Properties

Label 2808.1.fi.a.2443.3
Level $2808$
Weight $1$
Character 2808.2443
Analytic conductor $1.401$
Analytic rank $0$
Dimension $18$
Projective image $D_{27}$
CM discriminant -104
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2808,1,Mod(259,2808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 9, 4, 9])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2808.259"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2808.fi (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,0,0,0,0,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40137455547\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{54})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{9} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{27}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{27} + \cdots)\)

Embedding invariants

Embedding label 2443.3
Root \(0.835488 + 0.549509i\) of defining polynomial
Character \(\chi\) \(=\) 2808.2443
Dual form 2808.1.fi.a.2131.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.173648 + 0.984808i) q^{2} +(0.597159 + 0.802123i) q^{3} +(-0.939693 + 0.342020i) q^{4} +(-1.52173 - 1.27688i) q^{5} +(-0.686242 + 0.727374i) q^{6} +(0.539014 + 0.196185i) q^{7} +(-0.500000 - 0.866025i) q^{8} +(-0.286803 + 0.957990i) q^{9} +(0.993238 - 1.72034i) q^{10} +(-0.835488 - 0.549509i) q^{12} +(0.173648 - 0.984808i) q^{13} +(-0.0996057 + 0.564892i) q^{14} +(0.115503 - 1.98312i) q^{15} +(0.766044 - 0.642788i) q^{16} +(0.835488 - 1.44711i) q^{17} +(-0.993238 - 0.116093i) q^{18} +(1.86668 + 0.679415i) q^{20} +(0.164512 + 0.549509i) q^{21} +(0.396080 - 0.918216i) q^{24} +(0.511583 + 2.90133i) q^{25} +1.00000 q^{26} +(-0.939693 + 0.342020i) q^{27} -0.573606 q^{28} +(1.97304 - 0.230616i) q^{30} +(1.76604 - 0.642788i) q^{31} +(0.766044 + 0.642788i) q^{32} +(1.57020 + 0.571507i) q^{34} +(-0.569728 - 0.986798i) q^{35} +(-0.0581448 - 0.998308i) q^{36} +(-0.597159 + 1.03431i) q^{37} +(0.893633 - 0.448799i) q^{39} +(-0.344948 + 1.95630i) q^{40} +(-0.512593 + 0.257434i) q^{42} +(1.36912 - 1.14883i) q^{43} +(1.65968 - 1.09159i) q^{45} +(0.109277 + 0.0397734i) q^{47} +(0.973045 + 0.230616i) q^{48} +(-0.513997 - 0.431295i) q^{49} +(-2.76842 + 1.00762i) q^{50} +(1.65968 - 0.193988i) q^{51} +(0.173648 + 0.984808i) q^{52} +(-0.500000 - 0.866025i) q^{54} +(-0.0996057 - 0.564892i) q^{56} +(0.569728 + 1.90302i) q^{60} +(0.939693 + 1.62760i) q^{62} +(-0.342534 + 0.460103i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(-1.52173 + 1.27688i) q^{65} +(-0.290162 + 1.64559i) q^{68} +(0.872874 - 0.732428i) q^{70} +(0.686242 - 1.18861i) q^{71} +(0.973045 - 0.230616i) q^{72} +(-1.12229 - 0.408481i) q^{74} +(-2.02173 + 2.14291i) q^{75} +(0.597159 + 0.802123i) q^{78} -1.98648 q^{80} +(-0.835488 - 0.549509i) q^{81} +(-0.342534 - 0.460103i) q^{84} +(-3.11917 + 1.13529i) q^{85} +(1.36912 + 1.14883i) q^{86} +(1.36320 + 1.44491i) q^{90} +(0.286803 - 0.496758i) q^{91} +(1.57020 + 1.03274i) q^{93} +(-0.0201935 + 0.114523i) q^{94} +(-0.0581448 + 0.998308i) q^{96} +(0.335488 - 0.581082i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 9 q^{8} + 18 q^{21} + 18 q^{26} + 18 q^{30} + 18 q^{31} - 9 q^{54} - 9 q^{64} - 9 q^{70} - 9 q^{75} - 9 q^{85} - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2808\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(1081\) \(1405\) \(2081\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(3\) 0.597159 + 0.802123i 0.597159 + 0.802123i
\(4\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(5\) −1.52173 1.27688i −1.52173 1.27688i −0.835488 0.549509i \(-0.814815\pi\)
−0.686242 0.727374i \(-0.740741\pi\)
\(6\) −0.686242 + 0.727374i −0.686242 + 0.727374i
\(7\) 0.539014 + 0.196185i 0.539014 + 0.196185i 0.597159 0.802123i \(-0.296296\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(8\) −0.500000 0.866025i −0.500000 0.866025i
\(9\) −0.286803 + 0.957990i −0.286803 + 0.957990i
\(10\) 0.993238 1.72034i 0.993238 1.72034i
\(11\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(12\) −0.835488 0.549509i −0.835488 0.549509i
\(13\) 0.173648 0.984808i 0.173648 0.984808i
\(14\) −0.0996057 + 0.564892i −0.0996057 + 0.564892i
\(15\) 0.115503 1.98312i 0.115503 1.98312i
\(16\) 0.766044 0.642788i 0.766044 0.642788i
\(17\) 0.835488 1.44711i 0.835488 1.44711i −0.0581448 0.998308i \(-0.518519\pi\)
0.893633 0.448799i \(-0.148148\pi\)
\(18\) −0.993238 0.116093i −0.993238 0.116093i
\(19\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(20\) 1.86668 + 0.679415i 1.86668 + 0.679415i
\(21\) 0.164512 + 0.549509i 0.164512 + 0.549509i
\(22\) 0 0
\(23\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(24\) 0.396080 0.918216i 0.396080 0.918216i
\(25\) 0.511583 + 2.90133i 0.511583 + 2.90133i
\(26\) 1.00000 1.00000
\(27\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(28\) −0.573606 −0.573606
\(29\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(30\) 1.97304 0.230616i 1.97304 0.230616i
\(31\) 1.76604 0.642788i 1.76604 0.642788i 0.766044 0.642788i \(-0.222222\pi\)
1.00000 \(0\)
\(32\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(33\) 0 0
\(34\) 1.57020 + 0.571507i 1.57020 + 0.571507i
