Properties

Label 2808.1.fi.b.1195.2
Level $2808$
Weight $1$
Character 2808.1195
Analytic conductor $1.401$
Analytic rank $0$
Dimension $18$
Projective image $D_{27}$
CM discriminant -104
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2808,1,Mod(259,2808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2808.259"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 9, 4, 9])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2808.fi (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,0,0,0,0,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40137455547\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{54})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{9} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{27}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{27} + \cdots)\)

Embedding invariants

Embedding label 1195.2
Root \(-0.396080 - 0.918216i\) of defining polynomial
Character \(\chi\) \(=\) 2808.1195
Dual form 2808.1.fi.b.571.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.939693 - 0.342020i) q^{2} +(-0.286803 + 0.957990i) q^{3} +(0.766044 - 0.642788i) q^{4} +(-0.337935 - 1.91652i) q^{5} +(0.0581448 + 0.998308i) q^{6} +(1.28004 + 1.07408i) q^{7} +(0.500000 - 0.866025i) q^{8} +(-0.835488 - 0.549509i) q^{9} +(-0.973045 - 1.68536i) q^{10} +(0.396080 + 0.918216i) q^{12} +(0.939693 + 0.342020i) q^{13} +(1.57020 + 0.571507i) q^{14} +(1.93293 + 0.225927i) q^{15} +(0.173648 - 0.984808i) q^{16} +(-0.396080 - 0.686030i) q^{17} +(-0.973045 - 0.230616i) q^{18} +(-1.49079 - 1.25092i) q^{20} +(-1.39608 + 0.918216i) q^{21} +(0.686242 + 0.727374i) q^{24} +(-2.61917 + 0.953301i) q^{25} +1.00000 q^{26} +(0.766044 - 0.642788i) q^{27} +1.67098 q^{28} +(1.89363 - 0.448799i) q^{30} +(-1.17365 + 0.984808i) q^{31} +(-0.173648 - 0.984808i) q^{32} +(-0.606829 - 0.509190i) q^{34} +(1.62593 - 2.81620i) q^{35} +(-0.993238 + 0.116093i) q^{36} +(-0.286803 - 0.496758i) q^{37} +(-0.597159 + 0.802123i) q^{39} +(-1.82873 - 0.665602i) q^{40} +(-0.997837 + 1.34033i) q^{42} +(0.207391 - 1.17617i) q^{43} +(-0.770807 + 1.78693i) q^{45} +(1.52173 + 1.27688i) q^{47} +(0.893633 + 0.448799i) q^{48} +(0.311205 + 1.76493i) q^{49} +(-2.13517 + 1.79162i) q^{50} +(0.770807 - 0.182685i) q^{51} +(0.939693 - 0.342020i) q^{52} +(0.500000 - 0.866025i) q^{54} +(1.57020 - 0.571507i) q^{56} +(1.62593 - 1.06939i) q^{60} +(-0.766044 + 1.32683i) q^{62} +(-0.479241 - 1.60078i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(0.337935 - 1.91652i) q^{65} +(-0.744386 - 0.270935i) q^{68} +(0.564681 - 3.20247i) q^{70} +(-0.0581448 - 0.100710i) q^{71} +(-0.893633 + 0.448799i) q^{72} +(-0.439408 - 0.368707i) q^{74} +(-0.162065 - 2.78255i) q^{75} +(-0.286803 + 0.957990i) q^{78} -1.94609 q^{80} +(0.396080 + 0.918216i) q^{81} +(-0.479241 + 1.60078i) q^{84} +(-1.18094 + 0.990930i) q^{85} +(-0.207391 - 1.17617i) q^{86} +(-0.113155 + 1.94280i) q^{90} +(0.835488 + 1.44711i) q^{91} +(-0.606829 - 1.40679i) q^{93} +(1.86668 + 0.679415i) q^{94} +(0.993238 + 0.116093i) q^{96} +(0.896080 + 1.55206i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 9 q^{8} - 18 q^{21} + 18 q^{26} + 18 q^{30} - 18 q^{31} + 9 q^{54} - 9 q^{64} + 9 q^{70} - 9 q^{75} + 9 q^{85} + 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2808\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(1081\) \(1405\) \(2081\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{8}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.939693 0.342020i 0.939693 0.342020i
\(3\) −0.286803 + 0.957990i −0.286803 + 0.957990i
\(4\) 0.766044 0.642788i 0.766044 0.642788i
\(5\) −0.337935 1.91652i −0.337935 1.91652i −0.396080 0.918216i \(-0.629630\pi\)
0.0581448 0.998308i \(-0.481481\pi\)
\(6\) 0.0581448 + 0.998308i 0.0581448 + 0.998308i
\(7\) 1.28004 + 1.07408i 1.28004 + 1.07408i 0.993238 + 0.116093i \(0.0370370\pi\)
0.286803 + 0.957990i \(0.407407\pi\)
\(8\) 0.500000 0.866025i 0.500000 0.866025i
\(9\) −0.835488 0.549509i −0.835488 0.549509i
\(10\) −0.973045 1.68536i −0.973045 1.68536i
\(11\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(12\) 0.396080 + 0.918216i 0.396080 + 0.918216i
\(13\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(14\) 1.57020 + 0.571507i 1.57020 + 0.571507i
\(15\) 1.93293 + 0.225927i 1.93293 + 0.225927i
\(16\) 0.173648 0.984808i 0.173648 0.984808i
\(17\) −0.396080 0.686030i −0.396080 0.686030i 0.597159 0.802123i \(-0.296296\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(18\) −0.973045 0.230616i −0.973045 0.230616i
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) −1.49079 1.25092i −1.49079 1.25092i
\(21\) −1.39608 + 0.918216i −1.39608 + 0.918216i
\(22\) 0 0
\(23\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(24\) 0.686242 + 0.727374i 0.686242 + 0.727374i
\(25\) −2.61917 + 0.953301i −2.61917 + 0.953301i
\(26\) 1.00000 1.00000
\(27\) 0.766044 0.642788i 0.766044 0.642788i
\(28\) 1.67098 1.67098
\(29\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(30\) 1.89363 0.448799i 1.89363 0.448799i
\(31\) −1.17365 + 0.984808i −1.17365 + 0.984808i −0.173648 + 0.984808i \(0.555556\pi\)
−1.00000 \(\pi\)
\(32\) −0.173648 0.984808i −0.173648 0.984808i
\(33\) 0 0
