11917 + 1.13529i −3.11917 + 1.13529i
\(946\) 0 0
\(947\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −1.86668 + 0.218183i −1.86668 + 0.218183i
\(952\) −0.671300 3.80713i −0.671300 3.80713i
\(953\) −0.597159 1.03431i −0.597159 1.03431i −0.993238 0.116093i \(-0.962963\pi\)
0.396080 0.918216i \(-0.370370\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −1.28971 0.469417i −1.28971 0.469417i
\(957\) 0 0
\(958\) 1.36912 + 1.14883i 1.36912 + 1.14883i
\(959\) 0 0
\(960\) 1.62593 + 0.385353i 1.62593 + 0.385353i
\(961\) 0.826352 + 0.300767i 0.826352 + 0.300767i
\(962\) −0.0581448 + 0.100710i −0.0581448 + 0.100710i
\(963\) 0.993238 + 0.116093i 0.993238 + 0.116093i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.82873 0.665602i 1.82873 0.665602i 0.835488 0.549509i \(-0.185185\pi\)
0.993238 0.116093i \(-0.0370370\pi\)
\(968\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(969\) 0 0
\(970\) 0 0
\(971\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(972\) 0.893633 + 0.448799i 0.893633 + 0.448799i
\(973\) 2.37248 2.37248
\(974\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(975\) 0.104205 1.78913i 0.104205 1.78913i
\(976\) 0 0
\(977\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −2.46142 4.26331i −2.46142 4.26331i
\(981\) −0.569728 0.0665916i −0.569728 0.0665916i
\(982\) −0.686242 + 1.18861i −0.686242 + 1.18861i
\(983\) −0.109277 0.0397734i −0.109277 0.0397734i 0.286803 0.957990i \(-0.407407\pi\)
−0.396080 + 0.918216i \(0.629630\pi\)
\(984\) 0 0
\(985\) 2.54277 + 2.13364i 2.54277 + 2.13364i
\(986\) 0 0
\(987\) −0.326800 1.09159i −0.326800 1.09159i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(993\) 0 0
\(994\) −2.22941 + 0.811437i −2.22941 + 0.811437i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(998\) 0 0
\(999\) 0.0890830 + 0.0747496i 0.0890830 + 0.0747496i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2808.1.fi.b.1507.2 yes 18
8.3 odd 2 2808.1.fi.a.1507.2 yes 18
13.12 even 2 2808.1.fi.a.1507.2 yes 18
27.16 even 9 inner 2808.1.fi.b.259.2 yes 18
104.51 odd 2 CM 2808.1.fi.b.1507.2 yes 18
216.43 odd 18 2808.1.fi.a.259.2 18
351.259 even 18 2808.1.fi.a.259.2 18
2808.259 odd 18 inner 2808.1.fi.b.259.2 yes 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2808.1.fi.a.259.2 18 216.43 odd 18
2808.1.fi.a.259.2 18 351.259 even 18
2808.1.fi.a.1507.2 yes 18 8.3 odd 2
2808.1.fi.a.1507.2 yes 18 13.12 even 2
2808.1.fi.b.259.2 yes 18 27.16 even 9 inner
2808.1.fi.b.259.2 yes 18 2808.259 odd 18 inner
2808.1.fi.b.1507.2 yes 18 1.1 even 1 trivial
2808.1.fi.b.1507.2 yes 18 104.51 odd 2 CM