Newspace parameters
Level: | \( N \) | \(=\) | \( 272 = 2^{4} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 272.x (of order \(8\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.41146319060\) |
Analytic rank: | \(0\) |
Dimension: | \(280\) |
Relative dimension: | \(70\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
155.1 | −1.99991 | + | 0.0193634i | −4.02433 | − | 1.66693i | 3.99925 | − | 0.0774501i | 1.08514 | − | 2.61976i | 8.08056 | + | 3.25578i | −1.46792 | + | 3.54388i | −7.99663 | + | 0.232332i | 7.05262 | + | 7.05262i | −2.11945 | + | 5.26028i |
155.2 | −1.99664 | + | 0.115876i | −3.90579 | − | 1.61783i | 3.97315 | − | 0.462724i | −3.74650 | + | 9.04486i | 7.98593 | + | 2.77764i | −0.137900 | + | 0.332921i | −7.87932 | + | 1.38428i | 6.27388 | + | 6.27388i | 6.43234 | − | 18.4935i |
155.3 | −1.99137 | + | 0.185641i | −2.62102 | − | 1.08566i | 3.93107 | − | 0.739358i | 3.16911 | − | 7.65091i | 5.42096 | + | 1.67538i | 4.43061 | − | 10.6964i | −7.69095 | + | 2.20210i | −0.672866 | − | 0.672866i | −4.89054 | + | 15.8241i |
155.4 | −1.97415 | + | 0.320494i | 0.567746 | + | 0.235168i | 3.79457 | − | 1.26541i | −0.802763 | + | 1.93804i | −1.19619 | − | 0.282299i | −4.28348 | + | 10.3412i | −7.08550 | + | 3.71425i | −6.09693 | − | 6.09693i | 0.963647 | − | 4.08327i |
155.5 | −1.96547 | − | 0.370012i | 0.834919 | + | 0.345835i | 3.72618 | + | 1.45450i | −1.80797 | + | 4.36483i | −1.51305 | − | 0.988659i | 1.40007 | − | 3.38006i | −6.78554 | − | 4.23751i | −5.78647 | − | 5.78647i | 5.16857 | − | 7.91000i |
155.6 | −1.95557 | + | 0.419209i | 4.50783 | + | 1.86720i | 3.64853 | − | 1.63959i | 1.59844 | − | 3.85899i | −9.59814 | − | 1.76173i | 1.19737 | − | 2.89070i | −6.44763 | + | 4.73583i | 10.4701 | + | 10.4701i | −1.50815 | + | 8.21661i |
155.7 | −1.94797 | − | 0.453215i | 1.30483 | + | 0.540479i | 3.58919 | + | 1.76570i | −0.932568 | + | 2.25142i | −2.29682 | − | 1.64421i | 3.05803 | − | 7.38274i | −6.19140 | − | 5.06621i | −4.95349 | − | 4.95349i | 2.83699 | − | 3.96305i |
155.8 | −1.90154 | − | 0.619800i | 4.22836 | + | 1.75144i | 3.23170 | + | 2.35715i | 0.733287 | − | 1.77031i | −6.95484 | − | 5.95117i | −3.63309 | + | 8.77105i | −4.68424 | − | 6.48521i | 8.44750 | + | 8.44750i | −2.49161 | + | 2.91182i |
155.9 | −1.85168 | + | 0.755822i | 4.12789 | + | 1.70983i | 2.85746 | − | 2.79909i | −3.32759 | + | 8.03351i | −8.93588 | − | 0.0461087i | −0.508046 | + | 1.22653i | −3.17551 | + | 7.34276i | 7.75201 | + | 7.75201i | 0.0897346 | − | 17.3906i |
155.10 | −1.80399 | + | 0.863498i | −0.384827 | − | 0.159401i | 2.50874 | − | 3.11548i | 1.50866 | − | 3.64224i | 0.831866 | − | 0.0447408i | −3.31711 | + | 8.00822i | −1.83553 | + | 7.78658i | −6.24128 | − | 6.24128i | 0.423454 | + | 7.87328i |
155.11 | −1.74970 | − | 0.968791i | −2.53528 | − | 1.05015i | 2.12289 | + | 3.39018i | 0.387682 | − | 0.935947i | 3.41860 | + | 4.29359i | −0.0463828 | + | 0.111978i | −0.430039 | − | 7.98843i | −1.03913 | − | 1.03913i | −1.58506 | + | 1.26204i |
