Properties

Label 2808.1.fi.a.2131.2
Level $2808$
Weight $1$
Character 2808.2131
Analytic conductor $1.401$
Analytic rank $0$
Dimension $18$
Projective image $D_{27}$
CM discriminant -104
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2808,1,Mod(259,2808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2808.259"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 9, 4, 9])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2808.fi (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,0,0,0,0,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40137455547\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{54})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{9} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{27}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{27} + \cdots)\)

Embedding invariants

Embedding label 2131.2
Root \(0.0581448 + 0.998308i\) of defining polynomial
Character \(\chi\) \(=\) 2808.2131
Dual form 2808.1.fi.a.2443.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.173648 - 0.984808i) q^{2} +(0.396080 + 0.918216i) q^{3} +(-0.939693 - 0.342020i) q^{4} +(0.914900 - 0.767692i) q^{5} +(0.973045 - 0.230616i) q^{6} +(1.28971 - 0.469417i) q^{7} +(-0.500000 + 0.866025i) q^{8} +(-0.686242 + 0.727374i) q^{9} +(-0.597159 - 1.03431i) q^{10} +(-0.0581448 - 0.998308i) q^{12} +(0.173648 + 0.984808i) q^{13} +(-0.238329 - 1.35163i) q^{14} +(1.06728 + 0.536009i) q^{15} +(0.766044 + 0.642788i) q^{16} +(0.0581448 + 0.100710i) q^{17} +(0.597159 + 0.802123i) q^{18} +(-1.12229 + 0.408481i) q^{20} +(0.941855 + 0.998308i) q^{21} +(-0.993238 - 0.116093i) q^{24} +(0.0740425 - 0.419916i) q^{25} +1.00000 q^{26} +(-0.939693 - 0.342020i) q^{27} -1.37248 q^{28} +(0.713197 - 0.957990i) q^{30} +(1.76604 + 0.642788i) q^{31} +(0.766044 - 0.642788i) q^{32} +(0.109277 - 0.0397734i) q^{34} +(0.819590 - 1.41957i) q^{35} +(0.893633 - 0.448799i) q^{36} +(-0.396080 - 0.686030i) q^{37} +(-0.835488 + 0.549509i) q^{39} +(0.207391 + 1.17617i) q^{40} +(1.14669 - 0.754192i) q^{42} +(-1.28004 - 1.07408i) q^{43} +(-0.0694434 + 1.19230i) q^{45} +(-1.67948 + 0.611281i) q^{47} +(-0.286803 + 0.957990i) q^{48} +(0.676961 - 0.568038i) q^{49} +(-0.400679 - 0.145835i) q^{50} +(-0.0694434 + 0.0932786i) q^{51} +(0.173648 - 0.984808i) q^{52} +(-0.500000 + 0.866025i) q^{54} +(-0.238329 + 1.35163i) q^{56} +(-0.819590 - 0.868715i) q^{60} +(0.939693 - 1.62760i) q^{62} +(-0.543613 + 1.26024i) q^{63} +(-0.500000 - 0.866025i) q^{64} +(0.914900 + 0.767692i) q^{65} +(-0.0201935 - 0.114523i) q^{68} +(-1.25569 - 1.05364i) q^{70} +(-0.973045 - 1.68536i) q^{71} +(-0.286803 - 0.957990i) q^{72} +(-0.744386 + 0.270935i) q^{74} +(0.414900 - 0.0983331i) q^{75} +(0.396080 + 0.918216i) q^{78} +1.19432 q^{80} +(-0.0581448 - 0.998308i) q^{81} +(-0.543613 - 1.26024i) q^{84} +(0.130511 + 0.0475021i) q^{85} +(-1.28004 + 1.07408i) q^{86} +(1.16212 + 0.275428i) q^{90} +(0.686242 + 1.18861i) q^{91} +(0.109277 + 1.87621i) q^{93} +(0.310355 + 1.76011i) q^{94} +(0.893633 + 0.448799i) q^{96} +(-0.441855 - 0.765316i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 9 q^{8} + 18 q^{21} + 18 q^{26} + 18 q^{30} + 18 q^{31} - 9 q^{54} - 9 q^{64} - 9 q^{70} - 9 q^{75} - 9 q^{85} - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2808\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(1081\) \(1405\) \(2081\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{5}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.173648 0.984808i 0.173648 0.984808i
\(3\) 0.396080 + 0.918216i 0.396080 + 0.918216i
\(4\) −0.939693 0.342020i −0.939693 0.342020i
\(5\) 0.914900 0.767692i 0.914900 0.767692i −0.0581448 0.998308i \(-0.518519\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(6\) 0.973045 0.230616i 0.973045 0.230616i
\(7\) 1.28971 0.469417i 1.28971 0.469417i 0.396080 0.918216i \(-0.370370\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(8\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(9\) −0.686242 + 0.727374i −0.686242 + 0.727374i
\(10\) −0.597159 1.03431i −0.597159 1.03431i
\(11\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(12\) −0.0581448 0.998308i −0.0581448 0.998308i
\(13\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(14\) −0.238329 1.35163i −0.238329 1.35163i
\(15\) 1.06728 + 0.536009i 1.06728 + 0.536009i
\(16\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(17\) 0.0581448 + 0.100710i 0.0581448 + 0.100710i 0.893633 0.448799i \(-0.148148\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(18\) 0.597159 + 0.802123i 0.597159 + 0.802123i
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) −1.12229 + 0.408481i −1.12229 + 0.408481i
\(21\) 0.941855 + 0.998308i 0.941855 + 0.998308i
\(22\) 0 0
\(23\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(24\) −0.993238 0.116093i −0.993238 0.116093i
\(25\) 0.0740425 0.419916i 0.0740425 0.419916i
\(26\) 1.00000 1.00000
\(27\) −0.939693 0.342020i −0.939693 0.342020i
\(28\) −1.37248 −1.37248
\(29\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(30\) 0.713197 0.957990i 0.713197 0.957990i
\(31\) 1.76604 + 0.642788i 1.76604 + 0.642788i 1.00000 \(0\)
