Properties

Label 280.4.q.c.81.1
Level $280$
Weight $4$
Character 280.81
Analytic conductor $16.521$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [280,4,Mod(81,280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("280.81"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(280, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 280.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.5205348016\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 97 x^{10} + 136 x^{9} + 6932 x^{8} + 7120 x^{7} + 190192 x^{6} + 97856 x^{5} + \cdots + 199148544 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 81.1
Root \(4.47849 + 7.75697i\) of defining polynomial
Character \(\chi\) \(=\) 280.81
Dual form 280.4.q.c.121.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.97849 + 8.62300i) q^{3} +(2.50000 + 4.33013i) q^{5} +(-14.6186 + 11.3709i) q^{7} +(-36.0707 - 62.4763i) q^{9} +(15.1914 - 26.3123i) q^{11} -55.7969 q^{13} -49.7849 q^{15} +(5.96029 - 10.3235i) q^{17} +(0.763290 + 1.32206i) q^{19} +(-25.2724 - 182.666i) q^{21} +(81.2906 + 140.800i) q^{23} +(-12.5000 + 21.6506i) q^{25} +449.472 q^{27} -127.122 q^{29} +(27.4919 - 47.6174i) q^{31} +(151.261 + 261.991i) q^{33} +(-85.7838 - 34.8732i) q^{35} +(-195.695 - 338.954i) q^{37} +(277.784 - 481.136i) q^{39} +353.749 q^{41} -277.674 q^{43} +(180.354 - 312.382i) q^{45} +(208.852 + 361.742i) q^{47} +(84.4069 - 332.452i) q^{49} +(59.3465 + 102.791i) q^{51} +(262.824 - 455.225i) q^{53} +151.914 q^{55} -15.2001 q^{57} +(250.925 - 434.614i) q^{59} +(250.034 + 433.072i) q^{61} +(1237.71 + 503.161i) q^{63} +(-139.492 - 241.608i) q^{65} +(-33.8545 + 58.6377i) q^{67} -1618.82 q^{69} -911.524 q^{71} +(31.2672 - 54.1565i) q^{73} +(-124.462 - 215.575i) q^{75} +(77.1164 + 557.389i) q^{77} +(-305.767 - 529.604i) q^{79} +(-1263.78 + 2188.94i) q^{81} -1000.22 q^{83} +59.6029 q^{85} +(632.876 - 1096.17i) q^{87} +(-581.616 - 1007.39i) q^{89} +(815.672 - 634.459i) q^{91} +(273.737 + 474.126i) q^{93} +(-3.81645 + 6.61029i) q^{95} -1156.69 q^{97} -2191.86 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 7 q^{3} + 30 q^{5} - q^{7} - 39 q^{9} + 51 q^{11} - 54 q^{13} - 70 q^{15} - 6 q^{17} - 9 q^{19} + 123 q^{21} + 72 q^{23} - 150 q^{25} + 1118 q^{27} - 242 q^{29} - 132 q^{31} + 156 q^{33} - 115 q^{35}+ \cdots - 6978 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/280\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(141\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.97849 + 8.62300i −0.958111 + 1.65950i −0.231027 + 0.972947i \(0.574209\pi\)
−0.727083 + 0.686549i \(0.759125\pi\)
\(4\) 0 0
\(5\) 2.50000 + 4.33013i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) −14.6186 + 11.3709i −0.789330 + 0.613969i
\(8\) 0 0
\(9\) −36.0707 62.4763i −1.33595 2.31394i
\(10\) 0 0
\(11\) 15.1914 26.3123i 0.416399 0.721224i −0.579175 0.815203i \(-0.696625\pi\)
0.995574 + 0.0939792i \(0.0299587\pi\)
\(12\) 0 0
\(13\) −55.7969 −1.19041 −0.595203 0.803576i \(-0.702928\pi\)
−0.595203 + 0.803576i \(0.702928\pi\)
\(14\) 0 0
\(15\) −49.7849 −0.856960
\(16\) 0 0
\(17\) 5.96029 10.3235i 0.0850343 0.147284i −0.820372 0.571831i \(-0.806233\pi\)
0.905406 + 0.424547i \(0.139567\pi\)
\(18\) 0 0
\(19\) 0.763290 + 1.32206i 0.00921636 + 0.0159632i 0.870597 0.491997i \(-0.163733\pi\)
−0.861380 + 0.507960i \(0.830400\pi\)
\(20\) 0 0
\(21\) −25.2724 182.666i −0.262614 1.89814i
\(22\) 0 0
\(23\) 81.2906 + 140.800i 0.736968 + 1.27647i 0.953854 + 0.300270i \(0.0970767\pi\)
−0.216886 + 0.976197i \(0.569590\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 449.472 3.20374
\(28\) 0 0
\(29\) −127.122 −0.813999 −0.407000 0.913428i \(-0.633425\pi\)
−0.407000 + 0.913428i \(0.633425\pi\)
\(30\) 0 0
\(31\) 27.4919 47.6174i 0.159281 0.275882i −0.775329 0.631558i \(-0.782416\pi\)
0.934609 + 0.355676i \(0.115749\pi\)
\(32\) 0 0
\(33\) 151.261 + 261.991i 0.797912 + 1.38202i
\(34\) 0 0
\(35\) −85.7838 34.8732i −0.414289 0.168419i
\(36\) 0 0
\(37\) −195.695 338.954i −0.869515 1.50604i −0.862493 0.506068i \(-0.831098\pi\)
−0.00702125 0.999975i \(-0.502235\pi\)
\(38\) 0 0
\(39\) 277.784 481.136i 1.14054 1.97547i
\(40\) 0 0
\(41\) 353.749 1.34747 0.673736 0.738973i \(-0.264689\pi\)
0.673736 + 0.738973i \(0.264689\pi\)
\(42\) 0 0
\(43\) −277.674 −0.984765 −0.492382 0.870379i \(-0.663874\pi\)
−0.492382 + 0.870379i \(0.663874\pi\)
\(44\) 0 0
\(45\) 180.354 312.382i 0.597456 1.03482i
\(46\) 0 0
\(47\) 208.852 + 361.742i 0.648174 + 1.12267i 0.983559 + 0.180589i \(0.0578002\pi\)
−0.335385 + 0.942081i \(0.608866\pi\)
\(48\) 0 0
\(49\) 84.4069 332.452i 0.246084 0.969248i
\(50\) 0 0
\(51\) 59.3465 + 102.791i 0.162945 + 0.282228i
\(52\) 0 0
\(53\) 262.824 455.225i 0.681164 1.17981i −0.293462 0.955971i \(-0.594808\pi\)
0.974626 0.223840i \(-0.0718592\pi\)
\(54\) 0 0
\(55\) 151.914 0.372438
\(56\) 0 0
\(57\) −15.2001 −0.0353212
\(58\) 0 0
\(59\) 250.925 434.614i 0.553688 0.959016i −0.444316 0.895870i \(-0.646553\pi\)
0.998004 0.0631458i \(-0.0201133\pi\)
\(60\) 0 0
\(61\) 250.034 + 433.072i 0.524813 + 0.909003i 0.999583 + 0.0288929i \(0.00919816\pi\)
−0.474769 + 0.880110i \(0.657469\pi\)
\(62\) 0 0
\(63\) 1237.71 + 503.161i 2.47519 + 1.00623i
\(64\) 0 0
\(65\) −139.492 241.608i −0.266183 0.461042i
