Properties

Label 272.3.i
Level $272$
Weight $3$
Character orbit 272.i
Rep. character $\chi_{272}(251,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $140$
Newform subspaces $1$
Sturm bound $108$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 272 = 2^{4} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 272.i (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 272 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(108\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(272, [\chi])\).

Total New Old
Modular forms 148 148 0
Cusp forms 140 140 0
Eisenstein series 8 8 0

Trace form

\( 140 q - 4 q^{4} - 6 q^{6} - 4 q^{7} - 396 q^{9} - 14 q^{10} + 6 q^{12} - 4 q^{13} + 44 q^{14} + 72 q^{15} + 52 q^{16} - 4 q^{17} - 20 q^{18} + 70 q^{20} - 4 q^{21} - 6 q^{22} - 4 q^{23} + 14 q^{24} - 620 q^{25}+ \cdots - 192 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(272, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
272.3.i.a 272.i 272.i $140$ $7.411$ None 272.3.i.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$