0.766044 + 0.642788i \(0.222222\pi\)
\(32\) 0.766044 0.642788i 0.766044 0.642788i
\(33\) 0 0
\(34\) 0.109277 0.0397734i 0.109277 0.0397734i
\(35\) 0.819590 1.41957i 0.819590 1.41957i
\(36\) 0.893633 0.448799i 0.893633 0.448799i
\(37\) −0.396080 0.686030i −0.396080 0.686030i 0.597159 0.802123i \(-0.296296\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(38\) 0 0
\(39\) −0.835488 + 0.549509i −0.835488 + 0.549509i
\(40\) 0.207391 + 1.17617i 0.207391 + 1.17617i
\(41\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(42\) 1.14669 0.754192i 1.14669 0.754192i
\(43\) −1.28004 1.07408i −1.28004 1.07408i −0.993238 0.116093i \(-0.962963\pi\)
−0.286803 0.957990i \(-0.592593\pi\)
\(44\) 0 0
\(45\) −0.0694434 + 1.19230i −0.0694434 + 1.19230i
\(46\) 0 0
\(47\) −1.67948 + 0.611281i −1.67948 + 0.611281i −0.993238 0.116093i \(-0.962963\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(48\) −0.286803 + 0.957990i −0.286803 + 0.957990i
\(49\) 0.676961 0.568038i 0.676961 0.568038i
\(50\) −0.400679 0.145835i −0.400679 0.145835i
\(51\) −0.0694434 + 0.0932786i −0.0694434 + 0.0932786i
\(52\) 0.173648 0.984808i 0.173648 0.984808i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(55\) 0 0
\(56\) −0.238329 + 1.35163i −0.238329 + 1.35163i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(60\) −0.819590 0.868715i −0.819590 0.868715i
\(61\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(62\) 0.939693 1.62760i 0.939693 1.62760i
\(63\) −0.543613 + 1.26024i −0.543613 + 1.26024i
\(64\) −0.500000 0.866025i −0.500000 0.866025i
\(65\) 0.914900 + 0.767692i 0.914900 + 0.767692i
\(66\) 0 0
\(67\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(68\) −0.0201935 0.114523i −0.0201935 0.114523i
\(69\) 0 0
\(70\) −1.25569 1.05364i −1.25569 1.05364i
\(71\) −0.973045 1.68536i −0.973045 1.68536i −0.686242 0.727374i \(-0.740741\pi\)
−0.286803 0.957990i \(-0.592593\pi\)
\(72\) −0.286803 0.957990i −0.286803 0.957990i
\(73\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(74\) −0.744386 + 0.270935i −0.744386 + 0.270935i
\(75\) 0.414900 0.0983331i 0.414900 0.0983331i
\(76\) 0 0
\(77\) 0 0
\(78\) 0.396080 + 0.918216i 0.396080 + 0.918216i
\(79\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(80\) 1.19432 1.19432
\(81\) −0.0581448 0.998308i −0.0581448 0.998308i
\(82\) 0 0
\(83\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(84\) −0.543613 1.26024i −0.543613 1.26024i
\(85\) 0.130511 + 0.0475021i 0.130511 + 0.0475021i
\(86\) −1.28004 + 1.07408i −1.28004 + 1.07408i
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) 1.16212 + 0.275428i 1.16212 + 0.275428i
\(91\) 0.686242 + 1.18861i 0.686242 + 1.18861i
\(92\) 0 0
\(93\) 0.109277 + 1.87621i 0.109277 + 1.87621i
\(94\) 0.310355 + 1.76011i 0.310355 + 1.76011i
\(95\) 0 0
\(96\) 0.893633 + 0.448799i 0.893633 + 0.448799i
\(97\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(98\) −0.441855 0.765316i −0.441855 0.765316i
\(99\) 0 0
\(100\) −0.213197 + 0.369268i −0.213197 + 0.369268i
\(101\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(102\) 0.0798028 + 0.0845860i 0.0798028 + 0.0845860i
\(103\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(104\) −0.939693 0.342020i −0.939693 0.342020i
\(105\) 1.62810 + 0.190297i 1.62810 + 0.190297i
\(106\) 0 0
\(107\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(109\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(110\) 0 0
\(111\) 0.473045 0.635410i 0.473045 0.635410i
\(112\) 1.28971 + 0.469417i 1.28971 + 0.469417i
\(113\) 1.17365 0.984808i 1.17365 0.984808i 0.173648 0.984808i \(-0.444444\pi\)
1.00000 \(0\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.835488 0.549509i −0.835488 0.549509i
\(118\) 0 0
\(119\) 0.122265 + 0.102593i 0.122265 + 0.102593i
\(120\) −0.997837 + 0.656288i −0.997837 + 0.656288i
\(121\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(122\) 0 0
\(123\) 0 0
\(124\) −1.43969 1.20805i −1.43969 1.20805i
\(125\) 0.342534 + 0.593286i 0.342534 + 0.593286i
\(126\) 1.14669 + 0.754192i 1.14669 + 0.754192i
\(127\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(128\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(129\) 0.479241 1.60078i 0.479241 1.60078i
\(130\) 0.914900 0.767692i 0.914900 0.767692i
\(131\) −1.67948 0.611281i −1.67948 0.611281i −0.686242 0.727374i \(-0.740741\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.12229 + 0.408481i −1.12229 + 0.408481i
\(136\) −0.116290 −0.116290
\(137\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(138\) 0 0
\(139\) −1.82873 0.665602i −1.82873 0.665602i −0.993238 0.116093i \(-0.962963\pi\)
−0.835488 0.549509i \(-0.814815\pi\)
\(140\) −1.25569 + 1.05364i −1.25569 + 1.05364i
\(141\) −1.22650 1.30001i −1.22650 1.30001i
\(142\) −1.82873 + 0.665602i −1.82873 + 0.665602i
\(143\) 0 0
\(144\) −0.993238 + 0.116093i −0.993238 + 0.116093i
\(145\) 0 0
\(146\) 0 0
\(147\) 0.789712 + 0.396608i 0.789712 + 0.396608i
\(148\) 0.137557 + 0.780125i 0.137557 + 0.780125i
\(149\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(150\) −0.0247926 0.425672i −0.0247926 0.425672i
\(151\) 0.914900 + 0.767692i 0.914900 + 0.767692i 0.973045 0.230616i \(-0.0740741\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(152\) 0 0
