Properties

Label 272.10.b.c.33.12
Level $272$
Weight $10$
Character 272.33
Analytic conductor $140.090$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [272,10,Mod(33,272)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("272.33"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(272, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 272 = 2^{4} \cdot 17 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 272.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,-9184] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(140.089747437\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 122690 x^{10} + 5157152560 x^{8} + 87983684680032 x^{6} + \cdots + 20\!\cdots\!28 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{28}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 33.12
Root \(225.146i\) of defining polynomial
Character \(\chi\) \(=\) 272.33
Dual form 272.10.b.c.33.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+225.146i q^{3} -96.4328i q^{5} +1385.77i q^{7} -31007.8 q^{9} +33833.7i q^{11} +138558. q^{13} +21711.5 q^{15} +(177982. - 294805. i) q^{17} -429726. q^{19} -312001. q^{21} -352831. i q^{23} +1.94383e6 q^{25} -2.54973e6i q^{27} +508224. i q^{29} -8.73026e6i q^{31} -7.61753e6 q^{33} +133634. q^{35} -1.62218e7i q^{37} +3.11958e7i q^{39} +1.12435e7i q^{41} +2.43795e7 q^{43} +2.99017e6i q^{45} +1.11673e7 q^{47} +3.84332e7 q^{49} +(6.63743e7 + 4.00720e7i) q^{51} +3.54297e7 q^{53} +3.26268e6 q^{55} -9.67510e7i q^{57} -5.03437e7 q^{59} -1.53033e8i q^{61} -4.29697e7i q^{63} -1.33615e7i q^{65} +2.44023e8 q^{67} +7.94386e7 q^{69} -3.78713e8i q^{71} -1.38738e7i q^{73} +4.37645e8i q^{75} -4.68858e7 q^{77} -5.65164e8i q^{79} -3.62648e7 q^{81} +5.68408e8 q^{83} +(-2.84289e7 - 1.71633e7i) q^{85} -1.14425e8 q^{87} +2.61194e8 q^{89} +1.92010e8i q^{91} +1.96558e9 q^{93} +4.14396e7i q^{95} +1.04492e9i q^{97} -1.04911e9i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 9184 q^{9} - 63204 q^{13} + 243480 q^{15} - 105960 q^{17} - 1110672 q^{19} - 172580 q^{21} - 4441796 q^{25} - 6557404 q^{33} - 3519864 q^{35} - 10004616 q^{43} + 112552440 q^{47} + 121354720 q^{49}+ \cdots + 1635779524 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/272\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(239\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 225.146i 1.60479i 0.596792 + 0.802396i \(0.296442\pi\)
−0.596792 + 0.802396i \(0.703558\pi\)
\(4\) 0 0
\(5\) 96.4328i 0.0690017i −0.999405 0.0345009i \(-0.989016\pi\)
0.999405 0.0345009i \(-0.0109841\pi\)
\(6\) 0 0
\(7\) 1385.77i 0.218148i 0.994034 + 0.109074i \(0.0347885\pi\)
−0.994034 + 0.109074i \(0.965211\pi\)
\(8\) 0 0
\(9\) −31007.8 −1.57536
\(10\) 0 0
\(11\) 33833.7i 0.696759i 0.937354 + 0.348379i \(0.113268\pi\)
−0.937354 + 0.348379i \(0.886732\pi\)
\(12\) 0 0
\(13\) 138558. 1.34551 0.672755 0.739866i \(-0.265111\pi\)
0.672755 + 0.739866i \(0.265111\pi\)
\(14\) 0 0
\(15\) 21711.5 0.110733
\(16\) 0 0
\(17\) 177982. 294805.i 0.516840 0.856082i
\(18\) 0 0
\(19\) −429726. −0.756484 −0.378242 0.925707i \(-0.623471\pi\)
−0.378242 + 0.925707i \(0.623471\pi\)
\(20\) 0 0
\(21\) −312001. −0.350082
\(22\) 0 0
\(23\) 352831.i 0.262901i −0.991323 0.131450i \(-0.958037\pi\)
0.991323 0.131450i \(-0.0419634\pi\)
\(24\) 0 0
\(25\) 1.94383e6 0.995239
\(26\) 0 0
\(27\) 2.54973e6i 0.923330i
\(28\) 0 0
\(29\) 508224.i 0.133433i 0.997772 + 0.0667166i \(0.0212523\pi\)
−0.997772 + 0.0667166i \(0.978748\pi\)
\(30\) 0 0
\(31\) 8.73026e6i 1.69785i −0.528513 0.848925i \(-0.677250\pi\)
0.528513 0.848925i \(-0.322750\pi\)
\(32\) 0 0
\(33\) −7.61753e6 −1.11815
\(34\) 0 0
\(35\) 133634. 0.0150526
\(36\) 0 0
\(37\) 1.62218e7i 1.42295i −0.702710 0.711476i \(-0.748027\pi\)
0.702710 0.711476i \(-0.251973\pi\)
\(38\) 0 0
\(39\) 3.11958e7i 2.15926i
\(40\) 0 0
\(41\) 1.12435e7i 0.621406i 0.950507 + 0.310703i \(0.100564\pi\)
−0.950507 + 0.310703i \(0.899436\pi\)
\(42\) 0 0
\(43\) 2.43795e7 1.08747 0.543735 0.839257i \(-0.317010\pi\)
0.543735 + 0.839257i \(0.317010\pi\)
\(44\) 0 0
\(45\) 2.99017e6i 0.108702i
\(46\) 0 0
\(47\) 1.11673e7 0.333817 0.166909 0.985972i \(-0.446621\pi\)
0.166909 + 0.985972i \(0.446621\pi\)
\(48\) 0 0
\(49\) 3.84332e7 0.952412
\(50\) 0 0
\(51\) 6.63743e7 + 4.00720e7i 1.37383 + 0.829421i
\(52\) 0 0
\(53\) 3.54297e7 0.616774 0.308387 0.951261i \(-0.400211\pi\)