\(66\) 0 0
\(67\) −33.8545 + 58.6377i −0.0617311 + 0.106921i −0.895239 0.445586i \(-0.852995\pi\)
0.833508 + 0.552507i \(0.186329\pi\)
\(68\) 0 0
\(69\) −1618.82 −2.82439
\(70\) 0 0
\(71\) −911.524 −1.52363 −0.761817 0.647793i \(-0.775692\pi\)
−0.761817 + 0.647793i \(0.775692\pi\)
\(72\) 0 0
\(73\) 31.2672 54.1565i 0.0501309 0.0868292i −0.839871 0.542786i \(-0.817369\pi\)
0.890002 + 0.455957i \(0.150703\pi\)
\(74\) 0 0
\(75\) −124.462 215.575i −0.191622 0.331899i
\(76\) 0 0
\(77\) 77.1164 + 557.389i 0.114133 + 0.824940i
\(78\) 0 0
\(79\) −305.767 529.604i −0.435462 0.754243i 0.561871 0.827225i \(-0.310082\pi\)
−0.997333 + 0.0729823i \(0.976748\pi\)
\(80\) 0 0
\(81\) −1263.78 + 2188.94i −1.73359 + 3.00266i
\(82\) 0 0
\(83\) −1000.22 −1.32275 −0.661376 0.750055i \(-0.730027\pi\)
−0.661376 + 0.750055i \(0.730027\pi\)
\(84\) 0 0
\(85\) 59.6029 0.0760570
\(86\) 0 0
\(87\) 632.876 1096.17i 0.779902 1.35083i
\(88\) 0 0
\(89\) −581.616 1007.39i −0.692710 1.19981i −0.970947 0.239296i \(-0.923083\pi\)
0.278237 0.960513i \(-0.410250\pi\)
\(90\) 0 0
\(91\) 815.672 634.459i 0.939623 0.730872i
\(92\) 0 0
\(93\) 273.737 + 474.126i 0.305217 + 0.528651i
\(94\) 0 0
\(95\) −3.81645 + 6.61029i −0.00412168 + 0.00713896i
\(96\) 0 0
\(97\) −1156.69 −1.21077 −0.605383 0.795934i \(-0.706980\pi\)
−0.605383 + 0.795934i \(0.706980\pi\)
\(98\) 0 0
\(99\) −2191.86 −2.22516
\(100\) 0 0
\(101\) −34.8155 + 60.3023i −0.0342998 + 0.0594089i −0.882666 0.470001i \(-0.844253\pi\)
0.848366 + 0.529410i \(0.177587\pi\)
\(102\) 0 0
\(103\) 133.433 + 231.112i 0.127646 + 0.221089i 0.922764 0.385365i \(-0.125925\pi\)
−0.795118 + 0.606454i \(0.792591\pi\)
\(104\) 0 0
\(105\) 727.785 566.097i 0.676425 0.526147i
\(106\) 0 0
\(107\) −279.224 483.630i −0.252277 0.436956i 0.711876 0.702306i \(-0.247846\pi\)
−0.964152 + 0.265350i \(0.914513\pi\)
\(108\) 0 0
\(109\) −726.096 + 1257.64i −0.638049 + 1.10513i 0.347811 + 0.937565i \(0.386925\pi\)
−0.985860 + 0.167569i \(0.946408\pi\)
\(110\) 0 0
\(111\) 3897.06 3.33237
\(112\) 0 0
\(113\) −222.168 −0.184954 −0.0924769 0.995715i \(-0.529478\pi\)
−0.0924769 + 0.995715i \(0.529478\pi\)
\(114\) 0 0
\(115\) −406.453 + 703.998i −0.329582 + 0.570853i
\(116\) 0 0
\(117\) 2012.63 + 3485.98i 1.59033 + 2.75452i
\(118\) 0 0
\(119\) 30.2563 + 218.689i 0.0233075 + 0.168464i
\(120\) 0 0
\(121\) 203.941 + 353.237i 0.153224 + 0.265392i
\(122\) 0 0
\(123\) −1761.14 + 3050.38i −1.29103 + 2.23612i
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 1150.70 0.804002 0.402001 0.915639i \(-0.368315\pi\)
0.402001 + 0.915639i \(0.368315\pi\)
\(128\) 0 0
\(129\) 1382.40 2394.38i 0.943514 1.63421i
\(130\) 0 0
\(131\) −785.481 1360.49i −0.523877 0.907381i −0.999614 0.0277934i \(-0.991152\pi\)
0.475737 0.879588i \(-0.342181\pi\)
\(132\) 0 0
\(133\) −26.1912 10.6474i −0.0170757 0.00694168i
\(134\) 0 0
\(135\) 1123.68 + 1946.27i 0.716378 + 1.24080i
\(136\) 0 0
\(137\) 1324.19 2293.57i 0.825792 1.43031i −0.0755201 0.997144i \(-0.524062\pi\)
0.901312 0.433170i \(-0.142605\pi\)
\(138\) 0 0
\(139\) −792.411 −0.483536 −0.241768 0.970334i \(-0.577727\pi\)
−0.241768 + 0.970334i \(0.577727\pi\)
\(140\) 0 0
\(141\) −4159.07 −2.48409
\(142\) 0 0
\(143\) −847.634 + 1468.15i −0.495683 + 0.858549i
\(144\) 0 0
\(145\) −317.805 550.455i −0.182016 0.315261i
\(146\) 0 0
\(147\) 2446.52 + 2382.95i 1.37269 + 1.33702i
\(148\) 0 0
\(149\) 28.5451 + 49.4416i 0.0156947 + 0.0271840i 0.873766 0.486346i \(-0.161671\pi\)
−0.858071 + 0.513530i \(0.828337\pi\)
\(150\) 0 0
\(151\) 827.925 1434.01i 0.446196 0.772834i −0.551939 0.833885i \(-0.686112\pi\)
0.998135 + 0.0610507i \(0.0194451\pi\)
\(152\) 0 0
\(153\) −859.968 −0.454407
\(154\) 0 0
\(155\) 274.919 0.142465
\(156\) 0 0
\(157\) 1620.35 2806.53i 0.823682 1.42666i −0.0792397 0.996856i \(-0.525249\pi\)
0.902922 0.429804i \(-0.141417\pi\)
\(158\) 0 0
\(159\) 2616.93 + 4532.66i 1.30526 + 2.26078i
\(160\) 0 0
\(161\) −2789.37 1133.95i −1.36542 0.555078i
\(162\) 0 0
\(163\) −1427.90 2473.20i −0.686146 1.18844i −0.973075 0.230488i \(-0.925968\pi\)
0.286929 0.957952i \(-0.407366\pi\)
\(164\) 0 0
\(165\) −756.303 + 1309.96i −0.356837 + 0.618060i
\(166\) 0 0
\(167\) −1995.53 −0.924664 −0.462332 0.886707i \(-0.652987\pi\)
−0.462332 + 0.886707i \(0.652987\pi\)
\(168\) 0 0
\(169\) 916.292 0.417065
\(170\) 0 0
\(171\) 55.0649 95.3751i 0.0246252 0.0426522i
\(172\) 0 0
\(173\) −1126.54 1951.22i −0.495081 0.857505i 0.504903 0.863176i \(-0.331528\pi\)
−0.999984 + 0.00567069i \(0.998195\pi\)
\(174\) 0 0
\(175\) −63.4539 458.638i −0.0274095 0.198113i
\(176\) 0 0
\(177\) 2498.45 + 4327.44i 1.06099 + 1.83769i
\(178\) 0 0
\(179\) −948.530 + 1642.90i −0.396070 + 0.686013i −0.993237 0.116104i \(-0.962959\pi\)
0.597167 + 0.802117i \(0.296293\pi\)
\(180\) 0 0
\(181\) 2780.22 1.14173 0.570863 0.821045i \(-0.306609\pi\)
0.570863 + 0.821045i \(0.306609\pi\)
\(182\) 0 0
\(183\) −4979.17 −2.01132
\(184\) 0 0
\(185\) 978.474 1694.77i 0.388859 0.673523i
\(186\) 0 0
\(187\) −181.091 313.658i −0.0708164 0.122658i
\(188\) 0 0
\(189\) −6570.66 + 5110.89i −2.52881 + 1.96700i
\(190\) 0 0
\(191\) −87.3933 151.370i −0.0331076 0.0573441i 0.848997 0.528398i \(-0.177207\pi\)
−0.882104 + 0.471054i \(0.843874\pi\)