\(153\) −0.113155 0.0268182i −0.113155 0.0268182i
\(154\) 0 0
\(155\) 2.10922 0.767692i 2.10922 0.767692i
\(156\) 0.973045 0.230616i 0.973045 0.230616i
\(157\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0.207391 1.17617i 0.207391 1.17617i
\(161\) 0 0
\(162\) −0.993238 0.116093i −0.993238 0.116093i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.266044 0.223238i 0.266044 0.223238i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(168\) −1.33549 + 0.316516i −1.33549 + 0.316516i
\(169\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(170\) 0.0694434 0.120279i 0.0694434 0.120279i
\(171\) 0 0
\(172\) 0.835488 + 1.44711i 0.835488 + 1.44711i
\(173\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(174\) 0 0
\(175\) −0.101622 0.576327i −0.101622 0.576327i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.973045 1.68536i −0.973045 1.68536i −0.686242 0.727374i \(-0.740741\pi\)
−0.286803 0.957990i \(-0.592593\pi\)
\(180\) 0.473045 1.09664i 0.473045 1.09664i
\(181\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(182\) 1.28971 0.469417i 1.28971 0.469417i
\(183\) 0 0
\(184\) 0 0
\(185\) −0.889034 0.323582i −0.889034 0.323582i
\(186\) 1.86668 + 0.218183i 1.86668 + 0.218183i
\(187\) 0 0
\(188\) 1.78727 1.78727
\(189\) −1.37248 −1.37248
\(190\) 0 0
\(191\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(192\) 0.597159 0.802123i 0.597159 0.802123i
\(193\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(194\) 0 0
\(195\) −0.342534 + 1.14414i −0.342534 + 1.14414i
\(196\) −0.830416 + 0.302247i −0.830416 + 0.302247i
\(197\) 0.686242 1.18861i 0.686242 1.18861i −0.286803 0.957990i \(-0.592593\pi\)
0.973045 0.230616i \(-0.0740741\pi\)
\(198\) 0 0
\(199\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(200\) 0.326636 + 0.274080i 0.326636 + 0.274080i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0.0971586 0.0639022i 0.0971586 0.0639022i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(209\) 0 0
\(210\) 0.470122 1.57032i 0.470122 1.57032i
\(211\) −1.52173 + 1.27688i −1.52173 + 1.27688i −0.686242 + 0.727374i \(0.740741\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(212\) 0 0
\(213\) 1.16212 1.56100i 1.16212 1.56100i
\(214\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(215\) −1.99567 −1.99567
\(216\) 0.766044 0.642788i 0.766044 0.642788i
\(217\) 2.57942 2.57942
\(218\) 0.310355 1.76011i 0.310355 1.76011i
\(219\) 0 0
\(220\) 0 0
\(221\) −0.0890830 + 0.0747496i −0.0890830 + 0.0747496i
\(222\) −0.543613 0.576196i −0.543613 0.576196i
\(223\) 1.57020 0.571507i 1.57020 0.571507i 0.597159 0.802123i \(-0.296296\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(224\) 0.686242 1.18861i 0.686242 1.18861i
\(225\) 0.254625 + 0.342020i 0.254625 + 0.342020i
\(226\) −0.766044 1.32683i −0.766044 1.32683i
\(227\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(228\) 0 0
\(229\) 0.207391 + 1.17617i 0.207391 + 1.17617i 0.893633 + 0.448799i \(0.148148\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.286803 + 0.496758i 0.286803 + 0.496758i 0.973045 0.230616i \(-0.0740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(234\) −0.686242 + 0.727374i −0.686242 + 0.727374i
\(235\) −1.06728 + 1.84858i −1.06728 + 1.84858i
\(236\) 0 0
\(237\) 0 0
\(238\) 0.122265 0.102593i 0.122265 0.102593i
\(239\) 1.57020 + 0.571507i 1.57020 + 0.571507i 0.973045 0.230616i \(-0.0740741\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(240\) 0.473045 + 1.09664i 0.473045 + 1.09664i
\(241\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(242\) 1.00000 1.00000
\(243\) 0.893633 0.448799i 0.893633 0.448799i
\(244\) 0 0
\(245\) 0.183274 1.03940i 0.183274 1.03940i
\(246\) 0 0
\(247\) 0 0
\(248\) −1.43969 + 1.20805i −1.43969 + 1.20805i
\(249\) 0 0
\(250\) 0.643753 0.234307i 0.643753 0.234307i
\(251\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(252\) 0.941855 0.998308i 0.941855 0.998308i
\(253\) 0 0
\(254\) 0 0
\(255\) 0.00807555 + 0.138652i 0.00807555 + 0.138652i
\(256\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(257\) 0.137557 + 0.780125i 0.137557 + 0.780125i 0.973045 + 0.230616i \(0.0740741\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(258\) −1.49324 0.749932i −1.49324 0.749932i
\(259\) −0.832863 0.698855i −0.832863 0.698855i
\(260\) −0.597159 1.03431i −0.597159 1.03431i
\(261\) 0 0
\(262\) −0.893633 + 1.54782i −0.893633 + 1.54782i
\(263\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0.207391 + 1.17617i 0.207391 + 1.17617i
\(271\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(272\) −0.0201935 + 0.114523i −0.0201935 + 0.114523i
\(273\) −0.819590 + 1.10090i −0.819590 + 1.10090i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(278\) −0.973045 + 1.68536i −0.973045 + 1.68536i
\(279\) −1.67948 + 0.843467i −1.67948 + 0.843467i
\(280\) 0.819590 + 1.41957i 0.819590 + 1.41957i
\(281\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(282\) −1.49324 + 0.982118i −1.49324 + 0.982118i