\(34\) −0.606829 0.509190i −0.606829 0.509190i
\(35\) 1.62593 2.81620i 1.62593 2.81620i
\(36\) −0.993238 + 0.116093i −0.993238 + 0.116093i
\(37\) −0.286803 0.496758i −0.286803 0.496758i 0.686242 0.727374i \(-0.259259\pi\)
−0.973045 + 0.230616i \(0.925926\pi\)
\(38\) 0 0
\(39\) −0.597159 + 0.802123i −0.597159 + 0.802123i
\(40\) −1.82873 0.665602i −1.82873 0.665602i
\(41\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(42\) −0.997837 + 1.34033i −0.997837 + 1.34033i
\(43\) 0.207391 1.17617i 0.207391 1.17617i −0.686242 0.727374i \(-0.740741\pi\)
0.893633 0.448799i \(-0.148148\pi\)
\(44\) 0 0
\(45\) −0.770807 + 1.78693i −0.770807 + 1.78693i
\(46\) 0 0
\(47\) 1.52173 + 1.27688i 1.52173 + 1.27688i 0.835488 + 0.549509i \(0.185185\pi\)
0.686242 + 0.727374i \(0.259259\pi\)
\(48\) 0.893633 + 0.448799i 0.893633 + 0.448799i
\(49\) 0.311205 + 1.76493i 0.311205 + 1.76493i
\(50\) −2.13517 + 1.79162i −2.13517 + 1.79162i
\(51\) 0.770807 0.182685i 0.770807 0.182685i
\(52\) 0.939693 0.342020i 0.939693 0.342020i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0.500000 0.866025i 0.500000 0.866025i
\(55\) 0 0
\(56\) 1.57020 0.571507i 1.57020 0.571507i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(60\) 1.62593 1.06939i 1.62593 1.06939i
\(61\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(62\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(63\) −0.479241 1.60078i −0.479241 1.60078i
\(64\) −0.500000 0.866025i −0.500000 0.866025i
\(65\) 0.337935 1.91652i 0.337935 1.91652i
\(66\) 0 0
\(67\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(68\) −0.744386 0.270935i −0.744386 0.270935i
\(69\) 0 0
\(70\) 0.564681 3.20247i 0.564681 3.20247i
\(71\) −0.0581448 0.100710i −0.0581448 0.100710i 0.835488 0.549509i \(-0.185185\pi\)
−0.893633 + 0.448799i \(0.851852\pi\)
\(72\) −0.893633 + 0.448799i −0.893633 + 0.448799i
\(73\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(74\) −0.439408 0.368707i −0.439408 0.368707i
\(75\) −0.162065 2.78255i −0.162065 2.78255i
\(76\) 0 0
\(77\) 0 0
\(78\) −0.286803 + 0.957990i −0.286803 + 0.957990i
\(79\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(80\) −1.94609 −1.94609
\(81\) 0.396080 + 0.918216i 0.396080 + 0.918216i
\(82\) 0 0
\(83\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(84\) −0.479241 + 1.60078i −0.479241 + 1.60078i
\(85\) −1.18094 + 0.990930i −1.18094 + 0.990930i
\(86\) −0.207391 1.17617i −0.207391 1.17617i
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) −0.113155 + 1.94280i −0.113155 + 1.94280i
\(91\) 0.835488 + 1.44711i 0.835488 + 1.44711i
\(92\) 0 0
\(93\) −0.606829 1.40679i −0.606829 1.40679i
\(94\) 1.86668 + 0.679415i 1.86668 + 0.679415i
\(95\) 0 0
\(96\) 0.993238 + 0.116093i 0.993238 + 0.116093i
\(97\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(98\) 0.896080 + 1.55206i 0.896080 + 1.55206i
\(99\) 0 0
\(100\) −1.39363 + 2.41384i −1.39363 + 2.41384i
\(101\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(102\) 0.661840 0.435299i 0.661840 0.435299i
\(103\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(104\) 0.766044 0.642788i 0.766044 0.642788i
\(105\) 2.23157 + 2.36532i 2.23157 + 2.36532i
\(106\) 0 0
\(107\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) 0.173648 0.984808i 0.173648 0.984808i
\(109\) 1.98648 1.98648 0.993238 0.116093i \(-0.0370370\pi\)
0.993238 + 0.116093i \(0.0370370\pi\)
\(110\) 0 0
\(111\) 0.558145 0.132283i 0.558145 0.132283i
\(112\) 1.28004 1.07408i 1.28004 1.07408i
\(113\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.597159 0.802123i −0.597159 0.802123i
\(118\) 0 0
\(119\) 0.229854 1.30357i 0.229854 1.30357i
\(120\) 1.16212 1.56100i 1.16212 1.56100i
\(121\) −0.939693 0.342020i −0.939693 0.342020i
\(122\) 0 0
\(123\) 0 0
\(124\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(125\) 1.73909 + 3.01219i 1.73909 + 3.01219i
\(126\) −0.997837 1.34033i −0.997837 1.34033i
\(127\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(128\) −0.766044 0.642788i −0.766044 0.642788i
\(129\) 1.06728 + 0.536009i 1.06728 + 0.536009i
\(130\) −0.337935 1.91652i −0.337935 1.91652i
\(131\) −1.52173 + 1.27688i −1.52173 + 1.27688i −0.686242 + 0.727374i \(0.740741\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.49079 1.25092i −1.49079 1.25092i
\(136\) −0.792160 −0.792160
\(137\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(138\) 0 0
\(139\) −0.0890830 + 0.0747496i −0.0890830 + 0.0747496i −0.686242 0.727374i \(-0.740741\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(140\) −0.564681 3.20247i −0.564681 3.20247i
\(141\) −1.65968 + 1.09159i −1.65968 + 1.09159i
\(142\) −0.0890830 0.0747496i −0.0890830 0.0747496i
\(143\) 0 0
\(144\) −0.686242 + 0.727374i −0.686242 + 0.727374i
\(145\) 0 0
\(146\) 0 0
\(147\) −1.78004 0.208057i −1.78004 0.208057i
\(148\) −0.539014 0.196185i −0.539014 0.196185i
\(149\) −1.76604 0.642788i −1.76604 0.642788i −0.766044 0.642788i \(-0.777778\pi\)
−1.00000 \(\pi\)
\(150\) −1.10398 2.55931i −1.10398 2.55931i
\(151\) −0.337935 + 1.91652i −0.337935 + 1.91652i 0.0581448 + 0.998308i \(0.481481\pi\)
−0.396080 + 0.918216i \(0.629630\pi\)
\(152\) 0 0
\(153\) −0.0460600 + 0.790819i −0.0460600 + 0.790819i