\(192\) 0 0
\(193\) 978.642 1695.06i 0.364996 0.632191i −0.623780 0.781600i \(-0.714404\pi\)
0.988775 + 0.149409i \(0.0477371\pi\)
\(194\) 0 0
\(195\) 2777.84 1.02013
\(196\) 0 0
\(197\) −3545.05 −1.28210 −0.641051 0.767498i \(-0.721501\pi\)
−0.641051 + 0.767498i \(0.721501\pi\)
\(198\) 0 0
\(199\) −1386.75 + 2401.92i −0.493990 + 0.855616i −0.999976 0.00692602i \(-0.997795\pi\)
0.505986 + 0.862542i \(0.331129\pi\)
\(200\) 0 0
\(201\) −337.088 583.854i −0.118290 0.204885i
\(202\) 0 0
\(203\) 1858.35 1445.49i 0.642514 0.499770i
\(204\) 0 0
\(205\) 884.373 + 1531.78i 0.301304 + 0.521873i
\(206\) 0 0
\(207\) 5864.42 10157.5i 1.96911 3.41060i
\(208\) 0 0
\(209\) 46.3819 0.0153507
\(210\) 0 0
\(211\) −4157.59 −1.35650 −0.678248 0.734833i \(-0.737260\pi\)
−0.678248 + 0.734833i \(0.737260\pi\)
\(212\) 0 0
\(213\) 4538.01 7860.07i 1.45981 2.52846i
\(214\) 0 0
\(215\) −694.185 1202.36i −0.220200 0.381398i
\(216\) 0 0
\(217\) 139.558 + 1008.71i 0.0436580 + 0.315555i
\(218\) 0 0
\(219\) 311.327 + 539.235i 0.0960619 + 0.166384i
\(220\) 0 0
\(221\) −332.566 + 576.021i −0.101225 + 0.175327i
\(222\) 0 0
\(223\) −395.045 −0.118629 −0.0593143 0.998239i \(-0.518891\pi\)
−0.0593143 + 0.998239i \(0.518891\pi\)
\(224\) 0 0
\(225\) 1803.54 0.534381
\(226\) 0 0
\(227\) −2774.03 + 4804.77i −0.811097 + 1.40486i 0.101000 + 0.994886i \(0.467796\pi\)
−0.912097 + 0.409975i \(0.865538\pi\)
\(228\) 0 0
\(229\) −1197.02 2073.29i −0.345420 0.598284i 0.640010 0.768366i \(-0.278930\pi\)
−0.985430 + 0.170082i \(0.945597\pi\)
\(230\) 0 0
\(231\) −5190.28 2109.98i −1.47834 0.600980i
\(232\) 0 0
\(233\) −90.7583 157.198i −0.0255183 0.0441991i 0.852984 0.521937i \(-0.174790\pi\)
−0.878503 + 0.477738i \(0.841457\pi\)
\(234\) 0 0
\(235\) −1044.26 + 1808.71i −0.289872 + 0.502073i
\(236\) 0 0
\(237\) 6089.04 1.66888
\(238\) 0 0
\(239\) −1950.99 −0.528029 −0.264015 0.964519i \(-0.585047\pi\)
−0.264015 + 0.964519i \(0.585047\pi\)
\(240\) 0 0
\(241\) 686.491 1189.04i 0.183489 0.317812i −0.759577 0.650417i \(-0.774594\pi\)
0.943066 + 0.332605i \(0.107928\pi\)
\(242\) 0 0
\(243\) −6515.59 11285.3i −1.72006 2.97924i
\(244\) 0 0
\(245\) 1650.58 465.638i 0.430414 0.121422i
\(246\) 0 0
\(247\) −42.5892 73.7667i −0.0109712 0.0190027i
\(248\) 0 0
\(249\) 4979.58 8624.89i 1.26734 2.19510i
\(250\) 0 0
\(251\) −1123.75 −0.282590 −0.141295 0.989968i \(-0.545127\pi\)
−0.141295 + 0.989968i \(0.545127\pi\)
\(252\) 0 0
\(253\) 4939.68 1.22749
\(254\) 0 0
\(255\) −296.733 + 513.956i −0.0728710 + 0.126216i
\(256\) 0 0
\(257\) 2058.81 + 3565.97i 0.499709 + 0.865522i 1.00000 0.000335900i \(-0.000106920\pi\)
−0.500291 + 0.865857i \(0.666774\pi\)
\(258\) 0 0
\(259\) 6714.98 + 2729.81i 1.61100 + 0.654911i
\(260\) 0 0
\(261\) 4585.39 + 7942.12i 1.08746 + 1.88354i
\(262\) 0 0
\(263\) 740.525 1282.63i 0.173622 0.300723i −0.766061 0.642768i \(-0.777786\pi\)
0.939684 + 0.342045i \(0.111119\pi\)
\(264\) 0 0
\(265\) 2628.24 0.609251
\(266\) 0 0
\(267\) 11582.3 2.65477
\(268\) 0 0
\(269\) −2123.18 + 3677.45i −0.481236 + 0.833526i −0.999768 0.0215327i \(-0.993145\pi\)
0.518532 + 0.855058i \(0.326479\pi\)
\(270\) 0 0
\(271\) −723.730 1253.54i −0.162227 0.280985i 0.773440 0.633869i \(-0.218534\pi\)
−0.935667 + 0.352884i \(0.885201\pi\)
\(272\) 0 0
\(273\) 1410.12 + 10192.2i 0.312617 + 2.25956i
\(274\) 0 0
\(275\) 379.786 + 657.808i 0.0832797 + 0.144245i
\(276\) 0 0
\(277\) −2170.34 + 3759.14i −0.470770 + 0.815397i −0.999441 0.0334294i \(-0.989357\pi\)
0.528671 + 0.848827i \(0.322690\pi\)
\(278\) 0 0
\(279\) −3966.62 −0.851165
\(280\) 0 0
\(281\) 7100.71 1.50745 0.753724 0.657191i \(-0.228256\pi\)
0.753724 + 0.657191i \(0.228256\pi\)
\(282\) 0 0
\(283\) 1225.40 2122.45i 0.257393 0.445818i −0.708150 0.706062i \(-0.750470\pi\)
0.965543 + 0.260244i \(0.0838031\pi\)
\(284\) 0 0
\(285\) −38.0003 65.8185i −0.00789805 0.0136798i
\(286\) 0 0
\(287\) −5171.32 + 4022.43i −1.06360 + 0.827305i
\(288\) 0 0
\(289\) 2385.45 + 4131.72i 0.485538 + 0.840977i
\(290\) 0 0
\(291\) 5758.58 9974.16i 1.16005 2.00926i
\(292\) 0 0
\(293\) −3817.63 −0.761188 −0.380594 0.924742i \(-0.624280\pi\)
−0.380594 + 0.924742i \(0.624280\pi\)
\(294\) 0 0
\(295\) 2509.25 0.495234
\(296\) 0 0
\(297\) 6828.12 11826.7i 1.33403 2.31061i
\(298\) 0 0
\(299\) −4535.76 7856.18i −0.877291 1.51951i
\(300\) 0 0
\(301\) 4059.20 3157.39i 0.777305 0.604615i
\(302\) 0 0
\(303\) −346.658 600.429i −0.0657259 0.113841i
\(304\) 0 0
\(305\) −1250.17 + 2165.36i −0.234704 + 0.406519i
\(306\) 0 0
\(307\) 6749.01 1.25468 0.627339 0.778746i \(-0.284144\pi\)
0.627339 + 0.778746i \(0.284144\pi\)
\(308\) 0 0
\(309\) −2657.17 −0.489195
\(310\) 0 0
\(311\) −1357.38 + 2351.05i −0.247491 + 0.428668i −0.962829 0.270111i \(-0.912940\pi\)
0.715338 + 0.698779i \(0.246273\pi\)
\(312\) 0 0
\(313\) −4065.03 7040.83i −0.734086 1.27147i −0.955123 0.296208i \(-0.904278\pi\)
0.221038 0.975265i \(-0.429056\pi\)
\(314\) 0 0
\(315\) 915.531 + 6617.36i 0.163760 + 1.18364i
\(316\) 0 0
\(317\) −3539.48 6130.56i −0.627120 1.08620i −0.988127 0.153641i \(-0.950900\pi\)
0.361007 0.932563i \(-0.382433\pi\)
\(318\) 0 0
\(319\) −1931.17 + 3344.88i −0.338948 + 0.587076i
\(320\) 0 0
\(321\) 5560.46 0.966836
\(322\) 0 0
\(323\) 18.1977 0.00313483
\(324\) 0 0