\(283\) 0.266044 + 1.50881i 0.266044 + 1.50881i 0.766044 + 0.642788i \(0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(284\) 0.337935 + 1.91652i 0.337935 + 1.91652i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.0581448 + 0.998308i −0.0581448 + 0.998308i
\(289\) 0.493238 0.854314i 0.493238 0.854314i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.82873 0.665602i −1.82873 0.665602i −0.993238 0.116093i \(-0.962963\pi\)
−0.835488 0.549509i \(-0.814815\pi\)
\(294\) 0.527715 0.708845i 0.527715 0.708845i
\(295\) 0 0
\(296\) 0.792160 0.792160
\(297\) 0 0
\(298\) 0.347296 0.347296
\(299\) 0 0
\(300\) −0.423510 0.0495013i −0.423510 0.0495013i
\(301\) −2.15508 0.784384i −2.15508 0.784384i
\(302\) 0.914900 0.767692i 0.914900 0.767692i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) −0.0460600 + 0.106779i −0.0460600 + 0.106779i
\(307\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −0.389768 2.21048i −0.389768 2.21048i
\(311\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(312\) −0.0581448 0.998308i −0.0581448 0.998308i
\(313\) −1.52173 1.27688i −1.52173 1.27688i −0.835488 0.549509i \(-0.814815\pi\)
−0.686242 0.727374i \(-0.740741\pi\)
\(314\) 0 0
\(315\) 0.470122 + 1.57032i 0.470122 + 1.57032i
\(316\) 0 0
\(317\) −1.43969 + 0.524005i −1.43969 + 0.524005i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −1.12229 0.408481i −1.12229 0.408481i
\(321\) −0.396080 0.918216i −0.396080 0.918216i
\(322\) 0 0
\(323\) 0 0
\(324\) −0.286803 + 0.957990i −0.286803 + 0.957990i
\(325\) 0.426394 0.426394
\(326\) 0 0
\(327\) 0.707900 + 1.64110i 0.707900 + 1.64110i
\(328\) 0 0
\(329\) −1.87910 + 1.57675i −1.87910 + 1.57675i
\(330\) 0 0
\(331\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(332\) 0 0
\(333\) 0.770807 + 0.182685i 0.770807 + 0.182685i
\(334\) −0.173648 0.300767i −0.173648 0.300767i
\(335\) 0 0
\(336\) 0.0798028 + 1.37016i 0.0798028 + 1.37016i
\(337\) 0.337935 + 1.91652i 0.337935 + 1.91652i 0.396080 + 0.918216i \(0.370370\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(338\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(339\) 1.36912 + 0.687600i 1.36912 + 0.687600i
\(340\) −0.106393 0.0892747i −0.106393 0.0892747i
\(341\) 0 0
\(342\) 0 0
\(343\) −0.0798028 + 0.138223i −0.0798028 + 0.138223i
\(344\) 1.57020 0.571507i 1.57020 0.571507i
\(345\) 0 0
\(346\) 0 0
\(347\) −0.744386 0.270935i −0.744386 0.270935i −0.0581448 0.998308i \(-0.518519\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(348\) 0 0
\(349\) −0.344948 + 1.95630i −0.344948 + 1.95630i −0.0581448 + 0.998308i \(0.518519\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(350\) −0.585218 −0.585218
\(351\) 0.173648 0.984808i 0.173648 0.984808i
\(352\) 0 0
\(353\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(354\) 0 0
\(355\) −2.18408 0.794940i −2.18408 0.794940i
\(356\) 0 0
\(357\) −0.0457754 + 0.152901i −0.0457754 + 0.152901i
\(358\) −1.82873 + 0.665602i −1.82873 + 0.665602i
\(359\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(360\) −0.997837 0.656288i −0.997837 0.656288i
\(361\) −0.500000 0.866025i −0.500000 0.866025i
\(362\) 0 0
\(363\) −0.835488 + 0.549509i −0.835488 + 0.549509i
\(364\) −0.238329 1.35163i −0.238329 1.35163i
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −0.473045 + 0.819338i −0.473045 + 0.819338i
\(371\) 0 0
\(372\) 0.539014 1.80043i 0.539014 1.80043i
\(373\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(374\) 0 0
\(375\) −0.409094 + 0.549509i −0.409094 + 0.549509i
\(376\) 0.310355 1.76011i 0.310355 1.76011i
\(377\) 0 0
\(378\) −0.238329 + 1.35163i −0.238329 + 1.35163i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −0.439408 + 0.368707i −0.439408 + 0.368707i −0.835488 0.549509i \(-0.814815\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(384\) −0.686242 0.727374i −0.686242 0.727374i
\(385\) 0 0
\(386\) 0 0
\(387\) 1.65968 0.193988i 1.65968 0.193988i
\(388\) 0 0
\(389\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(390\) 1.06728 + 0.536009i 1.06728 + 0.536009i
\(391\) 0 0
\(392\) 0.153455 + 0.870285i 0.153455 + 0.870285i
\(393\) −0.103920 1.78424i −0.103920 1.78424i
\(394\) −1.05138 0.882215i −1.05138 0.882215i
\(395\) 0 0
\(396\) 0 0
\(397\) −0.173648 + 0.300767i −0.173648 + 0.300767i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.326636 0.274080i 0.326636 0.274080i
\(401\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(402\) 0 0
\(403\) −0.326352 + 1.85083i −0.326352 + 1.85083i
\(404\) 0 0
\(405\) −0.819590 0.868715i −0.819590 0.868715i
\(406\) 0 0
\(407\) 0 0
\(408\) −0.0460600 0.106779i −0.0460600 0.106779i
\(409\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(417\) −0.113155 1.94280i −0.113155 1.94280i
\(418\) 0 0
\(419\) 0.207391 + 1.17617i 0.207391 + 1.17617i 0.893633 + 0.448799i \(0.148148\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(420\) −1.46483 0.735663i −1.46483 0.735663i
\(421\) −0.439408 0.368707i −0.439408 0.368707i 0.396080 0.918216i \(-0.370370\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(422\) 0.993238 + 1.72034i 0.993238 + 1.72034i
\(423\) 0.707900 1.64110i 0.707900 1.64110i
\(424\) 0 0
\(425\) 0.0465948 0.0169591i 0.0465948 0.0169591i
\(426\) −1.33549 1.41553i −1.33549 1.41553i
\(427\) 0 0