0.308387 + 0.951261i \(0.400211\pi\)
\(54\) 0 0
\(55\) 3.26268e6 0.0480775
\(56\) 0 0
\(57\) 9.67510e7i 1.21400i
\(58\) 0 0
\(59\) −5.03437e7 −0.540893 −0.270446 0.962735i \(-0.587171\pi\)
−0.270446 + 0.962735i \(0.587171\pi\)
\(60\) 0 0
\(61\) 1.53033e8i 1.41515i −0.706639 0.707574i \(-0.749789\pi\)
0.706639 0.707574i \(-0.250211\pi\)
\(62\) 0 0
\(63\) 4.29697e7i 0.343661i
\(64\) 0 0
\(65\) 1.33615e7i 0.0928425i
\(66\) 0 0
\(67\) 2.44023e8 1.47943 0.739713 0.672922i \(-0.234961\pi\)
0.739713 + 0.672922i \(0.234961\pi\)
\(68\) 0 0
\(69\) 7.94386e7 0.421901
\(70\) 0 0
\(71\) 3.78713e8i 1.76867i −0.466850 0.884337i \(-0.654611\pi\)
0.466850 0.884337i \(-0.345389\pi\)
\(72\) 0 0
\(73\) 1.38738e7i 0.0571798i −0.999591 0.0285899i \(-0.990898\pi\)
0.999591 0.0285899i \(-0.00910169\pi\)
\(74\) 0 0
\(75\) 4.37645e8i 1.59715i
\(76\) 0 0
\(77\) −4.68858e7 −0.151996
\(78\) 0 0
\(79\) 5.65164e8i 1.63250i −0.577700 0.816250i \(-0.696049\pi\)
0.577700 0.816250i \(-0.303951\pi\)
\(80\) 0 0
\(81\) −3.62648e7 −0.0936057
\(82\) 0 0
\(83\) 5.68408e8 1.31465 0.657323 0.753609i \(-0.271689\pi\)
0.657323 + 0.753609i \(0.271689\pi\)
\(84\) 0 0
\(85\) −2.84289e7 1.71633e7i −0.0590711 0.0356629i
\(86\) 0 0
\(87\) −1.14425e8 −0.214133
\(88\) 0 0
\(89\) 2.61194e8 0.441275 0.220637 0.975356i \(-0.429186\pi\)
0.220637 + 0.975356i \(0.429186\pi\)
\(90\) 0 0
\(91\) 1.92010e8i 0.293520i
\(92\) 0 0
\(93\) 1.96558e9 2.72470
\(94\) 0 0
\(95\) 4.14396e7i 0.0521987i
\(96\) 0 0
\(97\) 1.04492e9i 1.19842i 0.800590 + 0.599212i \(0.204519\pi\)
−0.800590 + 0.599212i \(0.795481\pi\)
\(98\) 0 0
\(99\) 1.04911e9i 1.09764i
\(100\) 0 0
\(101\) 2.97630e7 0.0284597 0.0142299 0.999899i \(-0.495470\pi\)
0.0142299 + 0.999899i \(0.495470\pi\)
\(102\) 0 0
\(103\) −1.60523e9 −1.40530 −0.702650 0.711536i \(-0.748000\pi\)
−0.702650 + 0.711536i \(0.748000\pi\)
\(104\) 0 0
\(105\) 3.00872e7i 0.0241562i
\(106\) 0 0
\(107\) 2.35483e9i 1.73673i 0.495925 + 0.868365i \(0.334829\pi\)
−0.495925 + 0.868365i \(0.665171\pi\)
\(108\) 0 0
\(109\) 1.68886e9i 1.14597i 0.819566 + 0.572985i \(0.194215\pi\)
−0.819566 + 0.572985i \(0.805785\pi\)
\(110\) 0 0
\(111\) 3.65227e9 2.28354
\(112\) 0 0
\(113\) 2.39661e9i 1.38275i −0.722496 0.691375i \(-0.757005\pi\)
0.722496 0.691375i \(-0.242995\pi\)
\(114\) 0 0
\(115\) −3.40245e7 −0.0181406
\(116\) 0 0
\(117\) −4.29638e9 −2.11966
\(118\) 0 0
\(119\) 4.08533e8 + 2.46643e8i 0.186752 + 0.112748i
\(120\) 0 0
\(121\) 1.21323e9 0.514527
\(122\) 0 0
\(123\) −2.53144e9 −0.997227
\(124\) 0 0
\(125\) 3.75794e8i 0.137675i
\(126\) 0 0
\(127\) −4.20715e9 −1.43506 −0.717532 0.696526i \(-0.754728\pi\)
−0.717532 + 0.696526i \(0.754728\pi\)
\(128\) 0 0
\(129\) 5.48896e9i 1.74516i
\(130\) 0 0
\(131\) 1.46332e9i 0.434129i −0.976157 0.217064i \(-0.930352\pi\)
0.976157 0.217064i \(-0.0696481\pi\)
\(132\) 0 0
\(133\) 5.95502e8i 0.165025i
\(134\) 0 0
\(135\) −2.45877e8 −0.0637113
\(136\) 0 0
\(137\) −4.13890e9 −1.00379 −0.501894 0.864929i \(-0.667363\pi\)
−0.501894 + 0.864929i \(0.667363\pi\)
\(138\) 0 0
\(139\) 1.74238e9i 0.395892i −0.980213 0.197946i \(-0.936573\pi\)
0.980213 0.197946i \(-0.0634271\pi\)
\(140\) 0 0
\(141\) 2.51428e9i 0.535708i
\(142\) 0 0
\(143\) 4.68793e9i 0.937496i
\(144\) 0 0
\(145\) 4.90094e7 0.00920712
\(146\) 0 0
\(147\) 8.65309e9i 1.52842i
\(148\) 0 0
\(149\) 4.80220e9 0.798183 0.399092 0.916911i \(-0.369326\pi\)
0.399092 + 0.916911i \(0.369326\pi\)
\(150\) 0 0
\(151\) −1.22756e9 −0.192152 −0.0960762 0.995374i \(-0.530629\pi\)
−0.0960762 + 0.995374i \(0.530629\pi\)
\(152\) 0 0
\(153\) −5.51883e9 + 9.14126e9i −0.814208 + 1.34864i
\(154\) 0 0
\(155\) −8.41883e8 −0.117155
\(156\) 0 0
\(157\) 1.72654e9 0.226792 0.113396 0.993550i \(-0.463827\pi\)
0.113396 + 0.993550i \(0.463827\pi\)
\(158\) 0 0
\(159\) 7.97686e9i 0.989794i
\(160\) 0 0
\(161\) 4.88944e8 0.0573512
\(162\) 0 0
\(163\) 2.27451e9i 0.252374i −0.992006 0.126187i \(-0.959726\pi\)
0.992006 0.126187i \(-0.0402739\pi\)
\(164\) 0 0
\(165\) 7.34580e8i 0.0771545i
\(166\) 0 0
\(167\) 1.42586e10i 1.41857i 0.704921 + 0.709286i \(0.250982\pi\)
−0.704921 + 0.709286i \(0.749018\pi\)
\(168\) 0 0
\(169\) 8.59384e9 0.810396
\(170\) 0 0
\(171\) 1.33248e10 1.19173
\(172\) 0 0
\(173\) 6.92744e9i 0.587984i 0.955808 + 0.293992i \(0.0949839\pi\)
−0.955808 + 0.293992i \(0.905016\pi\)
\(174\) 0 0