\(154\) 0 0
\(155\) 2.28402 + 1.91652i 2.28402 + 1.91652i
\(156\) 0.0581448 + 0.998308i 0.0581448 + 0.998308i
\(157\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −1.82873 + 0.665602i −1.82873 + 0.665602i
\(161\) 0 0
\(162\) 0.686242 + 0.727374i 0.686242 + 0.727374i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.326352 + 1.85083i 0.326352 + 1.85083i 0.500000 + 0.866025i \(0.333333\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(168\) 0.0971586 + 1.66815i 0.0971586 + 1.66815i
\(169\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(170\) −0.770807 + 1.33508i −0.770807 + 1.33508i
\(171\) 0 0
\(172\) −0.597159 1.03431i −0.597159 1.03431i
\(173\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(174\) 0 0
\(175\) −4.37657 1.59294i −4.37657 1.59294i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0.0581448 + 0.100710i 0.0581448 + 0.100710i 0.893633 0.448799i \(-0.148148\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(180\) 0.558145 + 1.86433i 0.558145 + 1.86433i
\(181\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(182\) 1.28004 + 1.07408i 1.28004 + 1.07408i
\(183\) 0 0
\(184\) 0 0
\(185\) −0.855127 + 0.717537i −0.855127 + 0.717537i
\(186\) −1.05138 1.11440i −1.05138 1.11440i
\(187\) 0 0
\(188\) 1.98648 1.98648
\(189\) 1.67098 1.67098
\(190\) 0 0
\(191\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(192\) 0.973045 0.230616i 0.973045 0.230616i
\(193\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(194\) 0 0
\(195\) 1.73909 + 0.873403i 1.73909 + 0.873403i
\(196\) 1.37287 + 1.15198i 1.37287 + 1.15198i
\(197\) −0.835488 + 1.44711i −0.835488 + 1.44711i 0.0581448 + 0.998308i \(0.481481\pi\)
−0.893633 + 0.448799i \(0.851852\pi\)
\(198\) 0 0
\(199\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(200\) −0.484004 + 2.74492i −0.484004 + 2.74492i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0.473045 0.635410i 0.473045 0.635410i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0.500000 0.866025i 0.500000 0.866025i
\(209\) 0 0
\(210\) 2.90598 + 1.45944i 2.90598 + 1.45944i
\(211\) −0.238329 1.35163i −0.238329 1.35163i −0.835488 0.549509i \(-0.814815\pi\)
0.597159 0.802123i \(-0.296296\pi\)
\(212\) 0 0
\(213\) 0.113155 0.0268182i 0.113155 0.0268182i
\(214\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(215\) −2.32425 −2.32425
\(216\) −0.173648 0.984808i −0.173648 0.984808i
\(217\) −2.56008 −2.56008
\(218\) 1.86668 0.679415i 1.86668 0.679415i
\(219\) 0 0
\(220\) 0 0
\(221\) −0.137557 0.780125i −0.137557 0.780125i
\(222\) 0.479241 0.315202i 0.479241 0.315202i
\(223\) −0.914900 0.767692i −0.914900 0.767692i 0.0581448 0.998308i \(-0.481481\pi\)
−0.973045 + 0.230616i \(0.925926\pi\)
\(224\) 0.835488 1.44711i 0.835488 1.44711i
\(225\) 2.71213 + 0.642788i 2.71213 + 0.642788i
\(226\) 0.173648 + 0.300767i 0.173648 + 0.300767i
\(227\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(228\) 0 0
\(229\) 1.82873 + 0.665602i 1.82873 + 0.665602i 0.993238 + 0.116093i \(0.0370370\pi\)
0.835488 + 0.549509i \(0.185185\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.893633 1.54782i −0.893633 1.54782i −0.835488 0.549509i \(-0.814815\pi\)
−0.0581448 0.998308i \(-0.518519\pi\)
\(234\) −0.835488 0.549509i −0.835488 0.549509i
\(235\) 1.93293 3.34793i 1.93293 3.34793i
\(236\) 0 0
\(237\) 0 0
\(238\) −0.229854 1.30357i −0.229854 1.30357i
\(239\) −0.914900 + 0.767692i −0.914900 + 0.767692i −0.973045 0.230616i \(-0.925926\pi\)
0.0581448 + 0.998308i \(0.481481\pi\)
\(240\) 0.558145 1.86433i 0.558145 1.86433i
\(241\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(242\) −1.00000 −1.00000
\(243\) −0.993238 + 0.116093i −0.993238 + 0.116093i
\(244\) 0 0
\(245\) 3.27737 1.19286i 3.27737 1.19286i
\(246\) 0 0
\(247\) 0 0
\(248\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(249\) 0 0
\(250\) 2.66444 + 2.23573i 2.66444 + 2.23573i
\(251\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(252\) −1.39608 0.918216i −1.39608 0.918216i
\(253\) 0 0
\(254\) 0 0
\(255\) −0.610602 1.41553i −0.610602 1.41553i
\(256\) −0.939693 0.342020i −0.939693 0.342020i
\(257\) 0.539014 + 0.196185i 0.539014 + 0.196185i 0.597159 0.802123i \(-0.296296\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(258\) 1.18624 + 0.138652i 1.18624 + 0.138652i
\(259\) 0.166439 0.943921i 0.166439 0.943921i
\(260\) −0.973045 1.68536i −0.973045 1.68536i
\(261\) 0 0
\(262\) −0.993238 + 1.72034i −0.993238 + 1.72034i
\(263\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) −1.82873 0.665602i −1.82873 0.665602i
\(271\) 1.37248 1.37248 0.686242 0.727374i \(-0.259259\pi\)
0.686242 + 0.727374i \(0.259259\pi\)
\(272\) −0.744386 + 0.270935i −0.744386 + 0.270935i
\(273\) −1.62593 + 0.385353i −1.62593 + 0.385353i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(278\) −0.0581448 + 0.100710i −0.0581448 + 0.100710i
\(279\) 1.52173 0.177865i 1.52173 0.177865i
\(280\) −1.62593 2.81620i −1.62593 2.81620i
\(281\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(282\) −1.18624 + 1.59340i −1.18624 + 1.59340i
\(283\) −0.326352 0.118782i −0.326352 0.118782i 0.173648 0.984808i \(-0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(284\) −0.109277 0.0397734i −0.109277 0.0397734i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.396080 + 0.918216i −0.396080 + 0.918216i