\(35\) −0.569728 0.986798i −0.569728 0.986798i
\(36\) −0.0581448 0.998308i −0.0581448 0.998308i
\(37\) −0.597159 + 1.03431i −0.597159 + 1.03431i 0.396080 + 0.918216i \(0.370370\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(38\) 0 0
\(39\) 0.893633 0.448799i 0.893633 0.448799i
\(40\) −0.344948 + 1.95630i −0.344948 + 1.95630i
\(41\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(42\) −0.512593 + 0.257434i −0.512593 + 0.257434i
\(43\) 1.36912 1.14883i 1.36912 1.14883i 0.396080 0.918216i \(-0.370370\pi\)
0.973045 0.230616i \(-0.0740741\pi\)
\(44\) 0 0
\(45\) 1.65968 1.09159i 1.65968 1.09159i
\(46\) 0 0
\(47\) 0.109277 + 0.0397734i 0.109277 + 0.0397734i 0.396080 0.918216i \(-0.370370\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(48\) 0.973045 + 0.230616i 0.973045 + 0.230616i
\(49\) −0.513997 0.431295i −0.513997 0.431295i
\(50\) −2.76842 + 1.00762i −2.76842 + 1.00762i
\(51\) 1.65968 0.193988i 1.65968 0.193988i
\(52\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −0.500000 0.866025i −0.500000 0.866025i
\(55\) 0 0
\(56\) −0.0996057 0.564892i −0.0996057 0.564892i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(60\) 0.569728 + 1.90302i 0.569728 + 1.90302i
\(61\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(62\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(63\) −0.342534 + 0.460103i −0.342534 + 0.460103i
\(64\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(65\) −1.52173 + 1.27688i −1.52173 + 1.27688i
\(66\) 0 0
\(67\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(68\) −0.290162 + 1.64559i −0.290162 + 1.64559i
\(69\) 0 0
\(70\) 0.872874 0.732428i 0.872874 0.732428i
\(71\) 0.686242 1.18861i 0.686242 1.18861i −0.286803 0.957990i \(-0.592593\pi\)
0.973045 0.230616i \(-0.0740741\pi\)
\(72\) 0.973045 0.230616i 0.973045 0.230616i
\(73\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(74\) −1.12229 0.408481i −1.12229 0.408481i
\(75\) −2.02173 + 2.14291i −2.02173 + 2.14291i
\(76\) 0 0
\(77\) 0 0
\(78\) 0.597159 + 0.802123i 0.597159 + 0.802123i
\(79\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(80\) −1.98648 −1.98648
\(81\) −0.835488 0.549509i −0.835488 0.549509i
\(82\) 0 0
\(83\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(84\) −0.342534 0.460103i −0.342534 0.460103i
\(85\) −3.11917 + 1.13529i −3.11917 + 1.13529i
\(86\) 1.36912 + 1.14883i 1.36912 + 1.14883i
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(90\) 1.36320 + 1.44491i 1.36320 + 1.44491i
\(91\) 0.286803 0.496758i 0.286803 0.496758i
\(92\) 0 0
\(93\) 1.57020 + 1.03274i 1.57020 + 1.03274i
\(94\) −0.0201935 + 0.114523i −0.0201935 + 0.114523i
\(95\) 0 0
\(96\) −0.0581448 + 0.998308i −0.0581448 + 0.998308i
\(97\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(98\) 0.335488 0.581082i 0.335488 0.581082i
\(99\) 0 0
\(100\) −1.47304 2.55139i −1.47304 2.55139i
\(101\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(102\) 0.479241 + 1.60078i 0.479241 + 1.60078i
\(103\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(104\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(105\) 0.451315 1.04627i 0.451315 1.04627i
\(106\) 0 0
\(107\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) 0.766044 0.642788i 0.766044 0.642788i
\(109\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(110\) 0 0
\(111\) −1.18624 + 0.138652i −1.18624 + 0.138652i
\(112\) 0.539014 0.196185i 0.539014 0.196185i
\(113\) 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 \(0\)
0.173648 + 0.984808i \(0.444444\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.893633 + 0.448799i 0.893633 + 0.448799i
\(118\) 0 0
\(119\) 0.734240 0.616101i 0.734240 0.616101i
\(120\) −1.77518 + 0.891529i −1.77518 + 0.891529i
\(121\) 0.173648 0.984808i 0.173648 0.984808i
\(122\) 0 0
\(123\) 0 0
\(124\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(125\) 1.93293 3.34793i 1.93293 3.34793i
\(126\) −0.512593 0.257434i −0.512593 0.257434i
\(127\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(128\) −0.939693 0.342020i −0.939693 0.342020i
\(129\) 1.73909 + 0.412172i 1.73909 + 0.412172i
\(130\) −1.52173 1.27688i −1.52173 1.27688i
\(131\) 0.109277 0.0397734i 0.109277 0.0397734i −0.286803 0.957990i \(-0.592593\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.86668 + 0.679415i 1.86668 + 0.679415i
\(136\) −1.67098 −1.67098
\(137\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(138\) 0 0
\(139\) 1.28971 0.469417i 1.28971 0.469417i 0.396080 0.918216i \(-0.370370\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(140\) 0.872874 + 0.732428i 0.872874 + 0.732428i
\(141\) 0.0333522 + 0.111404i 0.0333522 + 0.111404i
\(142\) 1.28971 + 0.469417i 1.28971 + 0.469417i
\(143\) 0 0
\(144\) 0.396080 + 0.918216i 0.396080 + 0.918216i
\(145\) 0 0
\(146\) 0 0
\(147\) 0.0390138 0.669840i 0.0390138 0.669840i
\(148\) 0.207391 1.17617i 0.207391 1.17617i
\(149\) 0.0603074 0.342020i 0.0603074 0.342020i −0.939693 0.342020i \(-0.888889\pi\)
1.00000 \(0\)
\(150\) −2.46142 1.61890i −2.46142 1.61890i
\(151\) −1.52173 + 1.27688i −1.52173 + 1.27688i −0.686242 + 0.727374i \(0.740741\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(152\) 0 0
\(153\) 1.14669 + 1.21542i 1.14669 + 1.21542i