\(325\) 697.461 1208.04i 0.119041 0.206184i
\(326\) 0 0
\(327\) −7229.72 12522.2i −1.22264 2.11768i
\(328\) 0 0
\(329\) −7166.44 2913.33i −1.20091 0.488199i
\(330\) 0 0
\(331\) 2049.92 + 3550.57i 0.340405 + 0.589599i 0.984508 0.175340i \(-0.0561025\pi\)
−0.644103 + 0.764939i \(0.722769\pi\)
\(332\) 0 0
\(333\) −14117.7 + 24452.6i −2.32326 + 4.02401i
\(334\) 0 0
\(335\) −338.545 −0.0552140
\(336\) 0 0
\(337\) −4437.71 −0.717322 −0.358661 0.933468i \(-0.616767\pi\)
−0.358661 + 0.933468i \(0.616767\pi\)
\(338\) 0 0
\(339\) 1106.06 1915.75i 0.177206 0.306930i
\(340\) 0 0
\(341\) −835.283 1446.75i −0.132648 0.229754i
\(342\) 0 0
\(343\) 2546.36 + 5819.77i 0.400847 + 0.916145i
\(344\) 0 0
\(345\) −4047.05 7009.69i −0.631553 1.09388i
\(346\) 0 0
\(347\) −2223.43 + 3851.09i −0.343976 + 0.595784i −0.985167 0.171597i \(-0.945107\pi\)
0.641191 + 0.767381i \(0.278441\pi\)
\(348\) 0 0
\(349\) 3197.13 0.490368 0.245184 0.969477i \(-0.421152\pi\)
0.245184 + 0.969477i \(0.421152\pi\)
\(350\) 0 0
\(351\) −25079.2 −3.81375
\(352\) 0 0
\(353\) −4381.97 + 7589.79i −0.660704 + 1.14437i 0.319727 + 0.947510i \(0.396409\pi\)
−0.980431 + 0.196863i \(0.936924\pi\)
\(354\) 0 0
\(355\) −2278.81 3947.01i −0.340695 0.590101i
\(356\) 0 0
\(357\) −2036.39 827.842i −0.301897 0.122728i
\(358\) 0 0
\(359\) 5970.87 + 10341.9i 0.877801 + 1.52040i 0.853748 + 0.520686i \(0.174324\pi\)
0.0240532 + 0.999711i \(0.492343\pi\)
\(360\) 0 0
\(361\) 3428.33 5938.05i 0.499830 0.865731i
\(362\) 0 0
\(363\) −4061.28 −0.587223
\(364\) 0 0
\(365\) 312.672 0.0448384
\(366\) 0 0
\(367\) −5205.05 + 9015.40i −0.740330 + 1.28229i 0.212015 + 0.977266i \(0.431997\pi\)
−0.952345 + 0.305023i \(0.901336\pi\)
\(368\) 0 0
\(369\) −12760.0 22100.9i −1.80016 3.11796i
\(370\) 0 0
\(371\) 1334.18 + 9643.29i 0.186704 + 1.34947i
\(372\) 0 0
\(373\) 2188.64 + 3790.84i 0.303817 + 0.526226i 0.976997 0.213252i \(-0.0684056\pi\)
−0.673180 + 0.739478i \(0.735072\pi\)
\(374\) 0 0
\(375\) 622.311 1077.87i 0.0856960 0.148430i
\(376\) 0 0
\(377\) 7093.02 0.968989
\(378\) 0 0
\(379\) −6769.37 −0.917466 −0.458733 0.888574i \(-0.651696\pi\)
−0.458733 + 0.888574i \(0.651696\pi\)
\(380\) 0 0
\(381\) −5728.75 + 9922.49i −0.770323 + 1.33424i
\(382\) 0 0
\(383\) 3168.12 + 5487.34i 0.422671 + 0.732088i 0.996200 0.0870974i \(-0.0277591\pi\)
−0.573528 + 0.819186i \(0.694426\pi\)
\(384\) 0 0
\(385\) −2220.77 + 1727.40i −0.293977 + 0.228666i
\(386\) 0 0
\(387\) 10015.9 + 17348.0i 1.31560 + 2.27868i
\(388\) 0 0
\(389\) 4113.64 7125.04i 0.536169 0.928673i −0.462936 0.886392i \(-0.653204\pi\)
0.999106 0.0422812i \(-0.0134625\pi\)
\(390\) 0 0
\(391\) 1938.06 0.250670
\(392\) 0 0
\(393\) 15642.0 2.00773
\(394\) 0 0
\(395\) 1528.84 2648.02i 0.194745 0.337308i
\(396\) 0 0
\(397\) 6927.43 + 11998.7i 0.875762 + 1.51686i 0.855949 + 0.517061i \(0.172974\pi\)
0.0198135 + 0.999804i \(0.493693\pi\)
\(398\) 0 0
\(399\) 222.205 172.839i 0.0278801 0.0216861i
\(400\) 0 0
\(401\) −6372.45 11037.4i −0.793578 1.37452i −0.923738 0.383025i \(-0.874882\pi\)
0.130160 0.991493i \(-0.458451\pi\)
\(402\) 0 0
\(403\) −1533.96 + 2656.90i −0.189609 + 0.328412i
\(404\) 0 0
\(405\) −12637.8 −1.55057
\(406\) 0 0
\(407\) −11891.5 −1.44826
\(408\) 0 0
\(409\) −3879.64 + 6719.73i −0.469036 + 0.812395i −0.999374 0.0353922i \(-0.988732\pi\)
0.530337 + 0.847787i \(0.322065\pi\)
\(410\) 0 0
\(411\) 13185.0 + 22837.0i 1.58240 + 2.74080i
\(412\) 0 0
\(413\) 1273.77 + 9206.68i 0.151763 + 1.09693i
\(414\) 0 0
\(415\) −2500.55 4331.08i −0.295776 0.512299i
\(416\) 0 0
\(417\) 3945.01 6832.96i 0.463281 0.802426i
\(418\) 0 0
\(419\) 1712.84 0.199709 0.0998544 0.995002i \(-0.468162\pi\)
0.0998544 + 0.995002i \(0.468162\pi\)
\(420\) 0 0
\(421\) 1553.04 0.179788 0.0898939 0.995951i \(-0.471347\pi\)
0.0898939 + 0.995951i \(0.471347\pi\)
\(422\) 0 0
\(423\) 15066.9 26096.6i 1.73186 2.99967i
\(424\) 0 0
\(425\) 149.007 + 258.088i 0.0170069 + 0.0294568i
\(426\) 0 0
\(427\) −8579.55 3487.80i −0.972351 0.395285i
\(428\) 0 0
\(429\) −8439.87 14618.3i −0.949839 1.64517i
\(430\) 0 0
\(431\) 7469.97 12938.4i 0.834839 1.44598i −0.0593219 0.998239i \(-0.518894\pi\)
0.894161 0.447745i \(-0.147773\pi\)
\(432\) 0 0
\(433\) 2455.23 0.272496 0.136248 0.990675i \(-0.456496\pi\)
0.136248 + 0.990675i \(0.456496\pi\)
\(434\) 0 0
\(435\) 6328.76 0.697565
\(436\) 0 0
\(437\) −124.097 + 214.942i −0.0135843 + 0.0235288i
\(438\) 0 0
\(439\) 6273.79 + 10866.5i 0.682077 + 1.18139i 0.974346 + 0.225056i \(0.0722563\pi\)
−0.292269 + 0.956336i \(0.594410\pi\)
\(440\) 0 0
\(441\) −23815.0 + 6718.36i −2.57154 + 0.725446i
\(442\) 0 0
\(443\) −269.287 466.419i −0.0288809 0.0500231i 0.851224 0.524803i \(-0.175861\pi\)
−0.880105 + 0.474780i \(0.842528\pi\)
\(444\) 0 0
\(445\) 2908.08 5036.94i 0.309789 0.536571i
\(446\) 0 0
\(447\) −568.447 −0.0601490
\(448\) 0 0
\(449\) −9933.89 −1.04412 −0.522059 0.852909i \(-0.674836\pi\)
−0.522059 + 0.852909i \(0.674836\pi\)
\(450\) 0 0
\(451\) 5373.95 9307.96i 0.561085 0.971828i
\(452\) 0 0
\(453\) 8243.63 + 14278.4i 0.855010 + 1.48092i
\(454\) 0 0
\(455\) 4786.47 + 1945.82i 0.493172 + 0.200486i
\(456\) 0 0
\(457\) 6948.68 + 12035.5i 0.711260 + 1.23194i 0.964385 + 0.264504i \(0.0852083\pi\)
−0.253125 + 0.967434i \(0.581458\pi\)