\(289\) 0.186242 0.322580i 0.186242 0.322580i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.0890830 0.0747496i 0.0890830 0.0747496i −0.597159 0.802123i \(-0.703704\pi\)
0.686242 + 0.727374i \(0.259259\pi\)
\(294\) −1.74385 + 0.413300i −1.74385 + 0.413300i
\(295\) 0 0
\(296\) −0.573606 −0.573606
\(297\) 0 0
\(298\) −1.87939 −1.87939
\(299\) 0 0
\(300\) −1.91274 2.02738i −1.91274 2.02738i
\(301\) 1.52878 1.28280i 1.52878 1.28280i
\(302\) 0.337935 + 1.91652i 0.337935 + 1.91652i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0.227194 + 0.758881i 0.227194 + 0.758881i
\(307\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 2.80177 + 1.01976i 2.80177 + 1.01976i
\(311\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(312\) 0.396080 + 0.918216i 0.396080 + 0.918216i
\(313\) −0.238329 + 1.35163i −0.238329 + 1.35163i 0.597159 + 0.802123i \(0.296296\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(314\) 0 0
\(315\) −2.90598 + 1.45944i −2.90598 + 1.45944i
\(316\) 0 0
\(317\) −0.266044 0.223238i −0.266044 0.223238i 0.500000 0.866025i \(-0.333333\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −1.49079 + 1.25092i −1.49079 + 1.25092i
\(321\) 0.286803 0.957990i 0.286803 0.957990i
\(322\) 0 0
\(323\) 0 0
\(324\) 0.893633 + 0.448799i 0.893633 + 0.448799i
\(325\) −2.78727 −2.78727
\(326\) 0 0
\(327\) −0.569728 + 1.90302i −0.569728 + 1.90302i
\(328\) 0 0
\(329\) 0.576400 + 3.26893i 0.576400 + 3.26893i
\(330\) 0 0
\(331\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(332\) 0 0
\(333\) −0.0333522 + 0.572636i −0.0333522 + 0.572636i
\(334\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(335\) 0 0
\(336\) 0.661840 + 1.53432i 0.661840 + 1.53432i
\(337\) 0.109277 + 0.0397734i 0.109277 + 0.0397734i 0.396080 0.918216i \(-0.370370\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(338\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(339\) −0.344948 0.0403186i −0.344948 0.0403186i
\(340\) −0.267698 + 1.51819i −0.267698 + 1.51819i
\(341\) 0 0
\(342\) 0 0
\(343\) −0.661840 + 1.14634i −0.661840 + 1.14634i
\(344\) −0.914900 0.767692i −0.914900 0.767692i
\(345\) 0 0
\(346\) 0 0
\(347\) −0.439408 + 0.368707i −0.439408 + 0.368707i −0.835488 0.549509i \(-0.814815\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(348\) 0 0
\(349\) −1.28971 + 0.469417i −1.28971 + 0.469417i −0.893633 0.448799i \(-0.851852\pi\)
−0.396080 + 0.918216i \(0.629630\pi\)
\(350\) −4.65745 −4.65745
\(351\) 0.939693 0.342020i 0.939693 0.342020i
\(352\) 0 0
\(353\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(354\) 0 0
\(355\) −0.173364 + 0.145469i −0.173364 + 0.145469i
\(356\) 0 0
\(357\) 1.18288 + 0.594066i 1.18288 + 0.594066i
\(358\) 0.0890830 + 0.0747496i 0.0890830 + 0.0747496i
\(359\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(360\) 1.16212 + 1.56100i 1.16212 + 1.56100i
\(361\) −0.500000 0.866025i −0.500000 0.866025i
\(362\) 0 0
\(363\) 0.597159 0.802123i 0.597159 0.802123i
\(364\) 1.57020 + 0.571507i 1.57020 + 0.571507i
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −0.558145 + 0.966735i −0.558145 + 0.966735i
\(371\) 0 0
\(372\) −1.36912 0.687600i −1.36912 0.687600i
\(373\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(374\) 0 0
\(375\) −3.38442 + 0.802123i −3.38442 + 0.802123i
\(376\) 1.86668 0.679415i 1.86668 0.679415i
\(377\) 0 0
\(378\) 1.57020 0.571507i 1.57020 0.571507i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −0.310355 1.76011i −0.310355 1.76011i −0.597159 0.802123i \(-0.703704\pi\)
0.286803 0.957990i \(-0.407407\pi\)
\(384\) 0.835488 0.549509i 0.835488 0.549509i
\(385\) 0 0
\(386\) 0 0
\(387\) −0.819590 + 0.868715i −0.819590 + 0.868715i
\(388\) 0 0
\(389\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(390\) 1.93293 + 0.225927i 1.93293 + 0.225927i
\(391\) 0 0
\(392\) 1.68408 + 0.612955i 1.68408 + 0.612955i
\(393\) −0.786803 1.82401i −0.786803 1.82401i
\(394\) −0.290162 + 1.64559i −0.290162 + 1.64559i
\(395\) 0 0
\(396\) 0 0
\(397\) −0.939693 + 1.62760i −0.939693 + 1.62760i −0.173648 + 0.984808i \(0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.484004 + 2.74492i 0.484004 + 2.74492i
\(401\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(402\) 0 0
\(403\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(404\) 0 0
\(405\) 1.62593 1.06939i 1.62593 1.06939i
\(406\) 0 0
\(407\) 0 0
\(408\) 0.227194 0.758881i 0.227194 0.758881i
\(409\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0.173648 0.984808i 0.173648 0.984808i
\(417\) −0.0460600 0.106779i −0.0460600 0.106779i
\(418\) 0 0
\(419\) −1.82873 0.665602i −1.82873 0.665602i −0.993238 0.116093i \(-0.962963\pi\)
−0.835488 0.549509i \(-0.814815\pi\)
\(420\) 3.22988 + 0.377519i 3.22988 + 0.377519i
\(421\) −0.310355 + 1.76011i −0.310355 + 1.76011i 0.286803 + 0.957990i \(0.407407\pi\)
−0.597159 + 0.802123i \(0.703704\pi\)
\(422\) −0.686242 1.18861i −0.686242 1.18861i
\(423\) −0.569728 1.90302i −0.569728 1.90302i
\(424\) 0 0
\(425\) 1.69139 + 1.41925i 1.69139 + 1.41925i
\(426\) 0.0971586 0.0639022i 0.0971586 0.0639022i