\(154\) 0 0
\(155\) −3.50821 1.27688i −3.50821 1.27688i
\(156\) −0.686242 + 0.727374i −0.686242 + 0.727374i
\(157\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −0.344948 1.95630i −0.344948 1.95630i
\(161\) 0 0
\(162\) 0.396080 0.918216i 0.396080 0.918216i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.266044 + 0.223238i 0.266044 + 0.223238i 0.766044 0.642788i \(-0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(168\) 0.393633 0.417226i 0.393633 0.417226i
\(169\) −0.939693 0.342020i −0.939693 0.342020i
\(170\) −1.65968 2.87465i −1.65968 2.87465i
\(171\) 0 0
\(172\) −0.893633 + 1.54782i −0.893633 + 1.54782i
\(173\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(174\) 0 0
\(175\) −0.293447 + 1.66422i −0.293447 + 1.66422i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0.686242 1.18861i 0.686242 1.18861i −0.286803 0.957990i \(-0.592593\pi\)
0.973045 0.230616i \(-0.0740741\pi\)
\(180\) −1.18624 + 1.59340i −1.18624 + 1.59340i
\(181\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(182\) 0.539014 + 0.196185i 0.539014 + 0.196185i
\(183\) 0 0
\(184\) 0 0
\(185\) 2.22941 0.811437i 2.22941 0.811437i
\(186\) −0.744386 + 1.72568i −0.744386 + 1.72568i
\(187\) 0 0
\(188\) −0.116290 −0.116290
\(189\) −0.573606 −0.573606
\(190\) 0 0
\(191\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(192\) −0.993238 + 0.116093i −0.993238 + 0.116093i
\(193\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(194\) 0 0
\(195\) −1.93293 0.458113i −1.93293 0.458113i
\(196\) 0.630511 + 0.229487i 0.630511 + 0.229487i
\(197\) 0.286803 + 0.496758i 0.286803 + 0.496758i 0.973045 0.230616i \(-0.0740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(198\) 0 0
\(199\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) 2.25684 1.89371i 2.25684 1.89371i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) −1.49324 + 0.749932i −1.49324 + 0.749932i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −0.500000 0.866025i −0.500000 0.866025i
\(209\) 0 0
\(210\) 1.10874 + 0.262777i 1.10874 + 0.262777i
\(211\) 0.606829 + 0.509190i 0.606829 + 0.509190i 0.893633 0.448799i \(-0.148148\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(212\) 0 0
\(213\) 1.36320 0.159336i 1.36320 0.159336i
\(214\) −0.173648 0.984808i −0.173648 0.984808i
\(215\) −3.55036 −3.55036
\(216\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(217\) 1.07803 1.07803
\(218\) −0.0201935 0.114523i −0.0201935 0.114523i
\(219\) 0 0
\(220\) 0 0
\(221\) −1.28004 1.07408i −1.28004 1.07408i
\(222\) −0.342534 1.14414i −0.342534 1.14414i
\(223\) −1.67948 0.611281i −1.67948 0.611281i −0.686242 0.727374i \(-0.740741\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(224\) 0.286803 + 0.496758i 0.286803 + 0.496758i
\(225\) −2.92617 0.342020i −2.92617 0.342020i
\(226\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(227\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(228\) 0 0
\(229\) −0.344948 + 1.95630i −0.344948 + 1.95630i −0.0581448 + 0.998308i \(0.518519\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.973045 + 1.68536i −0.973045 + 1.68536i −0.286803 + 0.957990i \(0.592593\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(234\) −0.286803 + 0.957990i −0.286803 + 0.957990i
\(235\) −0.115503 0.200058i −0.115503 0.200058i
\(236\) 0 0
\(237\) 0 0
\(238\) 0.734240 + 0.616101i 0.734240 + 0.616101i
\(239\) −1.67948 + 0.611281i −1.67948 + 0.611281i −0.993238 0.116093i \(-0.962963\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(240\) −1.18624 1.59340i −1.18624 1.59340i
\(241\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(242\) 1.00000 1.00000
\(243\) −0.0581448 0.998308i −0.0581448 0.998308i
\(244\) 0 0
\(245\) 0.231452 + 1.31263i 0.231452 + 1.31263i
\(246\) 0 0
\(247\) 0 0
\(248\) −1.43969 1.20805i −1.43969 1.20805i
\(249\) 0 0
\(250\) 3.63272 + 1.32220i 3.63272 + 1.32220i
\(251\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(252\) 0.164512 0.549509i 0.164512 0.549509i
\(253\) 0 0
\(254\) 0 0
\(255\) −2.77328 1.82401i −2.77328 1.82401i
\(256\) 0.173648 0.984808i 0.173648 0.984808i
\(257\) 0.207391 1.17617i 0.207391 1.17617i −0.686242 0.727374i \(-0.740741\pi\)
0.893633 0.448799i \(-0.148148\pi\)
\(258\) −0.103920 + 1.78424i −0.103920 + 1.78424i
\(259\) −0.524793 + 0.440353i −0.524793 + 0.440353i
\(260\) 0.993238 1.72034i 0.993238 1.72034i
\(261\) 0 0
\(262\) 0.0581448 + 0.100710i 0.0581448 + 0.100710i
\(263\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) −0.344948 + 1.95630i −0.344948 + 1.95630i
\(271\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(272\) −0.290162 1.64559i −0.290162 1.64559i
\(273\) 0.569728 0.0665916i 0.569728 0.0665916i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(278\) 0.686242 + 1.18861i 0.686242 + 1.18861i
\(279\) 0.109277 + 1.87621i 0.109277 + 1.87621i
\(280\) −0.569728 + 0.986798i −0.569728 + 0.986798i
\(281\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(282\) −0.103920 + 0.0521907i −0.103920 + 0.0521907i
\(283\) 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(284\) −0.238329 + 1.35163i −0.238329 + 1.35163i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.835488 + 0.549509i −0.835488 + 0.549509i
