Defining parameters
| Level: | \( N \) | \(=\) | \( 2720 = 2^{5} \cdot 5 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2720.cd (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 272 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 0 \) | ||
| Sturm bound: | \(864\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2720, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 880 | 0 | 880 |
| Cusp forms | 848 | 0 | 848 |
| Eisenstein series | 32 | 0 | 32 |
Decomposition of \(S_{2}^{\mathrm{old}}(2720, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2720, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(272, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1360, [\chi])\)\(^{\oplus 2}\)