155.12 | −1.72798 | + | 1.00702i | 0.244535 | + | 0.101290i | 1.97183 | − | 3.48021i | 0.0867710 | − | 0.209484i | −0.524552 | + | 0.0712246i | 3.71684 | − | 8.97324i | 0.0973550 | + | 7.99941i | −6.31442 | − | 6.31442i | 0.0610153 | + | 0.449364i |
155.13 | −1.70774 | − | 1.04097i | 0.459249 | + | 0.190227i | 1.83277 | + | 3.55541i | 3.27855 | − | 7.91511i | −0.586259 | − | 0.802922i | −1.99967 | + | 4.82763i | 0.571157 | − | 7.97959i | −6.18924 | − | 6.18924i | −13.8383 | + | 10.1041i |
155.14 | −1.56595 | − | 1.24411i | 3.79886 | + | 1.57354i | 0.904403 | + | 3.89642i | −2.85209 | + | 6.88556i | −3.99118 | − | 7.19027i | −1.34336 | + | 3.24315i | 3.43130 | − | 7.22677i | 5.59138 | + | 5.59138i | 13.0326 | − | 7.23414i |
155.15 | −1.54844 | + | 1.26583i | −2.28710 | − | 0.947346i | 0.795363 | − | 3.92013i | −1.67918 | + | 4.05391i | 4.74062 | − | 1.42815i | 0.739896 | − | 1.78627i | 3.73063 | + | 7.07689i | −2.03062 | − | 2.03062i | −2.53142 | − | 8.40281i |
155.16 | −1.52269 | + | 1.29670i | −4.96980 | − | 2.05856i | 0.637156 | − | 3.94893i | 0.212700 | − | 0.513504i | 10.2368 | − | 3.30978i | −0.864761 | + | 2.08772i | 4.15037 | + | 6.83918i | 14.0973 | + | 14.0973i | 0.341983 | + | 1.05771i |
155.17 | −1.51503 | − | 1.30564i | −5.10521 | − | 2.11465i | 0.590634 | + | 3.95615i | −1.23196 | + | 2.97420i | 4.97359 | + | 9.86931i | 5.08037 | − | 12.2651i | 4.27047 | − | 6.76485i | 15.2275 | + | 15.2275i | 5.74968 | − | 2.89752i |
155.18 | −1.41018 | + | 1.41824i | 2.02567 | + | 0.839058i | −0.0228089 | − | 3.99993i | 3.32204 | − | 8.02012i | −4.04653 | + | 1.68966i | −0.771065 | + | 1.86152i | 5.70503 | + | 5.60826i | −2.96466 | − | 2.96466i | 6.68979 | + | 16.0212i |
155.19 | −1.40894 | − | 1.41947i | 4.07727 | + | 1.68886i | −0.0297944 | + | 3.99989i | 1.55509 | − | 3.75431i | −3.34732 | − | 8.16705i | 4.18755 | − | 10.1096i | 5.71970 | − | 5.59330i | 7.40789 | + | 7.40789i | −7.52015 | + | 3.08219i |
155.20 | −1.37735 | − | 1.45014i | −2.31294 | − | 0.958051i | −0.205791 | + | 3.99470i | −2.57391 | + | 6.21396i | 1.79643 | + | 4.67366i | −3.91405 | + | 9.44936i | 6.07631 | − | 5.20370i | −1.93213 | − | 1.93213i | 12.5563 | − | 4.82631i |
See next 80 embeddings (of 280 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
272.x | odd | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 272.3.x.a | ✓ | 280 |
16.f | odd | 4 | 1 | 272.3.z.a | yes | 280 | |
17.d | even | 8 | 1 | 272.3.z.a | yes | 280 | |
272.x | odd | 8 | 1 | inner | 272.3.x.a | ✓ | 280 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
272.3.x.a | ✓ | 280 | 1.a | even | 1 | 1 | trivial |
272.3.x.a | ✓ | 280 | 272.x | odd | 8 | 1 | inner |
272.3.z.a | yes | 280 | 16.f | odd | 4 | 1 | |
272.3.z.a | yes | 280 | 17.d | even | 8 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(272, [\chi])\).