\(289\) −0.896080 1.55206i −0.896080 1.55206i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.28971 0.469417i 1.28971 0.469417i 0.396080 0.918216i \(-0.370370\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(294\) 0.666439 0.0778955i 0.666439 0.0778955i
\(295\) 0 0
\(296\) 1.19432 1.19432
\(297\) 0 0
\(298\) 0.347296 0.347296
\(299\) 0 0
\(300\) 1.16689 2.70515i 1.16689 2.70515i
\(301\) 0.963361 0.350635i 0.963361 0.350635i
\(302\) −1.52173 1.27688i −1.52173 1.27688i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) −0.997837 + 1.34033i −0.997837 + 1.34033i
\(307\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0.648290 3.67664i 0.648290 3.67664i
\(311\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(312\) −0.835488 0.549509i −0.835488 0.549509i
\(313\) 0.606829 0.509190i 0.606829 0.509190i −0.286803 0.957990i \(-0.592593\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(314\) 0 0
\(315\) 1.10874 0.262777i 1.10874 0.262777i
\(316\) 0 0
\(317\) −1.43969 0.524005i −1.43969 0.524005i −0.500000 0.866025i \(-0.666667\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.86668 0.679415i 1.86668 0.679415i
\(321\) −0.597159 0.802123i −0.597159 0.802123i
\(322\) 0 0
\(323\) 0 0
\(324\) 0.973045 + 0.230616i 0.973045 + 0.230616i
\(325\) 2.94609 2.94609
\(326\) 0 0
\(327\) −0.0694434 0.0932786i −0.0694434 0.0932786i
\(328\) 0 0
\(329\) 0.0510986 + 0.0428768i 0.0510986 + 0.0428768i
\(330\) 0 0
\(331\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(332\) 0 0
\(333\) −0.819590 0.868715i −0.819590 0.868715i
\(334\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(335\) 0 0
\(336\) 0.479241 + 0.315202i 0.479241 + 0.315202i
\(337\) −0.238329 + 1.35163i −0.238329 + 1.35163i 0.597159 + 0.802123i \(0.296296\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(338\) 0.173648 0.984808i 0.173648 0.984808i
\(339\) −0.0890830 + 1.52950i −0.0890830 + 1.52950i
\(340\) 2.54277 2.13364i 2.54277 2.13364i
\(341\) 0 0
\(342\) 0 0
\(343\) −0.479241 0.830070i −0.479241 0.830070i
\(344\) −1.67948 0.611281i −1.67948 0.611281i
\(345\) 0 0
\(346\) 0 0
\(347\) −1.12229 + 0.408481i −1.12229 + 0.408481i −0.835488 0.549509i \(-0.814815\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(348\) 0 0
\(349\) 0.137557 + 0.780125i 0.137557 + 0.780125i 0.973045 + 0.230616i \(0.0740741\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(350\) −1.68990 −1.68990
\(351\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(352\) 0 0
\(353\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(354\) 0 0
\(355\) −2.56198 + 0.932486i −2.56198 + 0.932486i
\(356\) 0 0
\(357\) 0.932646 + 0.221041i 0.932646 + 0.221041i
\(358\) 1.28971 + 0.469417i 1.28971 + 0.469417i
\(359\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(360\) −1.77518 0.891529i −1.77518 0.891529i
\(361\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(362\) 0 0
\(363\) 0.893633 0.448799i 0.893633 0.448799i
\(364\) −0.0996057 + 0.564892i −0.0996057 + 0.564892i
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 1.18624 + 2.05463i 1.18624 + 2.05463i
\(371\) 0 0
\(372\) −1.82873 0.433416i −1.82873 0.433416i
\(373\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(374\) 0 0
\(375\) 3.83972 0.448799i 3.83972 0.448799i
\(376\) −0.0201935 0.114523i −0.0201935 0.114523i
\(377\) 0 0
\(378\) −0.0996057 0.564892i −0.0996057 0.564892i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.49079 + 1.25092i 1.49079 + 1.25092i 0.893633 + 0.448799i \(0.148148\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(384\) −0.286803 0.957990i −0.286803 0.957990i
\(385\) 0 0
\(386\) 0 0
\(387\) 0.707900 + 1.64110i 0.707900 + 1.64110i
\(388\) 0 0
\(389\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(390\) 0.115503 1.98312i 0.115503 1.98312i
\(391\) 0 0
\(392\) −0.116514 + 0.660782i −0.116514 + 0.660782i
\(393\) 0.0971586 + 0.0639022i 0.0971586 + 0.0639022i
\(394\) −0.439408 + 0.368707i −0.439408 + 0.368707i
\(395\) 0 0
\(396\) 0 0
\(397\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 2.25684 + 1.89371i 2.25684 + 1.89371i
\(401\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(402\) 0 0
\(403\) −0.326352 1.85083i −0.326352 1.85083i
\(404\) 0 0
\(405\) 0.569728 + 1.90302i 0.569728 + 1.90302i
\(406\) 0 0
\(407\) 0 0
\(408\) −0.997837 1.34033i −0.997837 1.34033i
\(409\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0.766044 0.642788i 0.766044 0.642788i
\(417\) 1.14669 + 0.754192i 1.14669 + 0.754192i
\(418\) 0 0
\(419\) −0.344948 + 1.95630i −0.344948 + 1.95630i −0.0581448 + 0.998308i \(0.518519\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(420\) −0.0662535 + 1.13753i −0.0662535 + 1.13753i
\(421\) 1.49079 1.25092i 1.49079 1.25092i 0.597159 0.802123i \(-0.296296\pi\)
0.893633 0.448799i \(-0.148148\pi\)
\(422\) −0.396080 + 0.686030i −0.396080 + 0.686030i
\(423\) −0.0694434 + 0.0932786i −0.0694434 + 0.0932786i
\(424\) 0 0
\(425\) 4.62596 + 1.68371i 4.62596 + 1.68371i
\(426\) 0.393633 + 1.31482i 0.393633 + 1.31482i
\(427\) 0 0
\(428\) 0.939693 0.342020i 0.939693 0.342020i
\(429\) 0 0
\(430\) −0.616514 3.49642i −0.616514 3.49642i