\(458\) 0 0
\(459\) 2678.99 4640.14i 0.272428 0.471859i
\(460\) 0 0
\(461\) −6849.65 −0.692018 −0.346009 0.938231i \(-0.612463\pi\)
−0.346009 + 0.938231i \(0.612463\pi\)
\(462\) 0 0
\(463\) 8062.80 0.809309 0.404654 0.914470i \(-0.367392\pi\)
0.404654 + 0.914470i \(0.367392\pi\)
\(464\) 0 0
\(465\) −1368.68 + 2370.63i −0.136497 + 0.236420i
\(466\) 0 0
\(467\) 2442.23 + 4230.06i 0.241997 + 0.419152i 0.961283 0.275563i \(-0.0888641\pi\)
−0.719286 + 0.694714i \(0.755531\pi\)
\(468\) 0 0
\(469\) −171.856 1242.16i −0.0169202 0.122297i
\(470\) 0 0
\(471\) 16133.8 + 27944.6i 1.57836 + 2.73380i
\(472\) 0 0
\(473\) −4218.26 + 7306.24i −0.410055 + 0.710236i
\(474\) 0 0
\(475\) −38.1645 −0.00368654
\(476\) 0 0
\(477\) −37921.0 −3.64001
\(478\) 0 0
\(479\) −4024.76 + 6971.09i −0.383916 + 0.664963i −0.991618 0.129202i \(-0.958758\pi\)
0.607702 + 0.794165i \(0.292092\pi\)
\(480\) 0 0
\(481\) 10919.2 + 18912.5i 1.03508 + 1.79280i
\(482\) 0 0
\(483\) 23664.9 18407.4i 2.22938 1.73409i
\(484\) 0 0
\(485\) −2891.73 5008.63i −0.270736 0.468928i
\(486\) 0 0
\(487\) 1555.23 2693.74i 0.144711 0.250647i −0.784554 0.620060i \(-0.787108\pi\)
0.929265 + 0.369413i \(0.120441\pi\)
\(488\) 0 0
\(489\) 28435.2 2.62962
\(490\) 0 0
\(491\) −5273.36 −0.484692 −0.242346 0.970190i \(-0.577917\pi\)
−0.242346 + 0.970190i \(0.577917\pi\)
\(492\) 0 0
\(493\) −757.685 + 1312.35i −0.0692179 + 0.119889i
\(494\) 0 0
\(495\) −5479.65 9491.04i −0.497560 0.861799i
\(496\) 0 0
\(497\) 13325.2 10364.8i 1.20265 0.935464i
\(498\) 0 0
\(499\) −6757.87 11705.0i −0.606260 1.05007i −0.991851 0.127403i \(-0.959336\pi\)
0.385591 0.922670i \(-0.373997\pi\)
\(500\) 0 0
\(501\) 9934.73 17207.5i 0.885930 1.53448i
\(502\) 0 0
\(503\) −9240.34 −0.819098 −0.409549 0.912288i \(-0.634314\pi\)
−0.409549 + 0.912288i \(0.634314\pi\)
\(504\) 0 0
\(505\) −348.155 −0.0306786
\(506\) 0 0
\(507\) −4561.75 + 7901.19i −0.399595 + 0.692118i
\(508\) 0 0
\(509\) 2060.04 + 3568.10i 0.179391 + 0.310714i 0.941672 0.336532i \(-0.109254\pi\)
−0.762281 + 0.647246i \(0.775921\pi\)
\(510\) 0 0
\(511\) 158.722 + 1147.23i 0.0137406 + 0.0993157i
\(512\) 0 0
\(513\) 343.078 + 594.228i 0.0295268 + 0.0511420i
\(514\) 0 0
\(515\) −667.163 + 1155.56i −0.0570849 + 0.0988740i
\(516\) 0 0
\(517\) 12691.0 1.07959
\(518\) 0 0
\(519\) 22433.8 1.89737
\(520\) 0 0
\(521\) 903.297 1564.56i 0.0759581 0.131563i −0.825544 0.564337i \(-0.809132\pi\)
0.901503 + 0.432774i \(0.142465\pi\)
\(522\) 0 0
\(523\) −9072.68 15714.3i −0.758548 1.31384i −0.943591 0.331113i \(-0.892576\pi\)
0.185044 0.982730i \(-0.440757\pi\)
\(524\) 0 0
\(525\) 4270.74 + 1736.16i 0.355029 + 0.144328i
\(526\) 0 0
\(527\) −327.720 567.628i −0.0270886 0.0469189i
\(528\) 0 0
\(529\) −7132.84 + 12354.4i −0.586245 + 1.01541i
\(530\) 0 0
\(531\) −36204.1 −2.95880
\(532\) 0 0
\(533\) −19738.1 −1.60404
\(534\) 0 0
\(535\) 1396.12 2418.15i 0.112822 0.195413i
\(536\) 0 0
\(537\) −9444.49 16358.3i −0.758957 1.31455i
\(538\) 0 0
\(539\) −7465.33 7271.36i −0.596576 0.581076i
\(540\) 0 0
\(541\) −9626.80 16674.1i −0.765043 1.32509i −0.940224 0.340557i \(-0.889384\pi\)
0.175181 0.984536i \(-0.443949\pi\)
\(542\) 0 0
\(543\) −13841.3 + 23973.9i −1.09390 + 1.89469i
\(544\) 0 0
\(545\) −7260.96 −0.570689
\(546\) 0 0
\(547\) −1410.94 −0.110288 −0.0551438 0.998478i \(-0.517562\pi\)
−0.0551438 + 0.998478i \(0.517562\pi\)
\(548\) 0 0
\(549\) 18037.8 31242.4i 1.40225 2.42877i
\(550\) 0 0
\(551\) −97.0311 168.063i −0.00750211 0.0129940i
\(552\) 0 0
\(553\) 10491.9 + 4265.24i 0.806805 + 0.327986i
\(554\) 0 0
\(555\) 9742.65 + 16874.8i 0.745140 + 1.29062i
\(556\) 0 0
\(557\) −11247.9 + 19481.9i −0.855635 + 1.48200i 0.0204195 + 0.999792i \(0.493500\pi\)
−0.876055 + 0.482212i \(0.839834\pi\)
\(558\) 0 0
\(559\) 15493.3 1.17227
\(560\) 0 0
\(561\) 3606.23 0.271400
\(562\) 0 0
\(563\) 1081.38 1873.01i 0.0809499 0.140209i −0.822708 0.568464i \(-0.807538\pi\)
0.903658 + 0.428254i \(0.140871\pi\)
\(564\) 0 0
\(565\) −555.419 962.014i −0.0413569 0.0716323i
\(566\) 0 0
\(567\) −6415.36 46369.5i −0.475167 3.43446i
\(568\) 0 0
\(569\) −2013.53 3487.53i −0.148351 0.256951i 0.782267 0.622943i \(-0.214063\pi\)
−0.930618 + 0.365992i \(0.880730\pi\)
\(570\) 0 0
\(571\) 8380.85 14516.1i 0.614234 1.06388i −0.376284 0.926504i \(-0.622798\pi\)
0.990518 0.137380i \(-0.0438682\pi\)
\(572\) 0 0
\(573\) 1740.35 0.126883
\(574\) 0 0
\(575\) −4064.53 −0.294787
\(576\) 0 0
\(577\) −5304.65 + 9187.92i −0.382730 + 0.662909i −0.991451 0.130476i \(-0.958350\pi\)
0.608721 + 0.793384i \(0.291683\pi\)
\(578\) 0 0
\(579\) 9744.32 + 16877.7i 0.699413 + 1.21142i
\(580\) 0 0
\(581\) 14621.8 11373.4i 1.04409 0.812128i
\(582\) 0 0
\(583\) −7985.35 13831.0i −0.567271 0.982543i
\(584\) 0 0
\(585\) −10063.2 + 17429.9i −0.711215 + 1.23186i
\(586\) 0 0
\(587\) −15740.8 −1.10680 −0.553402 0.832914i \(-0.686671\pi\)
−0.553402 + 0.832914i \(0.686671\pi\)
\(588\) 0 0
\(589\) 83.9374 0.00587195
\(590\) 0 0
\(591\) 17649.0 30568.9i 1.22840 2.12764i
\(592\) 0 0
\(593\) −8409.07 14564.9i −0.582326 1.00862i −0.995203 0.0978313i \(-0.968809\pi\)
0.412877 0.910787i \(-0.364524\pi\)
\(594\) 0 0
\(595\) −871.311 + 677.737i −0.0600341 + 0.0466966i
\(596\) 0 0
\(597\) −13807.8 23915.9i −0.946594 1.63955i