\(427\) 0 0
\(428\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(429\) 0 0
\(430\) −2.18408 + 0.794940i −2.18408 + 0.794940i
\(431\) 0.573606 0.573606 0.286803 0.957990i \(-0.407407\pi\)
0.286803 + 0.957990i \(0.407407\pi\)
\(432\) −0.500000 0.866025i −0.500000 0.866025i
\(433\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(434\) −2.40569 + 0.875600i −2.40569 + 0.875600i
\(435\) 0 0
\(436\) 1.52173 1.27688i 1.52173 1.27688i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(440\) 0 0
\(441\) 0.709838 1.64559i 0.709838 1.64559i
\(442\) −0.396080 0.686030i −0.396080 0.686030i
\(443\) −0.0201935 + 0.114523i −0.0201935 + 0.114523i −0.993238 0.116093i \(-0.962963\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(444\) 0.342534 0.460103i 0.342534 0.460103i
\(445\) 0 0
\(446\) −1.12229 0.408481i −1.12229 0.408481i
\(447\) 1.12229 1.50750i 1.12229 1.50750i
\(448\) 0.290162 1.64559i 0.290162 1.64559i
\(449\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(450\) 2.76842 0.323582i 2.76842 0.323582i
\(451\) 0 0
\(452\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(453\) −1.73909 0.873403i −1.73909 0.873403i
\(454\) 0 0
\(455\) 2.49108 2.09026i 2.49108 2.09026i
\(456\) 0 0
\(457\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(458\) 1.94609 1.94609
\(459\) −0.744386 0.270935i −0.744386 0.270935i
\(460\) 0 0
\(461\) 1.67948 0.611281i 1.67948 0.611281i 0.686242 0.727374i \(-0.259259\pi\)
0.993238 + 0.116093i \(0.0370370\pi\)
\(462\) 0 0
\(463\) 1.43969 1.20805i 1.43969 1.20805i 0.500000 0.866025i \(-0.333333\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(464\) 0 0
\(465\) −2.49108 + 1.63841i −2.49108 + 1.63841i
\(466\) −1.36912 1.14883i −1.36912 1.14883i
\(467\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(468\) −0.973045 0.230616i −0.973045 0.230616i
\(469\) 0 0
\(470\) 0.671300 3.80713i 0.671300 3.80713i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) −0.661840 1.14634i −0.661840 1.14634i
\(477\) 0 0
\(478\) −0.597159 + 1.03431i −0.597159 + 1.03431i
\(479\) 1.05138 + 0.882215i 1.05138 + 0.882215i 0.993238 0.116093i \(-0.0370370\pi\)
0.0581448 + 0.998308i \(0.481481\pi\)
\(480\) −0.113155 1.94280i −0.113155 1.94280i
\(481\) −0.0996057 0.564892i −0.0996057 0.564892i
\(482\) 0 0
\(483\) 0 0
\(484\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(485\) 0 0
\(486\) −0.893633 + 0.448799i −0.893633 + 0.448799i
\(487\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 2.67174 2.24185i 2.67174 2.24185i
\(491\) 0.207391 + 1.17617i 0.207391 + 1.17617i 0.893633 + 0.448799i \(0.148148\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.766044 + 1.32683i 0.766044 + 1.32683i
\(497\) 0.0337428 0.191365i 0.0337428 0.191365i
\(498\) 0 0
\(499\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(500\) 3.26842 + 1.18961i 3.26842 + 1.18961i
\(501\) −1.86668 0.218183i −1.86668 0.218183i
\(502\) −0.0603074 + 0.342020i −0.0603074 + 0.342020i
\(503\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) −1.62593 0.385353i −1.62593 0.385353i
\(505\) 0 0
\(506\) 0 0
\(507\) −0.835488 + 0.549509i −0.835488 + 0.549509i
\(508\) 0 0
\(509\) 1.43969 1.20805i 1.43969 1.20805i 0.500000 0.866025i \(-0.333333\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(510\) −1.05792 1.12133i −1.05792 1.12133i
\(511\) 0 0
\(512\) −1.00000 −1.00000
\(513\) 0 0
\(514\) 0.573606 0.573606
\(515\) 0 0
\(516\) 1.16212 0.275428i 1.16212 0.275428i
\(517\) 0 0
\(518\) −0.166439 0.943921i −0.166439 0.943921i
\(519\) 0 0
\(520\) −1.49079 1.25092i −1.49079 1.25092i
\(521\) 0.286803 0.496758i 0.286803 0.496758i −0.686242 0.727374i \(-0.740741\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(522\) 0 0
\(523\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(524\) −0.344948 + 1.95630i −0.344948 + 1.95630i
\(525\) 2.78124 3.73585i 2.78124 3.73585i
\(526\) 0 0
\(527\) 1.14047 + 0.415096i 1.14047 + 0.415096i
\(528\) 0 0
\(529\) 0.173648 0.984808i 0.173648 0.984808i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0.337935 + 1.91652i 0.337935 + 1.91652i
\(536\) 0 0
\(537\) −0.113155 + 0.0268182i −0.113155 + 0.0268182i
\(538\) 0 0
\(539\) 0 0
\(540\) −1.94609 −1.94609
\(541\) 0.116290 0.116290 0.0581448 0.998308i \(-0.481481\pi\)
0.0581448 + 0.998308i \(0.481481\pi\)
\(542\) 1.28971 0.469417i 1.28971 0.469417i
\(543\) 0 0
\(544\) −0.606829 + 0.509190i −0.606829 + 0.509190i
\(545\) −0.671300 3.80713i −0.671300 3.80713i
\(546\) −1.39608 + 0.918216i −1.39608 + 0.918216i
\(547\) −1.05138 0.882215i −1.05138 0.882215i −0.0581448 0.998308i \(-0.518519\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −0.442140 1.02500i −0.442140 1.02500i
\(556\) −0.0201935 + 0.114523i −0.0201935 + 0.114523i
\(557\) −0.993238 1.72034i −0.993238 1.72034i −0.597159 0.802123i \(-0.703704\pi\)
−0.396080 0.918216i \(-0.629630\pi\)
\(558\) 1.36912 0.687600i 1.36912 0.687600i
\(559\) 0.597159 1.03431i 0.597159 1.03431i
\(560\) −2.49108 2.09026i −2.49108 2.09026i
\(561\) 0 0
\(562\) 0 0
\(563\) 1.36912 1.14883i 1.36912 1.14883i 0.396080 0.918216i \(-0.370370\pi\)
0.973045 0.230616i \(-0.0740741\pi\)
\(564\) −0.569728 + 1.90302i −0.569728 + 1.90302i