\(431\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(432\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(433\) −0.573606 −0.573606 −0.286803 0.957990i \(-0.592593\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(434\) 0.187198 + 1.06165i 0.187198 + 1.06165i
\(435\) 0 0
\(436\) 0.109277 0.0397734i 0.109277 0.0397734i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(440\) 0 0
\(441\) 0.560592 0.368707i 0.560592 0.368707i
\(442\) 0.835488 1.44711i 0.835488 1.44711i
\(443\) −1.05138 + 0.882215i −1.05138 + 0.882215i −0.993238 0.116093i \(-0.962963\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(444\) 1.06728 0.536009i 1.06728 0.536009i
\(445\) 0 0
\(446\) 0.310355 1.76011i 0.310355 1.76011i
\(447\) 0.310355 0.155866i 0.310355 0.155866i
\(448\) −0.439408 + 0.368707i −0.439408 + 0.368707i
\(449\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(450\) −0.171300 2.94111i −0.171300 2.94111i
\(451\) 0 0
\(452\) −1.43969 0.524005i −1.43969 0.524005i
\(453\) −1.93293 0.458113i −1.93293 0.458113i
\(454\) 0 0
\(455\) −1.07074 + 0.389717i −1.07074 + 0.389717i
\(456\) 0 0
\(457\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(458\) −1.98648 −1.98648
\(459\) −0.290162 + 1.64559i −0.290162 + 1.64559i
\(460\) 0 0
\(461\) 0.337935 + 1.91652i 0.337935 + 1.91652i 0.396080 + 0.918216i \(0.370370\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(462\) 0 0
\(463\) −0.326352 + 0.118782i −0.326352 + 0.118782i −0.500000 0.866025i \(-0.666667\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(464\) 0 0
\(465\) −1.07074 3.57651i −1.07074 3.57651i
\(466\) −1.82873 0.665602i −1.82873 0.665602i
\(467\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(468\) −0.993238 0.116093i −0.993238 0.116093i
\(469\) 0 0
\(470\) 0.176961 0.148488i 0.176961 0.148488i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) −0.479241 + 0.830070i −0.479241 + 0.830070i
\(477\) 0 0
\(478\) −0.893633 1.54782i −0.893633 1.54782i
\(479\) −0.744386 0.270935i −0.744386 0.270935i −0.0581448 0.998308i \(-0.518519\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(480\) 1.36320 1.44491i 1.36320 1.44491i
\(481\) 0.914900 + 0.767692i 0.914900 + 0.767692i
\(482\) 0 0
\(483\) 0 0
\(484\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(485\) 0 0
\(486\) 0.973045 0.230616i 0.973045 0.230616i
\(487\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −1.25250 + 0.455871i −1.25250 + 0.455871i
\(491\) 1.36912 + 1.14883i 1.36912 + 1.14883i 0.973045 + 0.230616i \(0.0740741\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.939693 1.62760i 0.939693 1.62760i
\(497\) 0.603080 0.506044i 0.603080 0.506044i
\(498\) 0 0
\(499\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(500\) −0.671300 + 3.80713i −0.671300 + 3.80713i
\(501\) −0.0201935 + 0.346709i −0.0201935 + 0.346709i
\(502\) 1.17365 0.984808i 1.17365 0.984808i
\(503\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(504\) 0.569728 + 0.0665916i 0.569728 + 0.0665916i
\(505\) 0 0
\(506\) 0 0
\(507\) −0.286803 0.957990i −0.286803 0.957990i
\(508\) 0 0
\(509\) −0.326352 + 0.118782i −0.326352 + 0.118782i −0.500000 0.866025i \(-0.666667\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(510\) 1.31473 3.04788i 1.31473 3.04788i
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) 0 0
\(514\) 1.19432 1.19432
\(515\) 0 0
\(516\) −1.77518 + 0.207489i −1.77518 + 0.207489i
\(517\) 0 0
\(518\) −0.524793 0.440353i −0.524793 0.440353i
\(519\) 0 0
\(520\) 1.86668 + 0.679415i 1.86668 + 0.679415i
\(521\) −0.597159 1.03431i −0.597159 1.03431i −0.993238 0.116093i \(-0.962963\pi\)
0.396080 0.918216i \(-0.370370\pi\)
\(522\) 0 0
\(523\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(524\) −0.0890830 + 0.0747496i −0.0890830 + 0.0747496i
\(525\) −1.51015 + 0.758424i −1.51015 + 0.758424i
\(526\) 0 0
\(527\) 0.545326 3.09270i 0.545326 3.09270i
\(528\) 0 0
\(529\) 0.766044 0.642788i 0.766044 0.642788i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.52173 + 1.27688i 1.52173 + 1.27688i
\(536\) 0 0
\(537\) 1.36320 0.159336i 1.36320 0.159336i
\(538\) 0 0
\(539\) 0 0
\(540\) −1.98648 −1.98648
\(541\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(542\) 0.137557 + 0.780125i 0.137557 + 0.780125i
\(543\) 0 0
\(544\) 1.57020 0.571507i 1.57020 0.571507i
\(545\) 0.176961 + 0.148488i 0.176961 + 0.148488i
\(546\) 0.164512 + 0.549509i 0.164512 + 0.549509i
\(547\) −0.744386 0.270935i −0.744386 0.270935i −0.0581448 0.998308i \(-0.518519\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 1.98218 + 1.30370i 1.98218 + 1.30370i
\(556\) −1.05138 + 0.882215i −1.05138 + 0.882215i
\(557\) 0.0581448 0.100710i 0.0581448 0.100710i −0.835488 0.549509i \(-0.814815\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(558\) −1.82873 + 0.433416i −1.82873 + 0.433416i
\(559\) −0.893633 1.54782i −0.893633 1.54782i
\(560\) −1.07074 0.389717i −1.07074 0.389717i
\(561\) 0 0
\(562\) 0 0
\(563\) −1.82873 + 0.665602i −1.82873 + 0.665602i −0.835488 + 0.549509i \(0.814815\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(564\) −0.0694434 0.0932786i −0.0694434 0.0932786i
\(565\) −0.528491 2.99722i −0.528491 2.99722i