\(175\) 2.69370e9i 0.217109i
\(176\) 0 0
\(177\) 1.13347e10i 0.868020i
\(178\) 0 0
\(179\) −1.32700e10 −0.966120 −0.483060 0.875587i \(-0.660475\pi\)
−0.483060 + 0.875587i \(0.660475\pi\)
\(180\) 0 0
\(181\) 8.95066e9i 0.619871i −0.950758 0.309936i \(-0.899692\pi\)
0.950758 0.309936i \(-0.100308\pi\)
\(182\) 0 0
\(183\) 3.44549e10 2.27102
\(184\) 0 0
\(185\) −1.56431e9 −0.0981861
\(186\) 0 0
\(187\) 9.97436e9 + 6.02180e9i 0.596483 + 0.360113i
\(188\) 0 0
\(189\) 3.53334e9 0.201422
\(190\) 0 0
\(191\) 2.10560e9 0.114479 0.0572394 0.998360i \(-0.481770\pi\)
0.0572394 + 0.998360i \(0.481770\pi\)
\(192\) 0 0
\(193\) 5.10730e9i 0.264962i −0.991186 0.132481i \(-0.957706\pi\)
0.991186 0.132481i \(-0.0422944\pi\)
\(194\) 0 0
\(195\) 3.00830e9 0.148993
\(196\) 0 0
\(197\) 1.85517e10i 0.877578i 0.898590 + 0.438789i \(0.144592\pi\)
−0.898590 + 0.438789i \(0.855408\pi\)
\(198\) 0 0
\(199\) 1.37208e10i 0.620211i −0.950702 0.310105i \(-0.899636\pi\)
0.950702 0.310105i \(-0.100364\pi\)
\(200\) 0 0
\(201\) 5.49407e10i 2.37417i
\(202\) 0 0
\(203\) −7.04282e8 −0.0291082
\(204\) 0 0
\(205\) 1.08425e9 0.0428781
\(206\) 0 0
\(207\) 1.09405e10i 0.414163i
\(208\) 0 0
\(209\) 1.45392e10i 0.527087i
\(210\) 0 0
\(211\) 6.12032e9i 0.212570i −0.994336 0.106285i \(-0.966104\pi\)
0.994336 0.106285i \(-0.0338957\pi\)
\(212\) 0 0
\(213\) 8.52658e10 2.83835
\(214\) 0 0
\(215\) 2.35099e9i 0.0750373i
\(216\) 0 0
\(217\) 1.20982e10 0.370382
\(218\) 0 0
\(219\) 3.12363e9 0.0917617
\(220\) 0 0
\(221\) 2.46609e10 4.08477e10i 0.695414 1.15187i
\(222\) 0 0
\(223\) 6.31228e9 0.170928 0.0854642 0.996341i \(-0.472763\pi\)
0.0854642 + 0.996341i \(0.472763\pi\)
\(224\) 0 0
\(225\) −6.02737e10 −1.56786
\(226\) 0 0
\(227\) 5.43032e10i 1.35740i 0.734413 + 0.678702i \(0.237457\pi\)
−0.734413 + 0.678702i \(0.762543\pi\)
\(228\) 0 0
\(229\) −1.03751e10 −0.249306 −0.124653 0.992200i \(-0.539782\pi\)
−0.124653 + 0.992200i \(0.539782\pi\)
\(230\) 0 0
\(231\) 1.05562e10i 0.243923i
\(232\) 0 0
\(233\) 5.93158e10i 1.31846i 0.751939 + 0.659232i \(0.229119\pi\)
−0.751939 + 0.659232i \(0.770881\pi\)
\(234\) 0 0
\(235\) 1.07690e9i 0.0230340i
\(236\) 0 0
\(237\) 1.27245e11 2.61982
\(238\) 0 0
\(239\) 6.57143e10 1.30278 0.651388 0.758745i \(-0.274187\pi\)
0.651388 + 0.758745i \(0.274187\pi\)
\(240\) 0 0
\(241\) 2.02970e10i 0.387574i 0.981044 + 0.193787i \(0.0620771\pi\)
−0.981044 + 0.193787i \(0.937923\pi\)
\(242\) 0 0
\(243\) 5.83511e10i 1.07355i
\(244\) 0 0
\(245\) 3.70623e9i 0.0657180i
\(246\) 0 0
\(247\) −5.95420e10 −1.01786
\(248\) 0 0
\(249\) 1.27975e11i 2.10974i
\(250\) 0 0
\(251\) 8.71654e10 1.38616 0.693078 0.720863i \(-0.256254\pi\)
0.693078 + 0.720863i \(0.256254\pi\)
\(252\) 0 0
\(253\) 1.19376e10 0.183178
\(254\) 0 0
\(255\) 3.86426e9 6.40066e9i 0.0572315 0.0947968i
\(256\) 0 0
\(257\) −1.20306e10 −0.172023 −0.0860115 0.996294i \(-0.527412\pi\)
−0.0860115 + 0.996294i \(0.527412\pi\)
\(258\) 0 0
\(259\) 2.24797e10 0.310414
\(260\) 0 0
\(261\) 1.57589e10i 0.210205i
\(262\) 0 0
\(263\) −3.51365e10 −0.452853 −0.226426 0.974028i \(-0.572704\pi\)
−0.226426 + 0.974028i \(0.572704\pi\)
\(264\) 0 0
\(265\) 3.41659e9i 0.0425585i
\(266\) 0 0
\(267\) 5.88069e10i 0.708154i
\(268\) 0 0
\(269\) 8.30055e10i 0.966544i −0.875470 0.483272i \(-0.839448\pi\)
0.875470 0.483272i \(-0.160552\pi\)
\(270\) 0 0
\(271\) 5.57473e10 0.627858 0.313929 0.949446i \(-0.398355\pi\)
0.313929 + 0.949446i \(0.398355\pi\)
\(272\) 0 0
\(273\) −4.32303e10 −0.471038
\(274\) 0 0
\(275\) 6.57668e10i 0.693441i
\(276\) 0 0
\(277\) 1.84969e11i 1.88773i 0.330333 + 0.943864i \(0.392839\pi\)
−0.330333 + 0.943864i \(0.607161\pi\)
\(278\) 0 0
\(279\) 2.70706e11i 2.67472i
\(280\) 0 0
\(281\) −1.35823e11 −1.29956 −0.649778 0.760124i \(-0.725138\pi\)
−0.649778 + 0.760124i \(0.725138\pi\)
\(282\) 0 0
\(283\) 5.85987e10i 0.543062i 0.962430 + 0.271531i \(0.0875299\pi\)
−0.962430 + 0.271531i \(0.912470\pi\)
\(284\) 0 0
\(285\) −9.32997e9 −0.0837681
\(286\) 0 0
\(287\) −1.55810e10 −0.135558
\(288\) 0 0
\(289\) −5.52326e10 1.04940e11i −0.465752 0.884915i
\(290\) 0 0
\(291\) −2.35260e11 −1.92322
\(292\) 0 0
\(293\) −5.48232e10 −0.434571 −0.217285 0.976108i \(-0.569720\pi\)
−0.217285 + 0.976108i \(0.569720\pi\)
\(294\) 0 0
\(295\) 4.85478e9i 0.0373225i
\(296\) 0 0
\(297\) 8.62667e10 0.643338
\(298\) 0 0
\(299\) 4.88876e10i 0.353735i