\(598\) 0 0
\(599\) −1172.11 + 2030.15i −0.0799517 + 0.138480i −0.903229 0.429159i \(-0.858810\pi\)
0.823277 + 0.567640i \(0.192143\pi\)
\(600\) 0 0
\(601\) 17128.4 1.16253 0.581265 0.813714i \(-0.302558\pi\)
0.581265 + 0.813714i \(0.302558\pi\)
\(602\) 0 0
\(603\) 4884.62 0.329879
\(604\) 0 0
\(605\) −1019.71 + 1766.18i −0.0685239 + 0.118687i
\(606\) 0 0
\(607\) −262.862 455.291i −0.0175770 0.0304443i 0.857103 0.515145i \(-0.172262\pi\)
−0.874680 + 0.484701i \(0.838929\pi\)
\(608\) 0 0
\(609\) 3212.68 + 23220.9i 0.213767 + 1.54509i
\(610\) 0 0
\(611\) −11653.3 20184.1i −0.771589 1.33643i
\(612\) 0 0
\(613\) −10194.9 + 17658.0i −0.671723 + 1.16346i 0.305692 + 0.952130i \(0.401112\pi\)
−0.977415 + 0.211328i \(0.932221\pi\)
\(614\) 0 0
\(615\) −17611.4 −1.15473
\(616\) 0 0
\(617\) −16815.3 −1.09718 −0.548589 0.836092i \(-0.684835\pi\)
−0.548589 + 0.836092i \(0.684835\pi\)
\(618\) 0 0
\(619\) −1552.53 + 2689.05i −0.100810 + 0.174608i −0.912019 0.410149i \(-0.865477\pi\)
0.811209 + 0.584757i \(0.198810\pi\)
\(620\) 0 0
\(621\) 36537.9 + 63285.5i 2.36105 + 4.08947i
\(622\) 0 0
\(623\) 19957.3 + 8113.13i 1.28342 + 0.521743i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) −230.912 + 399.951i −0.0147077 + 0.0254745i
\(628\) 0 0
\(629\) −4665.60 −0.295754
\(630\) 0 0
\(631\) 6729.19 0.424540 0.212270 0.977211i \(-0.431914\pi\)
0.212270 + 0.977211i \(0.431914\pi\)
\(632\) 0 0
\(633\) 20698.5 35850.9i 1.29967 2.25110i
\(634\) 0 0
\(635\) 2876.75 + 4982.68i 0.179780 + 0.311388i
\(636\) 0 0
\(637\) −4709.64 + 18549.8i −0.292940 + 1.15380i
\(638\) 0 0
\(639\) 32879.3 + 56948.6i 2.03550 + 3.52559i
\(640\) 0 0
\(641\) 13038.4 22583.1i 0.803407 1.39154i −0.113954 0.993486i \(-0.536352\pi\)
0.917361 0.398056i \(-0.130315\pi\)
\(642\) 0 0
\(643\) −13703.7 −0.840471 −0.420236 0.907415i \(-0.638053\pi\)
−0.420236 + 0.907415i \(0.638053\pi\)
\(644\) 0 0
\(645\) 13824.0 0.843904
\(646\) 0 0
\(647\) 6863.09 11887.2i 0.417026 0.722311i −0.578613 0.815603i \(-0.696406\pi\)
0.995639 + 0.0932918i \(0.0297390\pi\)
\(648\) 0 0
\(649\) −7623.80 13204.8i −0.461110 0.798666i
\(650\) 0 0
\(651\) −9392.87 3818.43i −0.565492 0.229887i
\(652\) 0 0
\(653\) −4348.59 7531.97i −0.260602 0.451376i 0.705800 0.708411i \(-0.250588\pi\)
−0.966402 + 0.257035i \(0.917254\pi\)
\(654\) 0 0
\(655\) 3927.41 6802.47i 0.234285 0.405793i
\(656\) 0 0
\(657\) −4511.33 −0.267890
\(658\) 0 0
\(659\) 21355.0 1.26233 0.631164 0.775650i \(-0.282578\pi\)
0.631164 + 0.775650i \(0.282578\pi\)
\(660\) 0 0
\(661\) −6789.56 + 11759.9i −0.399521 + 0.691990i −0.993667 0.112367i \(-0.964157\pi\)
0.594146 + 0.804357i \(0.297490\pi\)
\(662\) 0 0
\(663\) −3311.35 5735.43i −0.193970 0.335966i
\(664\) 0 0
\(665\) −19.3735 140.030i −0.00112973 0.00816558i
\(666\) 0 0
\(667\) −10333.8 17898.7i −0.599892 1.03904i
\(668\) 0 0
\(669\) 1966.73 3406.47i 0.113659 0.196864i
\(670\) 0 0
\(671\) 15193.5 0.874126
\(672\) 0 0
\(673\) 1852.25 0.106090 0.0530452 0.998592i \(-0.483107\pi\)
0.0530452 + 0.998592i \(0.483107\pi\)
\(674\) 0 0
\(675\) −5618.40 + 9731.36i −0.320374 + 0.554904i
\(676\) 0 0
\(677\) −4420.00 7655.67i −0.250922 0.434611i 0.712858 0.701309i \(-0.247401\pi\)
−0.963780 + 0.266698i \(0.914067\pi\)
\(678\) 0 0
\(679\) 16909.2 13152.6i 0.955695 0.743373i
\(680\) 0 0
\(681\) −27621.0 47840.9i −1.55424 2.69203i
\(682\) 0 0
\(683\) −3155.10 + 5464.79i −0.176759 + 0.306156i −0.940769 0.339049i \(-0.889895\pi\)
0.764009 + 0.645205i \(0.223228\pi\)
\(684\) 0 0
\(685\) 13241.9 0.738611
\(686\) 0 0
\(687\) 23837.3 1.32380
\(688\) 0 0
\(689\) −14664.8 + 25400.1i −0.810861 + 1.40445i
\(690\) 0 0
\(691\) −8729.90 15120.6i −0.480609 0.832440i 0.519143 0.854687i \(-0.326251\pi\)
−0.999752 + 0.0222474i \(0.992918\pi\)
\(692\) 0 0
\(693\) 32041.9 24923.4i 1.75638 1.36618i
\(694\) 0 0
\(695\) −1981.03 3431.24i −0.108122 0.187273i
\(696\) 0 0
\(697\) 2108.45 3651.94i 0.114581 0.198461i
\(698\) 0 0
\(699\) 1807.36 0.0977976
\(700\) 0 0
\(701\) −12737.6 −0.686292 −0.343146 0.939282i \(-0.611493\pi\)
−0.343146 + 0.939282i \(0.611493\pi\)
\(702\) 0 0
\(703\) 298.744 517.440i 0.0160275 0.0277605i
\(704\) 0 0
\(705\) −10397.7 18009.3i −0.555459 0.962083i
\(706\) 0 0
\(707\) −176.735 1277.42i −0.00940140 0.0679522i
\(708\) 0 0
\(709\) 7097.12 + 12292.6i 0.375935 + 0.651139i 0.990467 0.137754i \(-0.0439882\pi\)
−0.614531 + 0.788892i \(0.710655\pi\)
\(710\) 0 0
\(711\) −22058.5 + 38206.4i −1.16351 + 2.01526i
\(712\) 0 0
\(713\) 8939.35 0.469539
\(714\) 0 0
\(715\) −8476.34 −0.443353
\(716\) 0 0
\(717\) 9712.98 16823.4i 0.505911 0.876263i
\(718\) 0 0
\(719\) 4809.44 + 8330.20i 0.249460 + 0.432078i 0.963376 0.268154i \(-0.0864135\pi\)
−0.713916 + 0.700231i \(0.753080\pi\)
\(720\) 0 0
\(721\) −4578.54 1861.29i −0.236496 0.0961416i
\(722\) 0 0
\(723\) 6835.38 + 11839.2i 0.351605 + 0.608998i
\(724\) 0 0
\(725\) 1589.03 2752.27i 0.0813999 0.140989i
\(726\) 0 0
\(727\) −16970.9 −0.865773 −0.432886 0.901448i \(-0.642505\pi\)
−0.432886 + 0.901448i \(0.642505\pi\)
\(728\) 0 0
\(729\) 61506.9 3.12487
\(730\) 0 0
\(731\) −1655.02 + 2866.58i −0.0837388 + 0.145040i
\(732\) 0 0
\(733\) −4651.74 8057.05i −0.234401 0.405995i 0.724697 0.689067i \(-0.241980\pi\)