\(566\) 1.53209 1.53209
\(567\) −0.342534 0.460103i −0.342534 0.460103i
\(568\) −1.37248 −1.37248
\(569\) 0.137557 + 0.780125i 0.137557 + 0.780125i 0.973045 + 0.230616i \(0.0740741\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(570\) 0 0
\(571\) 1.57020 0.571507i 1.57020 0.571507i 0.597159 0.802123i \(-0.296296\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.686242 0.727374i −0.686242 0.727374i
\(577\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) 1.37287 1.15198i 1.37287 1.15198i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −0.786803 1.82401i −0.786803 1.82401i
\(586\) 0.686242 + 1.18861i 0.686242 + 1.18861i
\(587\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(588\) 0.192438 + 0.642788i 0.192438 + 0.642788i
\(589\) 0 0
\(590\) 0 0
\(591\) −0.227194 + 0.526695i −0.227194 + 0.526695i
\(592\) 0.207391 + 1.17617i 0.207391 + 1.17617i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) −1.90400 −1.90400
\(596\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(600\) 2.86668 + 0.679415i 2.86668 + 0.679415i
\(601\) −1.67948 0.611281i −1.67948 0.611281i −0.686242 0.727374i \(-0.740741\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(602\) 0.512593 + 0.887838i 0.512593 + 0.887838i
\(603\) 0 0
\(604\) 0.993238 1.72034i 0.993238 1.72034i
\(605\) −1.52173 + 1.27688i −1.52173 + 1.27688i
\(606\) 0 0
\(607\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.0581448 0.100710i 0.0581448 0.100710i
\(612\) −1.49324 0.749932i −1.49324 0.749932i
\(613\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(618\) 0 0
\(619\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(620\) 3.73336 3.73336
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0.396080 0.918216i 0.396080 0.918216i
\(625\) −4.44790 + 1.61890i −4.44790 + 1.61890i
\(626\) 0.606829 + 0.509190i 0.606829 + 0.509190i
\(627\) 0 0
\(628\) 0 0
\(629\) 0.997837 + 1.72831i 0.997837 + 1.72831i
\(630\) 0.451315 + 1.04627i 0.451315 + 1.04627i
\(631\) 0.835488 1.44711i 0.835488 1.44711i −0.0581448 0.998308i \(-0.518519\pi\)
0.893633 0.448799i \(-0.148148\pi\)
\(632\) 0 0
\(633\) −0.0460600 + 0.790819i −0.0460600 + 0.790819i
\(634\) 0.266044 1.50881i 0.266044 1.50881i
\(635\) 0 0
\(636\) 0 0
\(637\) −0.513997 + 0.431295i −0.513997 + 0.431295i
\(638\) 0 0
\(639\) 0.941855 + 0.998308i 0.941855 + 0.998308i
\(640\) 0.993238 + 1.72034i 0.993238 + 1.72034i
\(641\) −0.326352 0.118782i −0.326352 0.118782i 0.173648 0.984808i \(-0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) 0.686242 0.727374i 0.686242 0.727374i
\(643\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(644\) 0 0
\(645\) −2.12013 2.84783i −2.12013 2.84783i
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −0.0581448 + 0.998308i −0.0581448 + 0.998308i
\(649\) 0 0
\(650\) 0.511583 + 2.90133i 0.511583 + 2.90133i
\(651\) 0.643753 + 0.864711i 0.643753 + 0.864711i
\(652\) 0 0
\(653\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(654\) 0.0798028 0.0845860i 0.0798028 0.0845860i
\(655\) −0.217075 0.0790089i −0.217075 0.0790089i
\(656\) 0 0
\(657\) 0 0
\(658\) −0.0333522 + 0.0577678i −0.0333522 + 0.0577678i
\(659\) −1.43969 + 1.20805i −1.43969 + 1.20805i −0.500000 + 0.866025i \(0.666667\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(660\) 0 0
\(661\) −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i \(0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(662\) 0 0
\(663\) 0.0971586 1.66815i 0.0971586 1.66815i
\(664\) 0 0
\(665\) 0 0
\(666\) 0.713197 0.957990i 0.713197 0.957990i
\(667\) 0 0
\(668\) −0.326352 0.118782i −0.326352 0.118782i
\(669\) −0.512593 1.71218i −0.512593 1.71218i
\(670\) 0 0
\(671\) 0 0
\(672\) −0.227194 + 0.526695i −0.227194 + 0.526695i
\(673\) 0.207391 + 1.17617i 0.207391 + 1.17617i 0.893633 + 0.448799i \(0.148148\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(674\) −1.37248 −1.37248
\(675\) −1.47304 2.55139i −1.47304 2.55139i
\(676\) 1.00000 1.00000
\(677\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(678\) −1.52173 + 0.177865i −1.52173 + 0.177865i
\(679\) 0 0
\(680\) 2.54277 + 2.13364i 2.54277 + 2.13364i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.734240 0.616101i 0.734240 0.616101i
\(687\) −1.77518 + 0.891529i −1.77518 + 0.891529i
\(688\) 0.310355 1.76011i 0.310355 1.76011i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −0.597159 1.03431i −0.597159 1.03431i
\(695\) −2.56198 0.932486i −2.56198 0.932486i
\(696\) 0 0
\(697\) 0 0
\(698\) −0.744386 + 0.270935i −0.744386 + 0.270935i
\(699\) −1.93293 + 0.225927i −1.93293 + 0.225927i
\(700\) −0.293447 1.66422i −0.293447 1.66422i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(703\) 0 0
\(704\) 0 0
\(705\) 0.0914971 0.212114i 0.0914971 0.212114i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.76604 + 0.642788i 1.76604 + 0.642788i 1.00000 \(0\)
0.766044 + 0.642788i \(0.222222\pi\)
\(710\) −1.36320 2.36114i −1.36320 2.36114i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) −0.0557308 + 0.956861i −0.0557308 + 0.956861i
\(715\) 0 0
\(716\) −0.238329 + 1.35163i −0.238329 + 1.35163i
\(717\) −1.49324 0.982118i −1.49324 0.982118i