\(300\) 0 0
\(301\) 3.37845e10i 0.237229i
\(302\) 0 0
\(303\) 6.70103e9i 0.0456720i
\(304\) 0 0
\(305\) −1.47574e10 −0.0976477
\(306\) 0 0
\(307\) 1.88055e11 1.20826 0.604132 0.796884i \(-0.293520\pi\)
0.604132 + 0.796884i \(0.293520\pi\)
\(308\) 0 0
\(309\) 3.61411e11i 2.25521i
\(310\) 0 0
\(311\) 1.81717e11i 1.10147i −0.834679 0.550737i \(-0.814347\pi\)
0.834679 0.550737i \(-0.185653\pi\)
\(312\) 0 0
\(313\) 2.21549e11i 1.30473i 0.757905 + 0.652364i \(0.226223\pi\)
−0.757905 + 0.652364i \(0.773777\pi\)
\(314\) 0 0
\(315\) −4.14369e9 −0.0237132
\(316\) 0 0
\(317\) 2.66841e11i 1.48418i −0.670301 0.742089i \(-0.733835\pi\)
0.670301 0.742089i \(-0.266165\pi\)
\(318\) 0 0
\(319\) −1.71951e10 −0.0929708
\(320\) 0 0
\(321\) −5.30181e11 −2.78709
\(322\) 0 0
\(323\) −7.64835e10 + 1.26685e11i −0.390982 + 0.647613i
\(324\) 0 0
\(325\) 2.69333e11 1.33910
\(326\) 0 0
\(327\) −3.80239e11 −1.83904
\(328\) 0 0
\(329\) 1.54754e10i 0.0728215i
\(330\) 0 0
\(331\) −3.46276e11 −1.58561 −0.792804 0.609476i \(-0.791380\pi\)
−0.792804 + 0.609476i \(0.791380\pi\)
\(332\) 0 0
\(333\) 5.03001e11i 2.24166i
\(334\) 0 0
\(335\) 2.35318e10i 0.102083i
\(336\) 0 0
\(337\) 2.14440e11i 0.905671i 0.891594 + 0.452836i \(0.149588\pi\)
−0.891594 + 0.452836i \(0.850412\pi\)
\(338\) 0 0
\(339\) 5.39586e11 2.21903
\(340\) 0 0
\(341\) 2.95377e11 1.18299
\(342\) 0 0
\(343\) 1.09181e11i 0.425914i
\(344\) 0 0
\(345\) 7.66048e9i 0.0291119i
\(346\) 0 0
\(347\) 2.25675e11i 0.835603i −0.908538 0.417801i \(-0.862801\pi\)
0.908538 0.417801i \(-0.137199\pi\)
\(348\) 0 0
\(349\) −3.13210e10 −0.113011 −0.0565055 0.998402i \(-0.517996\pi\)
−0.0565055 + 0.998402i \(0.517996\pi\)
\(350\) 0 0
\(351\) 3.53285e11i 1.24235i
\(352\) 0 0
\(353\) 1.67054e11 0.572625 0.286312 0.958136i \(-0.407571\pi\)
0.286312 + 0.958136i \(0.407571\pi\)
\(354\) 0 0
\(355\) −3.65204e10 −0.122041
\(356\) 0 0
\(357\) −5.55307e10 + 9.19797e10i −0.180936 + 0.299699i
\(358\) 0 0
\(359\) 5.25130e11 1.66856 0.834280 0.551341i \(-0.185884\pi\)
0.834280 + 0.551341i \(0.185884\pi\)
\(360\) 0 0
\(361\) −1.38024e11 −0.427731
\(362\) 0 0
\(363\) 2.73154e11i 0.825709i
\(364\) 0 0
\(365\) −1.33789e9 −0.00394551
\(366\) 0 0
\(367\) 9.23982e10i 0.265868i −0.991125 0.132934i \(-0.957560\pi\)
0.991125 0.132934i \(-0.0424399\pi\)
\(368\) 0 0
\(369\) 3.48637e11i 0.978936i
\(370\) 0 0
\(371\) 4.90975e10i 0.134548i
\(372\) 0 0
\(373\) 1.27208e11 0.340272 0.170136 0.985421i \(-0.445579\pi\)
0.170136 + 0.985421i \(0.445579\pi\)
\(374\) 0 0
\(375\) 8.46085e10 0.220940
\(376\) 0 0
\(377\) 7.04185e10i 0.179536i
\(378\) 0 0
\(379\) 4.08652e11i 1.01737i −0.860954 0.508683i \(-0.830132\pi\)
0.860954 0.508683i \(-0.169868\pi\)
\(380\) 0 0
\(381\) 9.47223e11i 2.30298i
\(382\) 0 0
\(383\) −2.61140e11 −0.620123 −0.310062 0.950716i \(-0.600350\pi\)
−0.310062 + 0.950716i \(0.600350\pi\)
\(384\) 0 0
\(385\) 4.52133e9i 0.0104880i
\(386\) 0 0
\(387\) −7.55955e11 −1.71316
\(388\) 0 0
\(389\) −3.51283e11 −0.777829 −0.388914 0.921274i \(-0.627150\pi\)
−0.388914 + 0.921274i \(0.627150\pi\)
\(390\) 0 0
\(391\) −1.04017e11 6.27977e10i −0.225064 0.135878i
\(392\) 0 0
\(393\) 3.29461e11 0.696686
\(394\) 0 0
\(395\) −5.45004e10 −0.112645
\(396\) 0 0
\(397\) 4.17307e11i 0.843137i −0.906797 0.421569i \(-0.861480\pi\)
0.906797 0.421569i \(-0.138520\pi\)
\(398\) 0 0
\(399\) 1.34075e11 0.264831
\(400\) 0 0
\(401\) 4.93060e11i 0.952248i −0.879378 0.476124i \(-0.842041\pi\)
0.879378 0.476124i \(-0.157959\pi\)
\(402\) 0 0
\(403\) 1.20965e12i 2.28447i
\(404\) 0 0
\(405\) 3.49711e9i 0.00645895i
\(406\) 0 0
\(407\) 5.48842e11 0.991454
\(408\) 0 0
\(409\) 2.79374e11 0.493663 0.246831 0.969058i \(-0.420611\pi\)
0.246831 + 0.969058i \(0.420611\pi\)
\(410\) 0 0
\(411\) 9.31857e11i 1.61087i
\(412\) 0 0
\(413\) 6.97649e10i 0.117995i
\(414\) 0 0
\(415\) 5.48132e10i 0.0907129i
\(416\) 0 0
\(417\) 3.92291e11 0.635325
\(418\) 0 0
\(419\) 4.89354e10i 0.0775640i −0.999248 0.0387820i \(-0.987652\pi\)
0.999248 0.0387820i \(-0.0123478\pi\)
\(420\) 0 0
\(421\) 9.73572e11 1.51042 0.755211 0.655481i \(-0.227534\pi\)
0.755211 + 0.655481i \(0.227534\pi\)
\(422\) 0 0
\(423\) −3.46274e11 −0.525882
\(424\) 0 0
\(425\) 3.45966e11 5.73050e11i 0.514380 0.852006i
\(426\) 0 0
\(427\) 2.12070e11 0.308712
\(428\) 0 0
\(429\) −1.05547e12 −1.50449
\(430\) 0 0