\(428\) 0.939693 + 0.342020i 0.939693 + 0.342020i
\(429\) 0 0
\(430\) −0.346545 + 1.96536i −0.346545 + 1.96536i
\(431\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(432\) −0.500000 0.866025i −0.500000 0.866025i
\(433\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(434\) 0.447912 2.54024i 0.447912 2.54024i
\(435\) 0 0
\(436\) −1.67948 0.611281i −1.67948 0.611281i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(440\) 0 0
\(441\) −0.0513832 + 0.882215i −0.0513832 + 0.882215i
\(442\) 0.0581448 + 0.100710i 0.0581448 + 0.100710i
\(443\) 1.49079 + 1.25092i 1.49079 + 1.25092i 0.893633 + 0.448799i \(0.148148\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(444\) −0.661840 + 0.435299i −0.661840 + 0.435299i
\(445\) 0 0
\(446\) −0.290162 1.64559i −0.290162 1.64559i
\(447\) −0.290162 + 0.190842i −0.290162 + 0.190842i
\(448\) −1.05138 0.882215i −1.05138 0.882215i
\(449\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(450\) 0.381039 0.191365i 0.381039 0.191365i
\(451\) 0 0
\(452\) −1.43969 + 0.524005i −1.43969 + 0.524005i
\(453\) −0.342534 + 1.14414i −0.342534 + 1.14414i
\(454\) 0 0
\(455\) 1.54033 + 0.560633i 1.54033 + 0.560633i
\(456\) 0 0
\(457\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(458\) 1.19432 1.19432
\(459\) −0.0201935 0.114523i −0.0201935 0.114523i
\(460\) 0 0
\(461\) −0.0996057 + 0.564892i −0.0996057 + 0.564892i 0.893633 + 0.448799i \(0.148148\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(462\) 0 0
\(463\) −0.326352 0.118782i −0.326352 0.118782i 0.173648 0.984808i \(-0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(464\) 0 0
\(465\) 1.54033 + 1.63265i 1.54033 + 1.63265i
\(466\) 0.539014 0.196185i 0.539014 0.196185i
\(467\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(468\) 0.597159 + 0.802123i 0.597159 + 0.802123i
\(469\) 0 0
\(470\) 1.63517 + 1.37207i 1.63517 + 1.37207i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) −0.0798028 0.138223i −0.0798028 0.138223i
\(477\) 0 0
\(478\) 0.835488 1.44711i 0.835488 1.44711i
\(479\) 1.86668 0.679415i 1.86668 0.679415i 0.893633 0.448799i \(-0.148148\pi\)
0.973045 0.230616i \(-0.0740741\pi\)
\(480\) 1.16212 0.275428i 1.16212 0.275428i
\(481\) 0.606829 0.509190i 0.606829 0.509190i
\(482\) 0 0
\(483\) 0 0
\(484\) 0.173648 0.984808i 0.173648 0.984808i
\(485\) 0 0
\(486\) −0.286803 0.957990i −0.286803 0.957990i
\(487\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −0.991780 0.360978i −0.991780 0.360978i
\(491\) −1.28004 + 1.07408i −1.28004 + 1.07408i −0.286803 + 0.957990i \(0.592593\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(497\) −2.04609 1.71687i −2.04609 1.71687i
\(498\) 0 0
\(499\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(500\) −0.118961 0.674660i −0.118961 0.674660i
\(501\) 0.310355 + 0.155866i 0.310355 + 0.155866i
\(502\) 1.17365 + 0.984808i 1.17365 + 0.984808i
\(503\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) −0.819590 1.10090i −0.819590 1.10090i
\(505\) 0 0
\(506\) 0 0
\(507\) −0.686242 0.727374i −0.686242 0.727374i
\(508\) 0 0
\(509\) −0.326352 0.118782i −0.326352 0.118782i 0.173648 0.984808i \(-0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(510\) 0.137948 + 0.0161238i 0.137948 + 0.0161238i
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) 0 0
\(514\) 0.792160 0.792160
\(515\) 0 0
\(516\) −0.997837 + 1.34033i −0.997837 + 1.34033i
\(517\) 0 0
\(518\) −0.832863 + 0.698855i −0.832863 + 0.698855i
\(519\) 0 0
\(520\) −1.12229 + 0.408481i −1.12229 + 0.408481i
\(521\) −0.396080 + 0.686030i −0.396080 + 0.686030i −0.993238 0.116093i \(-0.962963\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(522\) 0 0
\(523\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(524\) 1.36912 + 1.14883i 1.36912 + 1.14883i
\(525\) 0.488943 0.321583i 0.488943 0.321583i
\(526\) 0 0
\(527\) 0.0379513 + 0.215233i 0.0379513 + 0.215233i
\(528\) 0 0
\(529\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −0.914900 + 0.767692i −0.914900 + 0.767692i
\(536\) 0 0
\(537\) 1.16212 1.56100i 1.16212 1.56100i
\(538\) 0 0
\(539\) 0 0
\(540\) 1.19432 1.19432
\(541\) 1.94609 1.94609 0.973045 0.230616i \(-0.0740741\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(542\) −0.344948 + 1.95630i −0.344948 + 1.95630i
\(543\) 0 0
\(544\) 0.109277 + 0.0397734i 0.109277 + 0.0397734i
\(545\) 1.63517 1.37207i 1.63517 1.37207i
\(546\) 0.941855 + 0.998308i 0.941855 + 0.998308i
\(547\) 1.86668 0.679415i 1.86668 0.679415i 0.893633 0.448799i \(-0.148148\pi\)
0.973045 0.230616i \(-0.0740741\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −0.0550102 0.944489i −0.0550102 0.944489i
\(556\) 1.49079 + 1.25092i 1.49079 + 1.25092i
\(557\) −0.893633 1.54782i −0.893633 1.54782i −0.835488 0.549509i \(-0.814815\pi\)
−0.0581448 0.998308i \(-0.518519\pi\)
\(558\) 0.539014 + 1.80043i 0.539014 + 1.80043i
\(559\) 0.835488 1.44711i 0.835488 1.44711i
\(560\) 1.54033 0.560633i 1.54033 0.560633i
\(561\) 0 0
\(562\) 0 0
\(563\) 0.539014 + 0.196185i 0.539014 + 0.196185i 0.597159 0.802123i \(-0.296296\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(564\) 0.707900 + 1.64110i 0.707900 + 1.64110i
\(565\) 0.317741 1.80200i 0.317741 1.80200i