−0.959098 + 0.283073i \(0.908646\pi\)
\(734\) 0 0
\(735\) −4202.19 + 16551.1i −0.210884 + 0.830607i
\(736\) 0 0
\(737\) 1028.60 + 1781.58i 0.0514095 + 0.0890439i
\(738\) 0 0
\(739\) 8779.86 15207.2i 0.437040 0.756975i −0.560420 0.828209i \(-0.689360\pi\)
0.997460 + 0.0712338i \(0.0226936\pi\)
\(740\) 0 0
\(741\) 848.120 0.0420465
\(742\) 0 0
\(743\) 14823.5 0.731926 0.365963 0.930629i \(-0.380740\pi\)
0.365963 + 0.930629i \(0.380740\pi\)
\(744\) 0 0
\(745\) −142.726 + 247.208i −0.00701888 + 0.0121571i
\(746\) 0 0
\(747\) 36078.6 + 62490.0i 1.76713 + 3.06076i
\(748\) 0 0
\(749\) 9581.16 + 3894.98i 0.467407 + 0.190013i
\(750\) 0 0
\(751\) 4566.94 + 7910.18i 0.221904 + 0.384349i 0.955386 0.295360i \(-0.0954394\pi\)
−0.733482 + 0.679709i \(0.762106\pi\)
\(752\) 0 0
\(753\) 5594.55 9690.05i 0.270753 0.468958i
\(754\) 0 0
\(755\) 8279.25 0.399090
\(756\) 0 0
\(757\) −10791.4 −0.518125 −0.259063 0.965861i \(-0.583414\pi\)
−0.259063 + 0.965861i \(0.583414\pi\)
\(758\) 0 0
\(759\) −24592.2 + 42594.9i −1.17607 + 2.03702i
\(760\) 0 0
\(761\) 2078.00 + 3599.20i 0.0989848 + 0.171447i 0.911265 0.411821i \(-0.135107\pi\)
−0.812280 + 0.583268i \(0.801774\pi\)
\(762\) 0 0
\(763\) −3685.89 26641.2i −0.174886 1.26406i
\(764\) 0 0
\(765\) −2149.92 3723.77i −0.101609 0.175991i
\(766\) 0 0
\(767\) −14000.8 + 24250.1i −0.659113 + 1.14162i
\(768\) 0 0
\(769\) −7697.15 −0.360944 −0.180472 0.983580i \(-0.557763\pi\)
−0.180472 + 0.983580i \(0.557763\pi\)
\(770\) 0 0
\(771\) −40999.1 −1.91511
\(772\) 0 0
\(773\) 1409.10 2440.64i 0.0655652 0.113562i −0.831379 0.555705i \(-0.812448\pi\)
0.896945 + 0.442143i \(0.145782\pi\)
\(774\) 0 0
\(775\) 687.299 + 1190.44i 0.0318561 + 0.0551764i
\(776\) 0 0
\(777\) −56969.6 + 44312.9i −2.63034 + 2.04597i
\(778\) 0 0
\(779\) 270.013 + 467.677i 0.0124188 + 0.0215100i
\(780\) 0 0
\(781\) −13847.3 + 23984.3i −0.634439 + 1.09888i
\(782\) 0 0
\(783\) −57137.9 −2.60784
\(784\) 0 0
\(785\) 16203.5 0.736724
\(786\) 0 0
\(787\) −19968.2 + 34585.9i −0.904432 + 1.56652i −0.0827540 + 0.996570i \(0.526372\pi\)
−0.821678 + 0.569952i \(0.806962\pi\)
\(788\) 0 0
\(789\) 7373.39 + 12771.1i 0.332699 + 0.576252i
\(790\) 0 0
\(791\) 3247.78 2526.24i 0.145990 0.113556i
\(792\) 0 0
\(793\) −13951.1 24164.1i −0.624741 1.08208i
\(794\) 0 0
\(795\) −13084.7 + 22663.3i −0.583730 + 1.01105i
\(796\) 0 0
\(797\) 11023.4 0.489925 0.244962 0.969533i \(-0.421224\pi\)
0.244962 + 0.969533i \(0.421224\pi\)
\(798\) 0 0
\(799\) 4979.27 0.220468
\(800\) 0 0
\(801\) −41958.6 + 72674.5i −1.85086 + 3.20578i
\(802\) 0 0
\(803\) −949.988 1645.43i −0.0417489 0.0723112i
\(804\) 0 0
\(805\) −2063.28 14913.2i −0.0903369 0.652945i
\(806\) 0 0
\(807\) −21140.5 36616.3i −0.922155 1.59722i
\(808\) 0 0
\(809\) 7017.19 12154.1i 0.304958 0.528203i −0.672294 0.740284i \(-0.734691\pi\)
0.977252 + 0.212081i \(0.0680241\pi\)
\(810\) 0 0
\(811\) 38981.9 1.68784 0.843920 0.536469i \(-0.180242\pi\)
0.843920 + 0.536469i \(0.180242\pi\)
\(812\) 0 0
\(813\) 14412.3 0.621725
\(814\) 0 0
\(815\) 7139.50 12366.0i 0.306854 0.531487i
\(816\) 0 0
\(817\) −211.946 367.101i −0.00907595 0.0157200i
\(818\) 0 0
\(819\) −69060.5 28074.8i −2.94648 1.19782i
\(820\) 0 0
\(821\) 9448.98 + 16366.1i 0.401671 + 0.695714i 0.993928 0.110035i \(-0.0350964\pi\)
−0.592257 + 0.805749i \(0.701763\pi\)
\(822\) 0 0
\(823\) 13962.0 24182.9i 0.591355 1.02426i −0.402695 0.915334i \(-0.631926\pi\)
0.994050 0.108923i \(-0.0347403\pi\)
\(824\) 0 0
\(825\) −7563.03 −0.319165
\(826\) 0 0
\(827\) −13984.6 −0.588019 −0.294010 0.955802i \(-0.594990\pi\)
−0.294010 + 0.955802i \(0.594990\pi\)
\(828\) 0 0
\(829\) −145.549 + 252.098i −0.00609785 + 0.0105618i −0.869058 0.494710i \(-0.835274\pi\)
0.862960 + 0.505272i \(0.168608\pi\)
\(830\) 0 0
\(831\) −21610.1 37429.7i −0.902099 1.56248i
\(832\) 0 0
\(833\) −2928.99 2852.89i −0.121829 0.118664i
\(834\) 0 0
\(835\) −4988.83 8640.90i −0.206761 0.358121i
\(836\) 0 0
\(837\) 12356.9 21402.7i 0.510294 0.883854i
\(838\) 0 0
\(839\) −18467.2 −0.759902 −0.379951 0.925007i \(-0.624059\pi\)
−0.379951 + 0.925007i \(0.624059\pi\)
\(840\) 0 0
\(841\) −8228.97 −0.337405
\(842\) 0 0
\(843\) −35350.8 + 61229.4i −1.44430 + 2.50160i
\(844\) 0 0
\(845\) 2290.73 + 3967.66i 0.0932586 + 0.161529i
\(846\) 0 0
\(847\) −6997.95 2844.84i −0.283887 0.115407i
\(848\) 0 0
\(849\) 12201.2 + 21133.2i 0.493222 + 0.854286i
\(850\) 0 0
\(851\) 31816.3 55107.5i 1.28161 2.21981i
\(852\) 0 0
\(853\) 8251.96 0.331233 0.165617 0.986190i \(-0.447039\pi\)
0.165617 + 0.986190i \(0.447039\pi\)
\(854\) 0 0
\(855\) 550.649 0.0220255
\(856\) 0 0
\(857\) −14493.7 + 25103.9i −0.577709 + 1.00062i 0.418032 + 0.908432i \(0.362720\pi\)
−0.995741 + 0.0921899i \(0.970613\pi\)
\(858\) 0 0
\(859\) −17131.3 29672.3i −0.680457 1.17859i −0.974842 0.222899i \(-0.928448\pi\)
0.294385 0.955687i \(-0.404885\pi\)
\(860\) 0 0
\(861\) −8940.08 64617.9i −0.353864 2.55769i
\(862\) 0 0
\(863\) −1975.41 3421.51i −0.0779186 0.134959i 0.824433 0.565959i \(-0.191494\pi\)
−0.902352 + 0.431000i \(0.858161\pi\)
\(864\) 0 0
\(865\) 5632.68 9756.10i 0.221407 0.383488i
\(866\) 0 0
\(867\) −47503.7 −1.86080
\(868\) 0 0
\(869\) −18580.2 −0.725304
\(870\) 0 0
\(871\) 1888.97 3271.80i 0.0734850 0.127280i
\(872\) 0 0