\(431\) 3.60887e11i 0.503760i 0.967758 + 0.251880i \(0.0810489\pi\)
−0.967758 + 0.251880i \(0.918951\pi\)
\(432\) 0 0
\(433\) −1.32088e12 −1.80579 −0.902895 0.429862i \(-0.858562\pi\)
−0.902895 + 0.429862i \(0.858562\pi\)
\(434\) 0 0
\(435\) 1.10343e10i 0.0147755i
\(436\) 0 0
\(437\) 1.51621e11i 0.198880i
\(438\) 0 0
\(439\) 4.29288e11i 0.551643i −0.961209 0.275822i \(-0.911050\pi\)
0.961209 0.275822i \(-0.0889499\pi\)
\(440\) 0 0
\(441\) −1.19173e12 −1.50039
\(442\) 0 0
\(443\) 9.88207e11 1.21908 0.609538 0.792757i \(-0.291355\pi\)
0.609538 + 0.792757i \(0.291355\pi\)
\(444\) 0 0
\(445\) 2.51877e10i 0.0304487i
\(446\) 0 0
\(447\) 1.08120e12i 1.28092i
\(448\) 0 0
\(449\) 5.27610e11i 0.612639i 0.951929 + 0.306319i \(0.0990975\pi\)
−0.951929 + 0.306319i \(0.900902\pi\)
\(450\) 0 0
\(451\) −3.80410e11 −0.432970
\(452\) 0 0
\(453\) 2.76380e11i 0.308365i
\(454\) 0 0
\(455\) 1.85161e10 0.0202534
\(456\) 0 0
\(457\) 1.13024e11 0.121213 0.0606064 0.998162i \(-0.480697\pi\)
0.0606064 + 0.998162i \(0.480697\pi\)
\(458\) 0 0
\(459\) −7.51673e11 4.53806e11i −0.790446 0.477214i
\(460\) 0 0
\(461\) 1.11660e12 1.15145 0.575725 0.817643i \(-0.304720\pi\)
0.575725 + 0.817643i \(0.304720\pi\)
\(462\) 0 0
\(463\) 3.92248e11 0.396685 0.198343 0.980133i \(-0.436444\pi\)
0.198343 + 0.980133i \(0.436444\pi\)
\(464\) 0 0
\(465\) 1.89547e11i 0.188009i
\(466\) 0 0
\(467\) −1.59510e11 −0.155189 −0.0775946 0.996985i \(-0.524724\pi\)
−0.0775946 + 0.996985i \(0.524724\pi\)
\(468\) 0 0
\(469\) 3.38160e11i 0.322734i
\(470\) 0 0
\(471\) 3.88724e11i 0.363955i
\(472\) 0 0
\(473\) 8.24850e11i 0.757705i
\(474\) 0 0
\(475\) −8.35312e11 −0.752883
\(476\) 0 0
\(477\) −1.09860e12 −0.971640
\(478\) 0 0
\(479\) 4.37040e11i 0.379325i 0.981849 + 0.189662i \(0.0607393\pi\)
−0.981849 + 0.189662i \(0.939261\pi\)
\(480\) 0 0
\(481\) 2.24766e12i 1.91460i
\(482\) 0 0
\(483\) 1.10084e11i 0.0920367i
\(484\) 0 0
\(485\) 1.00765e11 0.0826933
\(486\) 0 0
\(487\) 1.05048e12i 0.846270i 0.906067 + 0.423135i \(0.139070\pi\)
−0.906067 + 0.423135i \(0.860930\pi\)
\(488\) 0 0
\(489\) 5.12097e11 0.405007
\(490\) 0 0
\(491\) −1.77945e12 −1.38172 −0.690859 0.722990i \(-0.742767\pi\)
−0.690859 + 0.722990i \(0.742767\pi\)
\(492\) 0 0
\(493\) 1.49827e11 + 9.04548e10i 0.114230 + 0.0689637i
\(494\) 0 0
\(495\) −1.01168e11 −0.0757393
\(496\) 0 0
\(497\) 5.24810e11 0.385832
\(498\) 0 0
\(499\) 1.14978e12i 0.830162i −0.909785 0.415081i \(-0.863753\pi\)
0.909785 0.415081i \(-0.136247\pi\)
\(500\) 0 0
\(501\) −3.21026e12 −2.27651
\(502\) 0 0
\(503\) 1.33344e12i 0.928788i −0.885629 0.464394i \(-0.846272\pi\)
0.885629 0.464394i \(-0.153728\pi\)
\(504\) 0 0
\(505\) 2.87013e9i 0.00196377i
\(506\) 0 0
\(507\) 1.93487e12i 1.30052i
\(508\) 0 0
\(509\) −2.18589e12 −1.44344 −0.721721 0.692185i \(-0.756648\pi\)
−0.721721 + 0.692185i \(0.756648\pi\)
\(510\) 0 0
\(511\) 1.92259e10 0.0124737
\(512\) 0 0
\(513\) 1.09568e12i 0.698484i
\(514\) 0 0
\(515\) 1.54797e11i 0.0969681i
\(516\) 0 0
\(517\) 3.77832e11i 0.232590i
\(518\) 0 0
\(519\) −1.55969e12 −0.943592
\(520\) 0 0
\(521\) 9.81356e11i 0.583521i −0.956491 0.291761i \(-0.905759\pi\)
0.956491 0.291761i \(-0.0942411\pi\)
\(522\) 0 0
\(523\) −1.01562e11 −0.0593572 −0.0296786 0.999559i \(-0.509448\pi\)
−0.0296786 + 0.999559i \(0.509448\pi\)
\(524\) 0 0
\(525\) −6.06476e11 −0.348415
\(526\) 0 0
\(527\) −2.57373e12 1.55383e12i −1.45350 0.877518i
\(528\) 0 0
\(529\) 1.67666e12 0.930883
\(530\) 0 0
\(531\) 1.56105e12 0.852099
\(532\) 0 0
\(533\) 1.55788e12i 0.836107i
\(534\) 0 0
\(535\) 2.27083e11 0.119837
\(536\) 0 0
\(537\) 2.98768e12i 1.55042i
\(538\) 0 0
\(539\) 1.30034e12i 0.663601i
\(540\) 0 0
\(541\) 2.29392e12i 1.15131i −0.817694 0.575653i \(-0.804748\pi\)
0.817694 0.575653i \(-0.195252\pi\)
\(542\) 0 0
\(543\) 2.01521e12 0.994765
\(544\) 0 0
\(545\) 1.62861e11 0.0790739
\(546\) 0 0
\(547\) 4.31625e10i 0.0206140i 0.999947 + 0.0103070i \(0.00328088\pi\)
−0.999947 + 0.0103070i \(0.996719\pi\)
\(548\) 0 0
\(549\) 4.74522e12i 2.22937i
\(550\) 0 0
\(551\) 2.18397e11i 0.100940i
\(552\) 0 0
\(553\) 7.83189e11 0.356126
\(554\) 0 0
\(555\) 3.52198e11i 0.157568i
\(556\) 0 0
\(557\) −1.26017e12 −0.554730 −0.277365 0.960765i \(-0.589461\pi\)
−0.277365 + 0.960765i \(0.589461\pi\)
\(558\) 0 0
\(559\) 3.37798e12 1.46320
\(560\) 0 0
\(561\) −1.35578e12 + 2.24569e12i −0.577907 + 0.957231i
\(562\) 0 0