\(566\) 1.53209 1.53209
\(567\) −0.543613 1.26024i −0.543613 1.26024i
\(568\) 1.94609 1.94609
\(569\) −0.344948 + 1.95630i −0.344948 + 1.95630i −0.0581448 + 0.998308i \(0.518519\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(570\) 0 0
\(571\) 0.109277 + 0.0397734i 0.109277 + 0.0397734i 0.396080 0.918216i \(-0.370370\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.973045 + 0.230616i 0.973045 + 0.230616i
\(577\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(578\) −0.755685 0.634095i −0.755685 0.634095i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −1.18624 + 0.138652i −1.18624 + 0.138652i
\(586\) −0.973045 + 1.68536i −0.973045 + 1.68536i
\(587\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(588\) −0.606439 0.642788i −0.606439 0.642788i
\(589\) 0 0
\(590\) 0 0
\(591\) 1.36320 + 0.159336i 1.36320 + 0.159336i
\(592\) 0.137557 0.780125i 0.137557 0.780125i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0.190620 0.190620
\(596\) 0.0603074 0.342020i 0.0603074 0.342020i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(600\) −0.122291 + 0.408481i −0.122291 + 0.408481i
\(601\) 1.57020 0.571507i 1.57020 0.571507i 0.597159 0.802123i \(-0.296296\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(602\) −1.14669 + 1.98613i −1.14669 + 1.98613i
\(603\) 0 0
\(604\) −0.597159 1.03431i −0.597159 1.03431i
\(605\) 0.914900 + 0.767692i 0.914900 + 0.767692i
\(606\) 0 0
\(607\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.893633 1.54782i −0.893633 1.54782i
\(612\) 0.0971586 + 0.0639022i 0.0971586 + 0.0639022i
\(613\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(618\) 0 0
\(619\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(620\) −2.24458 −2.24458
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) −0.993238 0.116093i −0.993238 0.116093i
\(625\) 1.16952 + 0.425672i 1.16952 + 0.425672i
\(626\) −1.52173 + 1.27688i −1.52173 + 1.27688i
\(627\) 0 0
\(628\) 0 0
\(629\) 0.0460600 0.0797782i 0.0460600 0.0797782i
\(630\) 1.62810 0.190297i 1.62810 0.190297i
\(631\) 0.0581448 + 0.100710i 0.0581448 + 0.100710i 0.893633 0.448799i \(-0.148148\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(632\) 0 0
\(633\) −1.77518 0.891529i −1.77518 0.891529i
\(634\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(635\) 0 0
\(636\) 0 0
\(637\) 0.676961 + 0.568038i 0.676961 + 0.568038i
\(638\) 0 0
\(639\) 1.89363 + 0.448799i 1.89363 + 0.448799i
\(640\) −0.597159 + 1.03431i −0.597159 + 1.03431i
\(641\) −0.326352 + 0.118782i −0.326352 + 0.118782i −0.500000 0.866025i \(-0.666667\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(642\) −0.973045 + 0.230616i −0.973045 + 0.230616i
\(643\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(644\) 0 0
\(645\) −0.790446 1.83246i −0.790446 1.83246i
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0.893633 + 0.448799i 0.893633 + 0.448799i
\(649\) 0 0
\(650\) 0.0740425 0.419916i 0.0740425 0.419916i
\(651\) 1.02166 + 2.36847i 1.02166 + 2.36847i
\(652\) 0 0
\(653\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(654\) 1.73909 0.412172i 1.73909 0.412172i
\(655\) −2.00583 + 0.730063i −2.00583 + 0.730063i
\(656\) 0 0
\(657\) 0 0
\(658\) 1.22650 + 2.12435i 1.22650 + 2.12435i
\(659\) −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(660\) 0 0
\(661\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(662\) 0 0
\(663\) −0.103920 0.0521907i −0.103920 0.0521907i
\(664\) 0 0
\(665\) 0 0
\(666\) 0.313758 0.727374i 0.313758 0.727374i
\(667\) 0 0
\(668\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(669\) 1.14669 + 1.21542i 1.14669 + 1.21542i
\(670\) 0 0
\(671\) 0 0
\(672\) 1.36320 + 0.159336i 1.36320 + 0.159336i
\(673\) 0.137557 0.780125i 0.137557 0.780125i −0.835488 0.549509i \(-0.814815\pi\)
0.973045 0.230616i \(-0.0740741\pi\)
\(674\) 1.94609 1.94609
\(675\) −0.213197 + 0.369268i −0.213197 + 0.369268i
\(676\) 1.00000 1.00000
\(677\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(678\) 0.914900 1.22892i 0.914900 1.22892i
\(679\) 0 0
\(680\) −0.106393 + 0.0892747i −0.106393 + 0.0892747i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.122265 + 0.102593i 0.122265 + 0.102593i
\(687\) −0.997837 + 0.656288i −0.997837 + 0.656288i
\(688\) −0.290162 1.64559i −0.290162 1.64559i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −0.396080 + 0.686030i −0.396080 + 0.686030i
\(695\) −2.18408 + 0.794940i −2.18408 + 0.794940i
\(696\) 0 0
\(697\) 0 0
\(698\) 1.86668 + 0.679415i 1.86668 + 0.679415i
\(699\) −0.342534 + 0.460103i −0.342534 + 0.460103i
\(700\) −0.101622 + 0.576327i −0.101622 + 0.576327i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) −0.939693 0.342020i −0.939693 0.342020i
\(703\) 0 0
\(704\) 0 0
\(705\) −2.12013 0.247807i −2.12013 0.247807i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.76604 0.642788i 1.76604 0.642788i 0.766044 0.642788i \(-0.222222\pi\)
1.00000 \(0\)
\(710\) −1.16212 + 2.01286i −1.16212 + 2.01286i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0.142629 + 0.0716309i 0.142629 + 0.0716309i
\(715\) 0 0
\(716\) 0.337935 + 1.91652i 0.337935 + 1.91652i
\(717\) 0.0971586 + 1.66815i 0.0971586 + 1.66815i