\(565\) 0.635110 0.231161i 0.635110 0.231161i
\(566\) −0.347296 −0.347296
\(567\) −0.479241 + 1.60078i −0.479241 + 1.60078i
\(568\) −0.116290 −0.116290
\(569\) 1.28971 0.469417i 1.28971 0.469417i 0.396080 0.918216i \(-0.370370\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(570\) 0 0
\(571\) 0.606829 0.509190i 0.606829 0.509190i −0.286803 0.957990i \(-0.592593\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.0581448 + 0.998308i −0.0581448 + 0.998308i
\(577\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(578\) 0.0646810 0.366824i 0.0646810 0.366824i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −1.33549 + 1.41553i −1.33549 + 1.41553i
\(586\) 0.0581448 0.100710i 0.0581448 0.100710i
\(587\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(588\) −1.49733 + 0.984808i −1.49733 + 0.984808i
\(589\) 0 0
\(590\) 0 0
\(591\) −1.14669 1.21542i −1.14669 1.21542i
\(592\) −0.539014 + 0.196185i −0.539014 + 0.196185i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) −2.57600 −2.57600
\(596\) −1.76604 + 0.642788i −1.76604 + 0.642788i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(600\) −2.49079 1.25092i −2.49079 1.25092i
\(601\) 0.914900 + 0.767692i 0.914900 + 0.767692i 0.973045 0.230616i \(-0.0740741\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(602\) 0.997837 1.72831i 0.997837 1.72831i
\(603\) 0 0
\(604\) 0.973045 + 1.68536i 0.973045 + 1.68536i
\(605\) −0.337935 + 1.91652i −0.337935 + 1.91652i
\(606\) 0 0
\(607\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.993238 + 1.72034i 0.993238 + 1.72034i
\(612\) 0.473045 + 0.635410i 0.473045 + 0.635410i
\(613\) 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i \(-0.555556\pi\)
0.939693 0.342020i \(-0.111111\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(618\) 0 0
\(619\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(620\) 2.98158 2.98158
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0.686242 + 0.727374i 0.686242 + 0.727374i
\(625\) 3.05007 2.55931i 3.05007 2.55931i
\(626\) 0.238329 + 1.35163i 0.238329 + 1.35163i
\(627\) 0 0
\(628\) 0 0
\(629\) −0.227194 + 0.393511i −0.227194 + 0.393511i
\(630\) −2.23157 + 2.36532i −2.23157 + 2.36532i
\(631\) 0.396080 + 0.686030i 0.396080 + 0.686030i 0.993238 0.116093i \(-0.0370370\pi\)
−0.597159 + 0.802123i \(0.703704\pi\)
\(632\) 0 0
\(633\) 1.36320 + 0.159336i 1.36320 + 0.159336i
\(634\) −0.326352 0.118782i −0.326352 0.118782i
\(635\) 0 0
\(636\) 0 0
\(637\) −0.311205 + 1.76493i −0.311205 + 1.76493i
\(638\) 0 0
\(639\) −0.00676164 + 0.116093i −0.00676164 + 0.116093i
\(640\) −0.973045 + 1.68536i −0.973045 + 1.68536i
\(641\) −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(642\) −0.0581448 0.998308i −0.0581448 0.998308i
\(643\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(644\) 0 0
\(645\) 0.666602 2.22661i 0.666602 2.22661i
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0.993238 + 0.116093i 0.993238 + 0.116093i
\(649\) 0 0
\(650\) −2.61917 + 0.953301i −2.61917 + 0.953301i
\(651\) 0.734240 2.45253i 0.734240 2.45253i
\(652\) 0 0
\(653\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(654\) 0.115503 + 1.98312i 0.115503 + 1.98312i
\(655\) 2.96142 + 2.48493i 2.96142 + 2.48493i
\(656\) 0 0
\(657\) 0 0
\(658\) 1.65968 + 2.87465i 1.65968 + 2.87465i
\(659\) 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(660\) 0 0
\(661\) −0.939693 0.342020i −0.939693 0.342020i −0.173648 0.984808i \(-0.555556\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(662\) 0 0
\(663\) 0.786803 + 0.0919641i 0.786803 + 0.0919641i
\(664\) 0 0
\(665\) 0 0
\(666\) 0.164512 + 0.549509i 0.164512 + 0.549509i
\(667\) 0 0
\(668\) 1.43969 + 1.20805i 1.43969 + 1.20805i
\(669\) 0.997837 0.656288i 0.997837 0.656288i
\(670\) 0 0
\(671\) 0 0
\(672\) 1.14669 + 1.21542i 1.14669 + 1.21542i
\(673\) 0.539014 0.196185i 0.539014 0.196185i −0.0581448 0.998308i \(-0.518519\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(674\) 0.116290 0.116290
\(675\) −1.39363 + 2.41384i −1.39363 + 2.41384i
\(676\) 1.00000 1.00000
\(677\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(678\) −0.337935 + 0.0800921i −0.337935 + 0.0800921i
\(679\) 0 0
\(680\) 0.267698 + 1.51819i 0.267698 + 1.51819i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.229854 + 1.30357i −0.229854 + 1.30357i
\(687\) −1.16212 + 1.56100i −1.16212 + 1.56100i
\(688\) −1.12229 0.408481i −1.12229 0.408481i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −0.286803 + 0.496758i −0.286803 + 0.496758i
\(695\) 0.173364 + 0.145469i 0.173364 + 0.145469i
\(696\) 0 0
\(697\) 0 0
\(698\) −1.05138 + 0.882215i −1.05138 + 0.882215i
\(699\) 1.73909 0.412172i 1.73909 0.412172i
\(700\) −4.37657 + 1.59294i −4.37657 + 1.59294i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0.766044 0.642788i 0.766044 0.642788i
\(703\) 0 0
\(704\) 0 0
\(705\) 2.65292 + 2.81193i 2.65292 + 2.81193i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.17365 0.984808i −1.17365 0.984808i −0.173648 0.984808i \(-0.555556\pi\)
−1.00000 \(\pi\)
\(710\) −0.113155 + 0.195990i −0.113155 + 0.195990i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 1.31473 + 0.153670i 1.31473 + 0.153670i
\(715\) 0 0