\(563\) −1.57680e12 −0.661436 −0.330718 0.943730i \(-0.607291\pi\)
−0.330718 + 0.943730i \(0.607291\pi\)
\(564\) 0 0
\(565\) −2.31111e11 −0.0954121
\(566\) 0 0
\(567\) 5.02547e10i 0.0204199i
\(568\) 0 0
\(569\) 4.44023e12 1.77583 0.887913 0.460012i \(-0.152155\pi\)
0.887913 + 0.460012i \(0.152155\pi\)
\(570\) 0 0
\(571\) 2.59026e11i 0.101972i 0.998699 + 0.0509860i \(0.0162364\pi\)
−0.998699 + 0.0509860i \(0.983764\pi\)
\(572\) 0 0
\(573\) 4.74067e11i 0.183715i
\(574\) 0 0
\(575\) 6.85842e11i 0.261649i
\(576\) 0 0
\(577\) 2.66713e12 1.00173 0.500867 0.865524i \(-0.333015\pi\)
0.500867 + 0.865524i \(0.333015\pi\)
\(578\) 0 0
\(579\) 1.14989e12 0.425209
\(580\) 0 0
\(581\) 7.87685e11i 0.286787i
\(582\) 0 0
\(583\) 1.19872e12i 0.429743i
\(584\) 0 0
\(585\) 4.14312e11i 0.146260i
\(586\) 0 0
\(587\) 4.82084e12 1.67591 0.837956 0.545738i \(-0.183751\pi\)
0.837956 + 0.545738i \(0.183751\pi\)
\(588\) 0 0
\(589\) 3.75162e12i 1.28440i
\(590\) 0 0
\(591\) −4.17684e12 −1.40833
\(592\) 0 0
\(593\) 2.49924e12 0.829968 0.414984 0.909829i \(-0.363787\pi\)
0.414984 + 0.909829i \(0.363787\pi\)
\(594\) 0 0
\(595\) 2.37845e10 3.93960e10i 0.00777977 0.0128862i
\(596\) 0 0
\(597\) 3.08918e12 0.995310
\(598\) 0 0
\(599\) 3.23334e12 1.02620 0.513098 0.858330i \(-0.328498\pi\)
0.513098 + 0.858330i \(0.328498\pi\)
\(600\) 0 0
\(601\) 5.50244e12i 1.72036i 0.509988 + 0.860181i \(0.329650\pi\)
−0.509988 + 0.860181i \(0.670350\pi\)
\(602\) 0 0
\(603\) −7.56660e12 −2.33063
\(604\) 0 0
\(605\) 1.16995e11i 0.0355032i
\(606\) 0 0
\(607\) 3.65674e12i 1.09331i 0.837357 + 0.546657i \(0.184100\pi\)
−0.837357 + 0.546657i \(0.815900\pi\)
\(608\) 0 0
\(609\) 1.58566e11i 0.0467125i
\(610\) 0 0
\(611\) 1.54732e12 0.449155
\(612\) 0 0
\(613\) 1.17726e12 0.336743 0.168372 0.985724i \(-0.446149\pi\)
0.168372 + 0.985724i \(0.446149\pi\)
\(614\) 0 0
\(615\) 2.44114e11i 0.0688104i
\(616\) 0 0
\(617\) 3.74523e12i 1.04039i −0.854048 0.520194i \(-0.825859\pi\)
0.854048 0.520194i \(-0.174141\pi\)
\(618\) 0 0
\(619\) 6.72874e12i 1.84215i −0.389381 0.921077i \(-0.627311\pi\)
0.389381 0.921077i \(-0.372689\pi\)
\(620\) 0 0
\(621\) −8.99623e11 −0.242744
\(622\) 0 0
\(623\) 3.61956e11i 0.0962631i
\(624\) 0 0
\(625\) 3.76030e12 0.985739
\(626\) 0 0
\(627\) 3.27345e12 0.845865
\(628\) 0 0
\(629\) −4.78226e12 2.88718e12i −1.21816 0.735439i
\(630\) 0 0
\(631\) 4.61439e12 1.15873 0.579365 0.815068i \(-0.303300\pi\)
0.579365 + 0.815068i \(0.303300\pi\)
\(632\) 0 0
\(633\) 1.37797e12 0.341131
\(634\) 0 0
\(635\) 4.05707e11i 0.0990218i
\(636\) 0 0
\(637\) 5.32524e12 1.28148
\(638\) 0 0
\(639\) 1.17430e13i 2.78629i
\(640\) 0 0
\(641\) 7.42031e12i 1.73605i −0.496524 0.868023i \(-0.665391\pi\)
0.496524 0.868023i \(-0.334609\pi\)
\(642\) 0 0
\(643\) 6.05336e12i 1.39652i −0.715845 0.698260i \(-0.753958\pi\)
0.715845 0.698260i \(-0.246042\pi\)
\(644\) 0 0
\(645\) 5.29316e11 0.120419
\(646\) 0 0
\(647\) 4.28077e12 0.960402 0.480201 0.877159i \(-0.340564\pi\)
0.480201 + 0.877159i \(0.340564\pi\)
\(648\) 0 0
\(649\) 1.70331e12i 0.376872i
\(650\) 0 0
\(651\) 2.72385e12i 0.594387i
\(652\) 0 0
\(653\) 2.02322e12i 0.435445i −0.976011 0.217723i \(-0.930137\pi\)
0.976011 0.217723i \(-0.0698629\pi\)
\(654\) 0 0
\(655\) −1.41112e11 −0.0299556
\(656\) 0 0
\(657\) 4.30196e11i 0.0900787i
\(658\) 0 0
\(659\) 2.09148e12 0.431985 0.215993 0.976395i \(-0.430701\pi\)
0.215993 + 0.976395i \(0.430701\pi\)
\(660\) 0 0
\(661\) −3.66578e12 −0.746895 −0.373448 0.927651i \(-0.621824\pi\)
−0.373448 + 0.927651i \(0.621824\pi\)
\(662\) 0 0
\(663\) 9.19669e12 + 5.55230e12i 1.84851 + 1.11599i
\(664\) 0 0
\(665\) −5.74259e10 −0.0113870
\(666\) 0 0
\(667\) 1.79317e11 0.0350797
\(668\) 0 0
\(669\) 1.42118e12i 0.274305i
\(670\) 0 0
\(671\) 5.17769e12 0.986017
\(672\) 0 0
\(673\) 4.12814e12i 0.775686i 0.921725 + 0.387843i \(0.126780\pi\)
−0.921725 + 0.387843i \(0.873220\pi\)
\(674\) 0 0
\(675\) 4.95622e12i 0.918933i
\(676\) 0 0
\(677\) 3.86753e12i 0.707594i 0.935322 + 0.353797i \(0.115110\pi\)
−0.935322 + 0.353797i \(0.884890\pi\)
\(678\) 0 0
\(679\) −1.44802e12 −0.261434
\(680\) 0 0
\(681\) −1.22262e13 −2.17835
\(682\) 0 0
\(683\) 6.60671e12i 1.16170i 0.814012 + 0.580848i \(0.197279\pi\)
−0.814012 + 0.580848i \(0.802721\pi\)
\(684\) 0 0
\(685\) 3.99126e11i 0.0692631i
\(686\) 0 0
\(687\) 2.33591e12i 0.400084i
\(688\) 0 0