\(718\) −1.43969 1.20805i −1.43969 1.20805i
\(719\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(720\) −0.819590 + 0.868715i −0.819590 + 0.868715i
\(721\) 0 0
\(722\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0.396080 + 0.918216i 0.396080 + 0.918216i
\(727\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(728\) −1.37248 −1.37248
\(729\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(730\) 0 0
\(731\) 0.0337428 0.191365i 0.0337428 0.191365i
\(732\) 0 0
\(733\) 0.539014 + 0.196185i 0.539014 + 0.196185i 0.597159 0.802123i \(-0.296296\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(734\) 0 0
\(735\) 1.02698 0.243399i 1.02698 0.243399i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) 0.724747 + 0.608135i 0.724747 + 0.608135i
\(741\) 0 0
\(742\) 0 0
\(743\) −0.290162 1.64559i −0.290162 1.64559i −0.686242 0.727374i \(-0.740741\pi\)
0.396080 0.918216i \(-0.370370\pi\)
\(744\) −1.67948 0.843467i −1.67948 0.843467i
\(745\) 0.317741 + 0.266617i 0.317741 + 0.266617i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.28971 + 0.469417i −1.28971 + 0.469417i
\(750\) 0.470122 + 0.498300i 0.470122 + 0.498300i
\(751\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(752\) −1.67948 0.611281i −1.67948 0.611281i
\(753\) −1.52173 0.177865i −1.52173 0.177865i
\(754\) 0 0
\(755\) 1.42639 1.42639
\(756\) 1.28971 + 0.469417i 1.28971 + 0.469417i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(762\) 0 0
\(763\) 2.30506 0.838973i 2.30506 0.838973i
\(764\) 0 0
\(765\) −0.124114 + 0.0623323i −0.124114 + 0.0623323i
\(766\) 0.286803 + 0.496758i 0.286803 + 0.496758i
\(767\) 0 0
\(768\) −0.835488 + 0.549509i −0.835488 + 0.549509i
\(769\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(770\) 0 0
\(771\) −0.661840 + 0.435299i −0.661840 + 0.435299i
\(772\) 0 0
\(773\) 0.835488 + 1.44711i 0.835488 + 1.44711i 0.893633 + 0.448799i \(0.148148\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(774\) 0.0971586 1.66815i 0.0971586 1.66815i
\(775\) 0.400679 0.693996i 0.400679 0.693996i
\(776\) 0 0
\(777\) 0.311820 1.04155i 0.311820 1.04155i
\(778\) 0 0
\(779\) 0 0
\(780\) 0.713197 0.957990i 0.713197 0.957990i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.883710 0.883710
\(785\) 0 0
\(786\) −1.77518 0.207489i −1.77518 0.207489i
\(787\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(788\) −1.05138 + 0.882215i −1.05138 + 0.882215i
\(789\) 0 0
\(790\) 0 0
\(791\) 1.05138 1.82105i 1.05138 1.82105i
\(792\) 0 0
\(793\) 0 0
\(794\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(798\) 0 0
\(799\) −0.159215 0.133597i −0.159215 0.133597i
\(800\) −0.213197 0.369268i −0.213197 0.369268i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(807\) 0 0
\(808\) 0 0
\(809\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(810\) −0.997837 + 0.656288i −0.997837 + 0.656288i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) −0.786803 1.82401i −0.786803 1.82401i
\(814\) 0 0
\(815\) 0 0
\(816\) −0.113155 + 0.0268182i −0.113155 + 0.0268182i
\(817\) 0 0
\(818\) 0 0
\(819\) −1.33549 0.316516i −1.33549 0.316516i
\(820\) 0 0
\(821\) −0.0890830 0.0747496i −0.0890830 0.0747496i 0.597159 0.802123i \(-0.296296\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(822\) 0 0
\(823\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(828\) 0 0
\(829\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.766044 0.642788i 0.766044 0.642788i
\(833\) 0.0965688 + 0.0351482i 0.0965688 + 0.0351482i
\(834\) −1.93293 0.225927i −1.93293 0.225927i
\(835\) 0.0720261 0.408481i 0.0720261 0.408481i
\(836\) 0 0
\(837\) −1.43969 1.20805i −1.43969 1.20805i
\(838\) 1.19432 1.19432
\(839\) 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(840\) −0.978851 + 1.31482i −0.978851 + 1.31482i
\(841\) −0.939693 0.342020i −0.939693 0.342020i
\(842\) −0.439408 + 0.368707i −0.439408 + 0.368707i
\(843\) 0 0
\(844\) 1.86668 0.679415i 1.86668 0.679415i
\(845\) −0.597159 + 1.03431i −0.597159 + 1.03431i
\(846\) −1.49324 0.982118i −1.49324 0.982118i
\(847\) 0.686242 + 1.18861i 0.686242 + 1.18861i
\(848\) 0 0
\(849\) −1.28004 + 0.841897i −1.28004 + 0.841897i
\(850\) −0.00861037 0.0488318i −0.00861037 0.0488318i
\(851\) 0 0
\(852\) −1.62593 + 1.06939i −1.62593 + 1.06939i
\(853\) 1.36912 + 1.14883i 1.36912 + 1.14883i 0.973045 + 0.230616i \(0.0740741\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0.500000 0.866025i 0.500000 0.866025i
\(857\) −1.43969 + 0.524005i −1.43969 + 0.524005i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(858\) 0 0
\(859\) 1.17365 0.984808i 1.17365 0.984808i 0.173648 0.984808i \(-0.444444\pi\)
1.00000 \(0\)
\(860\) 1.87532 + 0.682561i 1.87532 + 0.682561i
\(861\) 0 0
\(862\) 0.137557 0.780125i 0.137557 0.780125i
\(863\) −1.98648 −1.98648 −0.993238 0.116093i \(-0.962963\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(864\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(865\) 0 0
\(866\) −0.238329 + 1.35163i −0.238329 + 1.35163i
\(867\) 0.979807 + 0.114523i 0.979807 + 0.114523i
\(868\) −2.42387 0.882215i −2.42387 0.882215i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −0.893633 + 1.54782i −0.893633 + 1.54782i
