Properties

Label 280.2.br
Level $280$
Weight $2$
Character orbit 280.br
Rep. character $\chi_{280}(67,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $176$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 280.br (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 280 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(280, [\chi])\).

Total New Old
Modular forms 208 208 0
Cusp forms 176 176 0
Eisenstein series 32 32 0

Trace form

\( 176q - 2q^{2} - 4q^{3} - 16q^{6} - 20q^{8} + O(q^{10}) \) \( 176q - 2q^{2} - 4q^{3} - 16q^{6} - 20q^{8} - 2q^{10} - 8q^{11} - 14q^{12} + 4q^{16} - 4q^{17} - 16q^{18} + 8q^{20} - 4q^{25} - 20q^{26} - 40q^{27} - 34q^{28} - 12q^{30} + 18q^{32} + 20q^{33} - 32q^{35} - 48q^{36} - 16q^{38} - 22q^{40} - 32q^{41} + 30q^{42} - 16q^{43} + 20q^{46} + 36q^{48} + 68q^{50} - 8q^{51} - 32q^{52} - 52q^{56} - 40q^{57} - 14q^{58} - 50q^{60} + 56q^{62} - 4q^{65} - 60q^{66} - 28q^{67} - 40q^{68} + 64q^{70} - 48q^{72} - 4q^{73} - 4q^{75} - 144q^{76} + 184q^{78} - 40q^{80} + 32q^{81} + 74q^{82} - 16q^{83} - 56q^{86} - 64q^{88} - 56q^{90} + 16q^{91} + 44q^{92} - 104q^{96} - 48q^{97} + 70q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(280, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
280.2.br.a \(176\) \(2.236\) None \(-2\) \(-4\) \(0\) \(0\)