\(689\) 4.90907e12 0.829875
\(690\) 0 0
\(691\) 8.12202e12i 1.35523i −0.735417 0.677615i \(-0.763014\pi\)
0.735417 0.677615i \(-0.236986\pi\)
\(692\) 0 0
\(693\) 1.45382e12 0.239449
\(694\) 0 0
\(695\) −1.68023e11 −0.0273172
\(696\) 0 0
\(697\) 3.31465e12 + 2.00115e12i 0.531974 + 0.321168i
\(698\) 0 0
\(699\) −1.33547e13 −2.11586
\(700\) 0 0
\(701\) 6.09018e12 0.952574 0.476287 0.879290i \(-0.341982\pi\)
0.476287 + 0.879290i \(0.341982\pi\)
\(702\) 0 0
\(703\) 6.97091e12i 1.07644i
\(704\) 0 0
\(705\) 2.42459e11 0.0369647
\(706\) 0 0
\(707\) 4.12448e10i 0.00620843i
\(708\) 0 0
\(709\) 1.24847e12i 0.185553i −0.995687 0.0927767i \(-0.970426\pi\)
0.995687 0.0927767i \(-0.0295743\pi\)
\(710\) 0 0
\(711\) 1.75245e13i 2.57177i
\(712\) 0 0
\(713\) −3.08031e12 −0.446366
\(714\) 0 0
\(715\) 4.52071e11 0.0646888
\(716\) 0 0
\(717\) 1.47953e13i 2.09068i
\(718\) 0 0
\(719\) 4.85534e12i 0.677547i 0.940868 + 0.338774i \(0.110012\pi\)
−0.940868 + 0.338774i \(0.889988\pi\)
\(720\) 0 0
\(721\) 2.22448e12i 0.306563i
\(722\) 0 0
\(723\) −4.56979e12 −0.621976
\(724\) 0 0
\(725\) 9.87898e11i 0.132798i
\(726\) 0 0
\(727\) −3.36183e12 −0.446345 −0.223173 0.974779i \(-0.571641\pi\)
−0.223173 + 0.974779i \(0.571641\pi\)
\(728\) 0 0
\(729\) 1.24237e13 1.62921
\(730\) 0 0
\(731\) 4.33912e12 7.18722e12i 0.562049 0.930964i
\(732\) 0 0
\(733\) −1.02897e13 −1.31654 −0.658271 0.752781i \(-0.728712\pi\)
−0.658271 + 0.752781i \(0.728712\pi\)
\(734\) 0 0
\(735\) 8.34442e11 0.105464
\(736\) 0 0
\(737\) 8.25619e12i 1.03080i
\(738\) 0 0
\(739\) 1.10714e12 0.136553 0.0682766 0.997666i \(-0.478250\pi\)
0.0682766 + 0.997666i \(0.478250\pi\)
\(740\) 0 0
\(741\) 1.34056e13i 1.63345i
\(742\) 0 0
\(743\) 5.80468e12i 0.698761i −0.936981 0.349380i \(-0.886392\pi\)
0.936981 0.349380i \(-0.113608\pi\)
\(744\) 0 0
\(745\) 4.63090e11i 0.0550760i
\(746\) 0 0
\(747\) −1.76251e13 −2.07104
\(748\) 0 0
\(749\) −3.26326e12 −0.378864
\(750\) 0 0
\(751\) 8.01566e12i 0.919517i 0.888044 + 0.459758i \(0.152064\pi\)
−0.888044 + 0.459758i \(0.847936\pi\)
\(752\) 0 0
\(753\) 1.96249e13i 2.22449i
\(754\) 0 0
\(755\) 1.18377e11i 0.0132588i
\(756\) 0 0
\(757\) −4.40521e12 −0.487568 −0.243784 0.969829i \(-0.578389\pi\)
−0.243784 + 0.969829i \(0.578389\pi\)
\(758\) 0 0
\(759\) 2.68770e12i 0.293963i
\(760\) 0 0
\(761\) −1.23860e13 −1.33875 −0.669377 0.742923i \(-0.733439\pi\)
−0.669377 + 0.742923i \(0.733439\pi\)
\(762\) 0 0
\(763\) −2.34037e12 −0.249991
\(764\) 0 0
\(765\) 8.81517e11 + 5.32196e11i 0.0930581 + 0.0561818i
\(766\) 0 0
\(767\) −6.97553e12 −0.727776
\(768\) 0 0
\(769\) −1.34212e13 −1.38396 −0.691978 0.721919i \(-0.743260\pi\)
−0.691978 + 0.721919i \(0.743260\pi\)
\(770\) 0 0
\(771\) 2.70863e12i 0.276061i
\(772\) 0 0
\(773\) 3.10743e12 0.313036 0.156518 0.987675i \(-0.449973\pi\)
0.156518 + 0.987675i \(0.449973\pi\)
\(774\) 0 0
\(775\) 1.69701e13i 1.68977i
\(776\) 0 0
\(777\) 5.06121e12i 0.498150i
\(778\) 0 0
\(779\) 4.83163e12i 0.470084i
\(780\) 0 0
\(781\) 1.28133e13 1.23234
\(782\) 0 0
\(783\) 1.29583e12 0.123203
\(784\) 0 0
\(785\) 1.66495e11i 0.0156491i
\(786\) 0 0
\(787\) 4.60263e12i 0.427681i 0.976869 + 0.213840i \(0.0685973\pi\)
−0.976869 + 0.213840i \(0.931403\pi\)
\(788\) 0 0
\(789\) 7.91084e12i 0.726735i
\(790\) 0 0
\(791\) 3.32115e12 0.301644
\(792\) 0 0
\(793\) 2.12040e13i 1.90410i
\(794\) 0 0
\(795\) 7.69231e11 0.0682975
\(796\) 0 0
\(797\) 1.39540e13 1.22500 0.612502 0.790469i \(-0.290163\pi\)
0.612502 + 0.790469i \(0.290163\pi\)
\(798\) 0 0
\(799\) 1.98759e12 3.29219e12i 0.172530 0.285775i
\(800\) 0 0
\(801\) −8.09906e12 −0.695165
\(802\) 0 0
\(803\) 4.69402e11 0.0398405
\(804\) 0 0
\(805\) 4.71502e10i 0.00395733i
\(806\) 0 0
\(807\) 1.86884e13 1.55110
\(808\) 0 0
\(809\) 2.10896e13i 1.73101i 0.500896 + 0.865507i \(0.333004\pi\)
−0.500896 + 0.865507i \(0.666996\pi\)
\(810\) 0 0
\(811\) 3.64082e12i 0.295533i 0.989022 + 0.147766i \(0.0472084\pi\)
−0.989022 + 0.147766i \(0.952792\pi\)
\(812\) 0 0
\(813\) 1.25513e13i 1.00758i
\(814\) 0 0
\(815\) −2.19338e11 −0.0174142
\(816\) 0 0
\(817\) −1.04765e13 −0.822655
\(818\) 0 0
\(819\) 5.95380e12i 0.462399i
\(820\) 0 0
\(821\) 1.79752e13i 1.38080i −0.723429 0.690399i \(-0.757435\pi\)
0.723429 0.690399i \(-0.242565\pi\)
\(822\) 0 0
\(823\) 4.92718e12i 0.374368i −0.982325 0.187184i \(-0.940064\pi\)
0.982325 0.187184i \(-0.0599361\pi\)