\(873\) 0 0
\(874\) 0 0
\(875\) 0.720269 + 0.604377i 0.720269 + 0.604377i
\(876\) 0 0
\(877\) −0.344948 1.95630i −0.344948 1.95630i −0.286803 0.957990i \(-0.592593\pi\)
−0.0581448 0.998308i \(-0.518519\pi\)
\(878\) 0 0
\(879\) −0.113155 1.94280i −0.113155 1.94280i
\(880\) 0 0
\(881\) 0.993238 + 1.72034i 0.993238 + 1.72034i 0.597159 + 0.802123i \(0.296296\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(882\) 0.859890 + 0.203798i 0.859890 + 0.203798i
\(883\) −0.396080 + 0.686030i −0.396080 + 0.686030i −0.993238 0.116093i \(-0.962963\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(884\) 0.109277 0.0397734i 0.109277 0.0397734i
\(885\) 0 0
\(886\) 1.49079 1.25092i 1.49079 1.25092i
\(887\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(888\) 0.313758 + 0.727374i 0.313758 + 0.727374i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −1.67098 −1.67098
\(893\) 0 0
\(894\) 0.137557 + 0.318893i 0.137557 + 0.318893i
\(895\) −2.18408 0.794940i −2.18408 0.794940i
\(896\) −1.05138 + 0.882215i −1.05138 + 0.882215i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −0.122291 0.408481i −0.122291 0.408481i
\(901\) 0 0
\(902\) 0 0
\(903\) −0.133349 2.28951i −0.133349 2.28951i
\(904\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(905\) 0 0
\(906\) 1.06728 + 0.536009i 1.06728 + 0.536009i
\(907\) −0.439408 0.368707i −0.439408 0.368707i 0.396080 0.918216i \(-0.370370\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0.819590 1.41957i 0.819590 1.41957i
\(911\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0.207391 1.17617i 0.207391 1.17617i
\(917\) −2.45299 −2.45299
\(918\) −0.116290 −0.116290
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0.539014 + 0.196185i 0.539014 + 0.196185i
\(923\) 1.49079 1.25092i 1.49079 1.25092i
\(924\) 0 0
\(925\) −0.317402 + 0.115525i −0.317402 + 0.115525i
\(926\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(930\) 1.87532 1.23342i 1.87532 1.23342i
\(931\) 0 0
\(932\) −0.0996057 0.564892i −0.0996057 0.564892i
\(933\) 0 0
\(934\) −1.43969 1.20805i −1.43969 1.20805i
\(935\) 0 0
\(936\) 0.893633 0.448799i 0.893633 0.448799i
\(937\) 0.939693 1.62760i 0.939693 1.62760i 0.173648 0.984808i \(-0.444444\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(938\) 0 0
\(939\) 0.569728 1.90302i 0.569728 1.90302i
\(940\) 1.63517 1.37207i 1.63517 1.37207i
\(941\) 1.28971 + 0.469417i 1.28971 + 0.469417i 0.893633 0.448799i \(-0.148148\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −1.25569 + 1.05364i −1.25569 + 1.05364i
\(946\) 0 0
\(947\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −1.05138 1.11440i −1.05138 1.11440i
\(952\) −0.149980 + 0.0545883i −0.149980 + 0.0545883i
\(953\) −0.973045 + 1.68536i −0.973045 + 1.68536i −0.286803 + 0.957990i \(0.592593\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −1.28004 1.07408i −1.28004 1.07408i
\(957\) 0 0
\(958\) −0.344948 1.95630i −0.344948 1.95630i
\(959\) 0 0
\(960\) −0.0694434 1.19230i −0.0694434 1.19230i
\(961\) 1.93969 + 1.62760i 1.93969 + 1.62760i
\(962\) −0.396080 0.686030i −0.396080 0.686030i
\(963\) 0.686242 0.727374i 0.686242 0.727374i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −0.0890830 + 0.0747496i −0.0890830 + 0.0747496i −0.686242 0.727374i \(-0.740741\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(968\) −0.939693 0.342020i −0.939693 0.342020i
\(969\) 0 0
\(970\) 0 0
\(971\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(972\) −0.993238 + 0.116093i −0.993238 + 0.116093i
\(973\) −2.67098 −2.67098
\(974\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(975\) 0.168886 + 0.391521i 0.168886 + 0.391521i
\(976\) 0 0
\(977\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −0.527715 + 0.914030i −0.527715 + 0.914030i
\(981\) −1.22650 + 1.30001i −1.22650 + 1.30001i
\(982\) 0.835488 + 1.44711i 0.835488 + 1.44711i
\(983\) 0.606829 + 0.509190i 0.606829 + 0.509190i 0.893633 0.448799i \(-0.148148\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(984\) 0 0
\(985\) −0.284641 1.61428i −0.284641 1.61428i
\(986\) 0 0
\(987\) −2.19207 1.10090i −2.19207 1.10090i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) 1.76604 0.642788i 1.76604 0.642788i
\(993\) 0 0
\(994\) −2.04609 + 1.71687i −2.04609 + 1.71687i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(998\) 0 0
\(999\) 0.137557 + 0.780125i 0.137557 + 0.780125i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2808.1.fi.a.2131.2 18
8.3 odd 2 2808.1.fi.b.2131.2 yes 18
13.12 even 2 2808.1.fi.b.2131.2 yes 18
27.13 even 9 inner 2808.1.fi.a.2443.2 yes 18
104.51 odd 2 CM 2808.1.fi.a.2131.2 18
216.67 odd 18 2808.1.fi.b.2443.2 yes 18
351.337 even 18 2808.1.fi.b.2443.2 yes 18
2808.2443 odd 18 inner 2808.1.fi.a.2443.2 yes 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2808.1.fi.a.2131.2 18 1.1 even 1 trivial
2808.1.fi.a.2131.2 18 104.51 odd 2 CM
2808.1.fi.a.2443.2 yes 18 27.13 even 9 inner
2808.1.fi.a.2443.2 yes 18 2808.2443 odd 18 inner
2808.1.fi.b.2131.2 yes 18 8.3 odd 2
2808.1.fi.b.2131.2 yes 18 13.12 even 2
2808.1.fi.b.2443.2 yes 18 216.67 odd 18
2808.1.fi.b.2443.2 yes 18 351.337 even 18