\(718\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(719\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(720\) 0.569728 1.90302i 0.569728 1.90302i
\(721\) 0 0
\(722\) −0.939693 0.342020i −0.939693 0.342020i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0.597159 + 0.802123i 0.597159 + 0.802123i
\(727\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(728\) −0.573606 −0.573606
\(729\) 0.766044 0.642788i 0.766044 0.642788i
\(730\) 0 0
\(731\) −0.518596 2.94111i −0.518596 2.94111i
\(732\) 0 0
\(733\) −1.82873 + 0.665602i −1.82873 + 0.665602i −0.835488 + 0.549509i \(0.814815\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(734\) 0 0
\(735\) −0.914676 + 0.969500i −0.914676 + 0.969500i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(740\) −1.81743 + 1.52500i −1.81743 + 1.52500i
\(741\) 0 0
\(742\) 0 0
\(743\) 0.310355 1.76011i 0.310355 1.76011i −0.286803 0.957990i \(-0.592593\pi\)
0.597159 0.802123i \(-0.296296\pi\)
\(744\) 0.109277 1.87621i 0.109277 1.87621i
\(745\) −0.528491 + 0.443457i −0.528491 + 0.443457i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.539014 0.196185i −0.539014 0.196185i
\(750\) 1.10874 + 3.70346i 1.10874 + 3.70346i
\(751\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(752\) 0.109277 0.0397734i 0.109277 0.0397734i
\(753\) 0.606829 1.40679i 0.606829 1.40679i
\(754\) 0 0
\(755\) 3.94609 3.94609
\(756\) 0.539014 0.196185i 0.539014 0.196185i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(762\) 0 0
\(763\) −0.0626817 0.0228143i −0.0626817 0.0228143i
\(764\) 0 0
\(765\) −0.193003 3.31374i −0.193003 3.31374i
\(766\) −0.973045 + 1.68536i −0.973045 + 1.68536i
\(767\) 0 0
\(768\) 0.893633 0.448799i 0.893633 0.448799i
\(769\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(770\) 0 0
\(771\) 1.06728 0.536009i 1.06728 0.536009i
\(772\) 0 0
\(773\) −0.893633 + 1.54782i −0.893633 + 1.54782i −0.0581448 + 0.998308i \(0.518519\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(774\) −1.49324 + 0.982118i −1.49324 + 0.982118i
\(775\) 2.76842 + 4.79504i 2.76842 + 4.79504i
\(776\) 0 0
\(777\) −0.666602 0.157988i −0.666602 0.157988i
\(778\) 0 0
\(779\) 0 0
\(780\) 1.97304 0.230616i 1.97304 0.230616i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.670976 −0.670976
\(785\) 0 0
\(786\) −0.0460600 + 0.106779i −0.0460600 + 0.106779i
\(787\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(788\) −0.439408 0.368707i −0.439408 0.368707i
\(789\) 0 0
\(790\) 0 0
\(791\) 0.439408 + 0.761077i 0.439408 + 0.761077i
\(792\) 0 0
\(793\) 0 0
\(794\) 0.266044 0.223238i 0.266044 0.223238i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(798\) 0 0
\(799\) 0.148856 0.124905i 0.148856 0.124905i
\(800\) −1.47304 + 2.55139i −1.47304 + 2.55139i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 1.76604 0.642788i 1.76604 0.642788i
\(807\) 0 0
\(808\) 0 0
\(809\) −0.116290 −0.116290 −0.0581448 0.998308i \(-0.518519\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(810\) −1.77518 + 0.891529i −1.77518 + 0.891529i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0.473045 + 0.635410i 0.473045 + 0.635410i
\(814\) 0 0
\(815\) 0 0
\(816\) 1.14669 1.21542i 1.14669 1.21542i
\(817\) 0 0
\(818\) 0 0
\(819\) 0.393633 + 0.417226i 0.393633 + 0.417226i
\(820\) 0 0
\(821\) −1.28004 + 1.07408i −1.28004 + 1.07408i −0.286803 + 0.957990i \(0.592593\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(822\) 0 0
\(823\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(828\) 0 0
\(829\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(833\) −1.05357 + 0.383467i −1.05357 + 0.383467i
\(834\) −0.543613 + 1.26024i −0.543613 + 1.26024i
\(835\) −0.119799 0.679415i −0.119799 0.679415i
\(836\) 0 0
\(837\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(838\) −1.98648 −1.98648
\(839\) 0.266044 + 1.50881i 0.266044 + 1.50881i 0.766044 + 0.642788i \(0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(840\) −1.13175 + 0.132283i −1.13175 + 0.132283i
\(841\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(842\) 1.49079 + 1.25092i 1.49079 + 1.25092i
\(843\) 0 0
\(844\) −0.744386 0.270935i −0.744386 0.270935i
\(845\) 0.993238 + 1.72034i 0.993238 + 1.72034i
\(846\) −0.103920 0.0521907i −0.103920 0.0521907i
\(847\) 0.286803 0.496758i 0.286803 0.496758i
\(848\) 0 0
\(849\) 1.36912 0.687600i 1.36912 0.687600i
\(850\) −0.854843 + 4.84806i −0.854843 + 4.84806i
\(851\) 0 0
\(852\) −1.22650 + 0.615969i −1.22650 + 0.615969i
\(853\) −0.0890830 + 0.0747496i −0.0890830 + 0.0747496i −0.686242 0.727374i \(-0.740741\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(857\) −1.43969 0.524005i −1.43969 0.524005i −0.500000 0.866025i \(-0.666667\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(858\) 0 0
\(859\) 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 \(0\)
0.173648 + 0.984808i \(0.444444\pi\)
\(860\) 3.33625 1.21429i 3.33625 1.21429i
\(861\) 0 0
\(862\) 0.207391 + 1.17617i 0.207391 + 1.17617i
\(863\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(864\) −0.939693 0.342020i −0.939693 0.342020i
\(865\) 0 0
\(866\) −0.0996057 0.564892i −0.0996057 0.564892i
\(867\) 0.709838 1.64559i 0.709838 1.64559i