\(873\) 41722.7 + 72265.9i 1.61753 + 2.80164i
\(874\) 0 0
\(875\) 1827.32 1421.36i 0.0705998 0.0549151i
\(876\) 0 0
\(877\) 1133.83 + 1963.84i 0.0436563 + 0.0756149i 0.887028 0.461716i \(-0.152766\pi\)
−0.843372 + 0.537331i \(0.819433\pi\)
\(878\) 0 0
\(879\) 19006.0 32919.4i 0.729302 1.26319i
\(880\) 0 0
\(881\) −13145.9 −0.502721 −0.251360 0.967894i \(-0.580878\pi\)
−0.251360 + 0.967894i \(0.580878\pi\)
\(882\) 0 0
\(883\) −36041.0 −1.37359 −0.686793 0.726853i \(-0.740982\pi\)
−0.686793 + 0.726853i \(0.740982\pi\)
\(884\) 0 0
\(885\) −12492.3 + 21637.2i −0.474489 + 0.821838i
\(886\) 0 0
\(887\) −7798.12 13506.7i −0.295192 0.511287i 0.679838 0.733363i \(-0.262050\pi\)
−0.975030 + 0.222075i \(0.928717\pi\)
\(888\) 0 0
\(889\) −16821.6 + 13084.5i −0.634623 + 0.493632i
\(890\) 0 0
\(891\) 38397.3 + 66506.1i 1.44373 + 2.50061i
\(892\) 0 0
\(893\) −318.829 + 552.228i −0.0119476 + 0.0206939i
\(894\) 0 0
\(895\) −9485.30 −0.354255
\(896\) 0 0
\(897\) 90325.0 3.36217
\(898\) 0 0
\(899\) −3494.83 + 6053.23i −0.129654 + 0.224568i
\(900\) 0 0
\(901\) −3133.02 5426.55i −0.115845 0.200649i
\(902\) 0 0
\(903\) 7017.48 + 50721.6i 0.258613 + 1.86922i
\(904\) 0 0
\(905\) 6950.56 + 12038.7i 0.255298 + 0.442189i
\(906\) 0 0
\(907\) 27180.6 47078.2i 0.995059 1.72349i 0.411543 0.911390i \(-0.364990\pi\)
0.583516 0.812102i \(-0.301677\pi\)
\(908\) 0 0
\(909\) 5023.29 0.183291
\(910\) 0 0
\(911\) 1049.62 0.0381730 0.0190865 0.999818i \(-0.493924\pi\)
0.0190865 + 0.999818i \(0.493924\pi\)
\(912\) 0 0
\(913\) −15194.8 + 26318.1i −0.550792 + 0.953999i
\(914\) 0 0
\(915\) −12447.9 21560.4i −0.449744 0.778980i
\(916\) 0 0
\(917\) 26952.6 + 10956.9i 0.970615 + 0.394579i
\(918\) 0 0
\(919\) −19859.6 34397.8i −0.712848 1.23469i −0.963784 0.266685i \(-0.914072\pi\)
0.250936 0.968004i \(-0.419262\pi\)
\(920\) 0 0
\(921\) −33599.9 + 58196.7i −1.20212 + 2.08213i
\(922\) 0 0
\(923\) 50860.2 1.81374
\(924\) 0 0
\(925\) 9784.74 0.347806
\(926\) 0 0
\(927\) 9626.02 16672.8i 0.341057 0.590729i
\(928\) 0 0
\(929\) −5717.94 9903.76i −0.201937 0.349765i 0.747215 0.664582i \(-0.231390\pi\)
−0.949153 + 0.314817i \(0.898057\pi\)
\(930\) 0 0
\(931\) 503.948 142.167i 0.0177403 0.00500465i
\(932\) 0 0
\(933\) −13515.4 23409.3i −0.474248 0.821422i
\(934\) 0 0
\(935\) 905.453 1568.29i 0.0316700 0.0548541i
\(936\) 0 0
\(937\) 30599.3 1.06685 0.533423 0.845849i \(-0.320905\pi\)
0.533423 + 0.845849i \(0.320905\pi\)
\(938\) 0 0
\(939\) 80950.7 2.81334
\(940\) 0 0
\(941\) 9674.35 16756.5i 0.335149 0.580494i −0.648365 0.761330i \(-0.724547\pi\)
0.983513 + 0.180836i \(0.0578802\pi\)
\(942\) 0 0
\(943\) 28756.5 + 49807.7i 0.993044 + 1.72000i
\(944\) 0 0
\(945\) −38557.4 15674.6i −1.32727 0.539570i
\(946\) 0 0
\(947\) 4276.02 + 7406.29i 0.146729 + 0.254142i 0.930017 0.367518i \(-0.119792\pi\)
−0.783288 + 0.621659i \(0.786459\pi\)
\(948\) 0 0
\(949\) −1744.61 + 3021.76i −0.0596761 + 0.103362i
\(950\) 0 0
\(951\) 70485.1 2.40340
\(952\) 0 0
\(953\) 40243.0 1.36789 0.683944 0.729534i \(-0.260263\pi\)
0.683944 + 0.729534i \(0.260263\pi\)
\(954\) 0 0
\(955\) 436.966 756.848i 0.0148062 0.0256450i
\(956\) 0 0
\(957\) −19228.6 33304.9i −0.649500 1.12497i
\(958\) 0 0
\(959\) 6722.02 + 48586.0i 0.226346 + 1.63600i
\(960\) 0 0
\(961\) 13383.9 + 23181.6i 0.449259 + 0.778140i
\(962\) 0 0
\(963\) −20143.6 + 34889.8i −0.674059 + 1.16751i
\(964\) 0 0
\(965\) 9786.42 0.326462
\(966\) 0 0
\(967\) −38460.8 −1.27903 −0.639513 0.768781i \(-0.720864\pi\)
−0.639513 + 0.768781i \(0.720864\pi\)
\(968\) 0 0
\(969\) −90.5973 + 156.919i −0.00300351 + 0.00520224i
\(970\) 0 0
\(971\) −6941.57 12023.2i −0.229419 0.397365i 0.728217 0.685346i \(-0.240349\pi\)
−0.957636 + 0.287981i \(0.907016\pi\)
\(972\) 0 0
\(973\) 11583.9 9010.40i 0.381669 0.296876i
\(974\) 0 0
\(975\) 6944.60 + 12028.4i 0.228108 + 0.395095i
\(976\) 0 0
\(977\) 14458.4 25042.7i 0.473454 0.820047i −0.526084 0.850433i \(-0.676340\pi\)
0.999538 + 0.0303858i \(0.00967360\pi\)
\(978\) 0 0
\(979\) −35342.3 −1.15377
\(980\) 0 0
\(981\) 104763. 3.40961
\(982\) 0 0
\(983\) −25591.6 + 44325.9i −0.830360 + 1.43823i 0.0673927 + 0.997727i \(0.478532\pi\)
−0.897753 + 0.440499i \(0.854801\pi\)
\(984\) 0 0
\(985\) −8862.61 15350.5i −0.286687 0.496556i
\(986\) 0 0
\(987\) 60799.7 47292.2i 1.96077 1.52515i
\(988\) 0 0
\(989\) −22572.3 39096.4i −0.725740 1.25702i
\(990\) 0 0
\(991\) −22318.0 + 38655.9i −0.715393 + 1.23910i 0.247414 + 0.968910i \(0.420419\pi\)
−0.962808 + 0.270188i \(0.912914\pi\)
\(992\) 0 0
\(993\) −40822.1 −1.30458
\(994\) 0 0
\(995\) −13867.5 −0.441838
\(996\) 0 0
\(997\) −7104.48 + 12305.3i −0.225678 + 0.390886i −0.956523 0.291658i \(-0.905793\pi\)
0.730845 + 0.682544i \(0.239126\pi\)
\(998\) 0 0
\(999\) −87959.4 152350.i −2.78570 4.82497i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 280.4.q.c.81.1 12
4.3 odd 2 560.4.q.r.81.6 12
7.2 even 3 inner 280.4.q.c.121.1 yes 12
7.3 odd 6 1960.4.a.x.1.1 6
7.4 even 3 1960.4.a.ba.1.6 6
28.23 odd 6 560.4.q.r.401.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.4.q.c.81.1 12 1.1 even 1 trivial
280.4.q.c.121.1 yes 12 7.2 even 3 inner
560.4.q.r.81.6 12 4.3 odd 2
560.4.q.r.401.6 12 28.23 odd 6
1960.4.a.x.1.1 6 7.3 odd 6
1960.4.a.ba.1.6 6 7.4 even 3