\(716\) 0.109277 + 0.0397734i 0.109277 + 0.0397734i
\(717\) −0.473045 1.09664i −0.473045 1.09664i
\(718\) 0.266044 1.50881i 0.266044 1.50881i
\(719\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(720\) 1.62593 + 1.06939i 1.62593 + 1.06939i
\(721\) 0 0
\(722\) −0.766044 0.642788i −0.766044 0.642788i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0.286803 0.957990i 0.286803 0.957990i
\(727\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(728\) 1.67098 1.67098
\(729\) 0.173648 0.984808i 0.173648 0.984808i
\(730\) 0 0
\(731\) −0.889034 + 0.323582i −0.889034 + 0.323582i
\(732\) 0 0
\(733\) −1.36912 + 1.14883i −1.36912 + 1.14883i −0.396080 + 0.918216i \(0.629630\pi\)
−0.973045 + 0.230616i \(0.925926\pi\)
\(734\) 0 0
\(735\) 0.202792 + 3.48180i 0.202792 + 3.48180i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) −0.193842 + 1.09933i −0.193842 + 1.09933i
\(741\) 0 0
\(742\) 0 0
\(743\) 1.12229 + 0.408481i 1.12229 + 0.408481i 0.835488 0.549509i \(-0.185185\pi\)
0.286803 + 0.957990i \(0.407407\pi\)
\(744\) −1.52173 0.177865i −1.52173 0.177865i
\(745\) −0.635110 + 3.60189i −0.635110 + 3.60189i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.28004 1.07408i −1.28004 1.07408i
\(750\) −2.90598 + 1.91129i −2.90598 + 1.91129i
\(751\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(752\) 1.52173 1.27688i 1.52173 1.27688i
\(753\) −0.238329 0.252614i −0.238329 0.252614i
\(754\) 0 0
\(755\) 3.78727 3.78727
\(756\) 1.28004 1.07408i 1.28004 1.07408i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(762\) 0 0
\(763\) 2.54277 + 2.13364i 2.54277 + 2.13364i
\(764\) 0 0
\(765\) 1.53119 0.178970i 1.53119 0.178970i
\(766\) −0.893633 1.54782i −0.893633 1.54782i
\(767\) 0 0
\(768\) 0.597159 0.802123i 0.597159 0.802123i
\(769\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(770\) 0 0
\(771\) −0.342534 + 0.460103i −0.342534 + 0.460103i
\(772\) 0 0
\(773\) 0.597159 + 1.03431i 0.597159 + 1.03431i 0.993238 + 0.116093i \(0.0370370\pi\)
−0.396080 + 0.918216i \(0.629630\pi\)
\(774\) −0.473045 + 1.09664i −0.473045 + 1.09664i
\(775\) 2.13517 3.69822i 2.13517 3.69822i
\(776\) 0 0
\(777\) 0.856531 + 0.430166i 0.856531 + 0.430166i
\(778\) 0 0
\(779\) 0 0
\(780\) 1.89363 0.448799i 1.89363 0.448799i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 1.79216 1.79216
\(785\) 0 0
\(786\) −1.36320 1.44491i −1.36320 1.44491i
\(787\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(788\) 0.290162 + 1.64559i 0.290162 + 1.64559i
\(789\) 0 0
\(790\) 0 0
\(791\) −0.290162 + 0.502575i −0.290162 + 0.502575i
\(792\) 0 0
\(793\) 0 0
\(794\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(798\) 0 0
\(799\) 0.273254 1.54970i 0.273254 1.54970i
\(800\) 1.39363 + 2.41384i 1.39363 + 2.41384i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) −1.17365 + 0.984808i −1.17365 + 0.984808i
\(807\) 0 0
\(808\) 0 0
\(809\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(810\) 1.16212 1.56100i 1.16212 1.56100i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) −0.393633 + 1.31482i −0.393633 + 1.31482i
\(814\) 0 0
\(815\) 0 0
\(816\) −0.0460600 0.790819i −0.0460600 0.790819i
\(817\) 0 0
\(818\) 0 0
\(819\) 0.0971586 1.66815i 0.0971586 1.66815i
\(820\) 0 0
\(821\) −0.137557 + 0.780125i −0.137557 + 0.780125i 0.835488 + 0.549509i \(0.185185\pi\)
−0.973045 + 0.230616i \(0.925926\pi\)
\(822\) 0 0
\(823\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(828\) 0 0
\(829\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −0.173648 0.984808i −0.173648 0.984808i
\(833\) 1.08754 0.912550i 1.08754 0.912550i
\(834\) −0.0798028 0.0845860i −0.0798028 0.0845860i
\(835\) 3.43688 1.25092i 3.43688 1.25092i
\(836\) 0 0
\(837\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(838\) −1.94609 −1.94609
\(839\) 0.326352 0.118782i 0.326352 0.118782i −0.173648 0.984808i \(-0.555556\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(840\) 3.16421 0.749932i 3.16421 0.749932i
\(841\) 0.766044 0.642788i 0.766044 0.642788i
\(842\) 0.310355 + 1.76011i 0.310355 + 1.76011i
\(843\) 0 0
\(844\) −1.05138 0.882215i −1.05138 0.882215i
\(845\) 0.973045 1.68536i 0.973045 1.68536i
\(846\) −1.18624 1.59340i −1.18624 1.59340i
\(847\) −0.835488 1.44711i −0.835488 1.44711i
\(848\) 0 0
\(849\) 0.207391 0.278574i 0.207391 0.278574i
\(850\) 2.07480 + 0.755166i 2.07480 + 0.755166i
\(851\) 0 0
\(852\) 0.0694434 0.0932786i 0.0694434 0.0932786i
\(853\) 0.344948 1.95630i 0.344948 1.95630i 0.0581448 0.998308i \(-0.481481\pi\)
0.286803 0.957990i \(-0.407407\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(857\) 0.266044 + 0.223238i 0.266044 + 0.223238i 0.766044 0.642788i \(-0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(858\) 0 0
\(859\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(860\) −1.78048 + 1.49400i −1.78048 + 1.49400i
\(861\) 0 0
\(862\) 0.539014 0.196185i 0.539014 0.196185i
\(863\) 1.37248 1.37248 0.686242 0.727374i \(-0.259259\pi\)
0.686242 + 0.727374i \(0.259259\pi\)
\(864\) −0.766044 0.642788i −0.766044 0.642788i
\(865\) 0 0
\(866\) −1.57020 + 0.571507i −1.57020 + 0.571507i
\(867\) 0.255614 + 0.270935i 0.255614 + 0.270935i