\(868\) −1.01301 + 0.368707i −1.01301 + 0.368707i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0.0581448 + 0.100710i 0.0581448 + 0.100710i
\(873\) 0 0
\(874\) 0 0
\(875\) 1.69869 1.42537i 1.69869 1.42537i
\(876\) 0 0
\(877\) 0.137557 0.780125i 0.137557 0.780125i −0.835488 0.549509i \(-0.814815\pi\)
0.973045 0.230616i \(-0.0740741\pi\)
\(878\) 0 0
\(879\) 1.14669 + 0.754192i 1.14669 + 0.754192i
\(880\) 0 0
\(881\) −0.396080 + 0.686030i −0.396080 + 0.686030i −0.993238 0.116093i \(-0.962963\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(882\) 0.460451 + 0.488050i 0.460451 + 0.488050i
\(883\) −0.597159 1.03431i −0.597159 1.03431i −0.993238 0.116093i \(-0.962963\pi\)
0.396080 0.918216i \(-0.370370\pi\)
\(884\) 1.57020 + 0.571507i 1.57020 + 0.571507i
\(885\) 0 0
\(886\) −1.05138 0.882215i −1.05138 0.882215i
\(887\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(888\) 0.713197 + 0.957990i 0.713197 + 0.957990i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 1.78727 1.78727
\(893\) 0 0
\(894\) 0.207391 + 0.278574i 0.207391 + 0.278574i
\(895\) −2.56198 + 0.932486i −2.56198 + 0.932486i
\(896\) −0.439408 0.368707i −0.439408 0.368707i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 2.86668 0.679415i 2.86668 0.679415i
\(901\) 0 0
\(902\) 0 0
\(903\) 0.856531 + 0.563349i 0.856531 + 0.563349i
\(904\) 0.266044 1.50881i 0.266044 1.50881i
\(905\) 0 0
\(906\) 0.115503 1.98312i 0.115503 1.98312i
\(907\) 1.49079 1.25092i 1.49079 1.25092i 0.597159 0.802123i \(-0.296296\pi\)
0.893633 0.448799i \(-0.148148\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) −0.569728 0.986798i −0.569728 0.986798i
\(911\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −0.344948 1.95630i −0.344948 1.95630i
\(917\) 0.0667045 0.0667045
\(918\) −1.67098 −1.67098
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −1.82873 + 0.665602i −1.82873 + 0.665602i
\(923\) −1.05138 0.882215i −1.05138 0.882215i
\(924\) 0 0
\(925\) −3.30637 1.20342i −3.30637 1.20342i
\(926\) −0.173648 0.300767i −0.173648 0.300767i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(930\) 3.33625 1.67553i 3.33625 1.67553i
\(931\) 0 0
\(932\) 0.337935 1.91652i 0.337935 1.91652i
\(933\) 0 0
\(934\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(935\) 0 0
\(936\) −0.0581448 0.998308i −0.0581448 0.998308i
\(937\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(938\) 0 0
\(939\) 0.770807 + 0.182685i 0.770807 + 0.182685i
\(940\) 0.176961 + 0.148488i 0.176961 + 0.148488i
\(941\) 0.539014 0.196185i 0.539014 0.196185i −0.0581448 0.998308i \(-0.518519\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0.872874 + 0.732428i 0.872874 + 0.732428i
\(946\) 0 0
\(947\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −0.439408 1.46773i −0.439408 1.46773i
\(952\) −0.900679 0.327820i −0.900679 0.327820i
\(953\) 0.686242 + 1.18861i 0.686242 + 1.18861i 0.973045 + 0.230616i \(0.0740741\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 1.36912 1.14883i 1.36912 1.14883i
\(957\) 0 0
\(958\) 0.137557 0.780125i 0.137557 0.780125i
\(959\) 0 0
\(960\) 1.65968 + 1.09159i 1.65968 + 1.09159i
\(961\) 1.93969 1.62760i 1.93969 1.62760i
\(962\) −0.597159 + 1.03431i −0.597159 + 1.03431i
\(963\) 0.286803 0.957990i 0.286803 0.957990i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1.28004 1.07408i −1.28004 1.07408i −0.993238 0.116093i \(-0.962963\pi\)
−0.286803 0.957990i \(-0.592593\pi\)
\(968\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(969\) 0 0
\(970\) 0 0
\(971\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(972\) 0.396080 + 0.918216i 0.396080 + 0.918216i
\(973\) 0.787265 0.787265
\(974\) −0.173648 0.984808i −0.173648 0.984808i
\(975\) 1.75928 + 2.36313i 1.75928 + 2.36313i
\(976\) 0 0
\(977\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −0.666439 1.15431i −0.666439 1.15431i
\(981\) 0.0333522 0.111404i 0.0333522 0.111404i
\(982\) −0.893633 + 1.54782i −0.893633 + 1.54782i
\(983\) 0.914900 0.767692i 0.914900 0.767692i −0.0581448 0.998308i \(-0.518519\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(984\) 0 0
\(985\) 0.197864 1.12214i 0.197864 1.12214i
\(986\) 0 0
\(987\) −0.00387852 + 0.0665916i −0.00387852 + 0.0665916i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(993\) 0 0
\(994\) 0.603080 + 0.506044i 0.603080 + 0.506044i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(998\) 0 0
\(999\) 0.207391 1.17617i 0.207391 1.17617i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2808.1.fi.a.2443.3 yes 18
8.3 odd 2 2808.1.fi.b.2443.3 yes 18
13.12 even 2 2808.1.fi.b.2443.3 yes 18
27.25 even 9 inner 2808.1.fi.a.2131.3 18
104.51 odd 2 CM 2808.1.fi.a.2443.3 yes 18
216.187 odd 18 2808.1.fi.b.2131.3 yes 18
351.25 even 18 2808.1.fi.b.2131.3 yes 18
2808.2131 odd 18 inner 2808.1.fi.a.2131.3 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2808.1.fi.a.2131.3 18 27.25 even 9 inner
2808.1.fi.a.2131.3 18 2808.2131 odd 18 inner
2808.1.fi.a.2443.3 yes 18 1.1 even 1 trivial
2808.1.fi.a.2443.3 yes 18 104.51 odd 2 CM
2808.1.fi.b.2131.3 yes 18 216.187 odd 18
2808.1.fi.b.2131.3 yes 18 351.25 even 18
2808.1.fi.b.2443.3 yes 18 8.3 odd 2
2808.1.fi.b.2443.3 yes 18 13.12 even 2