\(868\) −1.96114 + 1.64559i −1.96114 + 1.64559i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0.993238 1.72034i 0.993238 1.72034i
\(873\) 0 0
\(874\) 0 0
\(875\) −1.00923 + 5.72366i −1.00923 + 5.72366i
\(876\) 0 0
\(877\) −1.28971 0.469417i −1.28971 0.469417i −0.396080 0.918216i \(-0.629630\pi\)
−0.893633 + 0.448799i \(0.851852\pi\)
\(878\) 0 0
\(879\) 0.0460600 + 0.106779i 0.0460600 + 0.106779i
\(880\) 0 0
\(881\) 0.686242 + 1.18861i 0.686242 + 1.18861i 0.973045 + 0.230616i \(0.0740741\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(882\) 0.104205 1.78913i 0.104205 1.78913i
\(883\) 0.286803 0.496758i 0.286803 0.496758i −0.686242 0.727374i \(-0.740741\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(884\) −0.606829 0.509190i −0.606829 0.509190i
\(885\) 0 0
\(886\) 0.0201935 + 0.114523i 0.0201935 + 0.114523i
\(887\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(888\) 0.164512 0.549509i 0.164512 0.549509i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −1.19432 −1.19432
\(893\) 0 0
\(894\) 0.539014 1.80043i 0.539014 1.80043i
\(895\) 0.173364 0.145469i 0.173364 0.145469i
\(896\) −0.290162 1.64559i −0.290162 1.64559i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 2.49079 1.25092i 2.49079 1.25092i
\(901\) 0 0
\(902\) 0 0
\(903\) 0.790446 + 1.83246i 0.790446 + 1.83246i
\(904\) 0.326352 + 0.118782i 0.326352 + 0.118782i
\(905\) 0 0
\(906\) −1.93293 0.225927i −1.93293 0.225927i
\(907\) 0.310355 1.76011i 0.310355 1.76011i −0.286803 0.957990i \(-0.592593\pi\)
0.597159 0.802123i \(-0.296296\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 1.62593 2.81620i 1.62593 2.81620i
\(911\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 1.82873 0.665602i 1.82873 0.665602i
\(917\) −3.31935 −3.31935
\(918\) −0.792160 −0.792160
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.36912 1.14883i 1.36912 1.14883i
\(923\) −0.0201935 0.114523i −0.0201935 0.114523i
\(924\) 0 0
\(925\) 1.22475 + 1.02768i 1.22475 + 1.02768i
\(926\) 0.939693 1.62760i 0.939693 1.62760i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(930\) −1.78048 + 2.39160i −1.78048 + 2.39160i
\(931\) 0 0
\(932\) −1.67948 0.611281i −1.67948 0.611281i
\(933\) 0 0
\(934\) −0.266044 + 1.50881i −0.266044 + 1.50881i
\(935\) 0 0
\(936\) −0.993238 + 0.116093i −0.993238 + 0.116093i
\(937\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(938\) 0 0
\(939\) −1.22650 0.615969i −1.22650 0.615969i
\(940\) −0.671300 3.80713i −0.671300 3.80713i
\(941\) 1.28004 1.07408i 1.28004 1.07408i 0.286803 0.957990i \(-0.407407\pi\)
0.993238 0.116093i \(-0.0370370\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −0.564681 3.20247i −0.564681 3.20247i
\(946\) 0 0
\(947\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0.290162 0.190842i 0.290162 0.190842i
\(952\) −1.01400 0.850845i −1.01400 0.850845i
\(953\) 0.0581448 0.100710i 0.0581448 0.100710i −0.835488 0.549509i \(-0.814815\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −0.207391 + 1.17617i −0.207391 + 1.17617i
\(957\) 0 0
\(958\) 1.28971 + 0.469417i 1.28971 + 0.469417i
\(959\) 0 0
\(960\) −0.770807 1.78693i −0.770807 1.78693i
\(961\) 0.233956 1.32683i 0.233956 1.32683i
\(962\) −0.286803 0.496758i −0.286803 0.496758i
\(963\) 0.835488 + 0.549509i 0.835488 + 0.549509i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −0.137557 0.780125i −0.137557 0.780125i −0.973045 0.230616i \(-0.925926\pi\)
0.835488 0.549509i \(-0.185185\pi\)
\(968\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(969\) 0 0
\(970\) 0 0
\(971\) −0.573606 −0.573606 −0.286803 0.957990i \(-0.592593\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(972\) −0.686242 + 0.727374i −0.686242 + 0.727374i
\(973\) −0.194317 −0.194317
\(974\) 0.939693 0.342020i 0.939693 0.342020i
\(975\) 0.799397 2.67017i 0.799397 2.67017i
\(976\) 0 0
\(977\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1.74385 3.02044i 1.74385 3.02044i
\(981\) −1.65968 1.09159i −1.65968 1.09159i
\(982\) 0.597159 + 1.03431i 0.597159 + 1.03431i
\(983\) 0.0996057 0.564892i 0.0996057 0.564892i −0.893633 0.448799i \(-0.851852\pi\)
0.993238 0.116093i \(-0.0370370\pi\)
\(984\) 0 0
\(985\) 3.05576 + 1.11220i 3.05576 + 1.11220i
\(986\) 0 0
\(987\) −3.29691 0.385353i −3.29691 0.385353i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(993\) 0 0
\(994\) −0.0337428 0.191365i −0.0337428 0.191365i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(998\) 0 0
\(999\) −0.539014 0.196185i −0.539014 0.196185i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2808.1.fi.b.1195.2 yes 18
8.3 odd 2 2808.1.fi.a.1195.2 yes 18
13.12 even 2 2808.1.fi.a.1195.2 yes 18
27.4 even 9 inner 2808.1.fi.b.571.2 yes 18
104.51 odd 2 CM 2808.1.fi.b.1195.2 yes 18
216.139 odd 18 2808.1.fi.a.571.2 18
351.220 even 18 2808.1.fi.a.571.2 18
2808.571 odd 18 inner 2808.1.fi.b.571.2 yes 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2808.1.fi.a.571.2 18 216.139 odd 18
2808.1.fi.a.571.2 18 351.220 even 18
2808.1.fi.a.1195.2 yes 18 8.3 odd 2
2808.1.fi.a.1195.2 yes 18 13.12 even 2
2808.1.fi.b.571.2 yes 18 27.4 even 9 inner
2808.1.fi.b.571.2 yes 18 2808.571 odd 18 inner
2808.1.fi.b.1195.2 yes 18 1.1 even 1 trivial
2808.1.fi.b.1195.2 yes 18 104.51 odd 2 CM