\(824\) 0 0
\(825\) −1.48071e13 −1.11283
\(826\) 0 0
\(827\) 5.12459e12i 0.380964i 0.981691 + 0.190482i \(0.0610051\pi\)
−0.981691 + 0.190482i \(0.938995\pi\)
\(828\) 0 0
\(829\) 1.91602e13 1.40898 0.704490 0.709714i \(-0.251176\pi\)
0.704490 + 0.709714i \(0.251176\pi\)
\(830\) 0 0
\(831\) −4.16450e13 −3.02941
\(832\) 0 0
\(833\) 6.84043e12 1.13303e13i 0.492245 0.815342i
\(834\) 0 0
\(835\) 1.37499e12 0.0978839
\(836\) 0 0
\(837\) −2.22598e13 −1.56768
\(838\) 0 0
\(839\) 9.27849e12i 0.646470i 0.946319 + 0.323235i \(0.104770\pi\)
−0.946319 + 0.323235i \(0.895230\pi\)
\(840\) 0 0
\(841\) 1.42489e13 0.982196
\(842\) 0 0
\(843\) 3.05800e13i 2.08552i
\(844\) 0 0
\(845\) 8.28729e11i 0.0559187i
\(846\) 0 0
\(847\) 1.68126e12i 0.112243i
\(848\) 0 0
\(849\) −1.31933e13 −0.871501
\(850\) 0 0
\(851\) −5.72354e12 −0.374095
\(852\) 0 0
\(853\) 1.45073e13i 0.938244i −0.883133 0.469122i \(-0.844571\pi\)
0.883133 0.469122i \(-0.155429\pi\)
\(854\) 0 0
\(855\) 1.28495e12i 0.0822317i
\(856\) 0 0
\(857\) 6.75756e12i 0.427933i −0.976841 0.213967i \(-0.931362\pi\)
0.976841 0.213967i \(-0.0686384\pi\)
\(858\) 0 0
\(859\) 6.20315e11 0.0388726 0.0194363 0.999811i \(-0.493813\pi\)
0.0194363 + 0.999811i \(0.493813\pi\)
\(860\) 0 0
\(861\) 3.50800e12i 0.217543i
\(862\) 0 0
\(863\) −1.36639e12 −0.0838542 −0.0419271 0.999121i \(-0.513350\pi\)
−0.0419271 + 0.999121i \(0.513350\pi\)
\(864\) 0 0
\(865\) 6.68033e11 0.0405719
\(866\) 0 0
\(867\) 2.36269e13 1.24354e13i 1.42010 0.747435i
\(868\) 0 0
\(869\) 1.91216e13 1.13746
\(870\) 0 0
\(871\) 3.38113e13 1.99058
\(872\) 0 0
\(873\) 3.24007e13i 1.88795i
\(874\) 0 0
\(875\) 5.20765e11 0.0300335
\(876\) 0 0
\(877\) 1.47910e13i 0.844304i −0.906525 0.422152i \(-0.861275\pi\)
0.906525 0.422152i \(-0.138725\pi\)
\(878\) 0 0
\(879\) 1.23432e13i 0.697396i
\(880\) 0 0
\(881\) 1.90695e12i 0.106647i −0.998577 0.0533234i \(-0.983019\pi\)
0.998577 0.0533234i \(-0.0169814\pi\)
\(882\) 0 0
\(883\) −9.34392e12 −0.517256 −0.258628 0.965977i \(-0.583270\pi\)
−0.258628 + 0.965977i \(0.583270\pi\)
\(884\) 0 0
\(885\) −1.09304e12 −0.0598949
\(886\) 0 0
\(887\) 6.67058e12i 0.361832i 0.983499 + 0.180916i \(0.0579063\pi\)
−0.983499 + 0.180916i \(0.942094\pi\)
\(888\) 0 0
\(889\) 5.83015e12i 0.313056i
\(890\) 0 0
\(891\) 1.22697e12i 0.0652206i
\(892\) 0 0
\(893\) −4.79889e12 −0.252528
\(894\) 0 0
\(895\) 1.27966e12i 0.0666639i
\(896\) 0 0
\(897\) 1.10069e13 0.567672
\(898\) 0 0
\(899\) 4.43692e12 0.226550
\(900\) 0 0
\(901\) 6.30586e12 1.04449e13i 0.318774 0.528009i
\(902\) 0 0
\(903\) −7.60645e12 −0.380704
\(904\) 0 0
\(905\) −8.63138e11 −0.0427722
\(906\) 0 0
\(907\) 2.25953e13i 1.10863i 0.832308 + 0.554313i \(0.187019\pi\)
−0.832308 + 0.554313i \(0.812981\pi\)
\(908\) 0 0
\(909\) −9.22885e11 −0.0448343
\(910\) 0 0
\(911\) 2.70620e13i 1.30175i 0.759186 + 0.650873i \(0.225597\pi\)
−0.759186 + 0.650873i \(0.774403\pi\)
\(912\) 0 0
\(913\) 1.92314e13i 0.915992i
\(914\) 0 0
\(915\) 3.32258e12i 0.156704i
\(916\) 0 0
\(917\) 2.02783e12 0.0947042
\(918\) 0 0
\(919\) −1.59897e13 −0.739468 −0.369734 0.929138i \(-0.620551\pi\)
−0.369734 + 0.929138i \(0.620551\pi\)
\(920\) 0 0
\(921\) 4.23398e13i 1.93901i
\(922\) 0 0
\(923\) 5.24738e13i 2.37977i
\(924\) 0 0
\(925\) 3.15323e13i 1.41618i
\(926\) 0 0
\(927\) 4.97745e13 2.21385
\(928\) 0 0
\(929\) 9.00625e12i 0.396710i −0.980130 0.198355i \(-0.936440\pi\)
0.980130 0.198355i \(-0.0635599\pi\)
\(930\) 0 0
\(931\) −1.65157e13 −0.720485
\(932\) 0 0
\(933\) 4.09129e13 1.76764
\(934\) 0 0
\(935\) 5.80699e11 9.61855e11i 0.0248484 0.0411583i
\(936\) 0 0
\(937\) −4.00157e13 −1.69591 −0.847954 0.530071i \(-0.822165\pi\)
−0.847954 + 0.530071i \(0.822165\pi\)
\(938\) 0 0
\(939\) −4.98809e13 −2.09382
\(940\) 0 0
\(941\) 2.42260e13i 1.00723i 0.863928 + 0.503615i \(0.167997\pi\)
−0.863928 + 0.503615i \(0.832003\pi\)
\(942\) 0 0
\(943\) 3.96707e12 0.163368
\(944\) 0 0
\(945\) 3.40730e11i 0.0138985i
\(946\) 0 0
\(947\) 3.52100e13i 1.42263i −0.702875 0.711313i \(-0.748101\pi\)
0.702875 0.711313i \(-0.251899\pi\)
\(948\) 0 0
\(949\) 1.92233e12i 0.0769360i
\(950\) 0 0
\(951\) 6.00782e13 2.38180
\(952\) 0 0
\(953\) 9.99226e12 0.392415 0.196208 0.980562i \(-0.437137\pi\)
0.196208 + 0.980562i \(0.437137\pi\)
\(954\) 0 0
\(955\) 2.03049e11i 0.00789923i
\(956\) 0 0
\(957\) 3.87141e12i 0.149199i
\(958\) 0 0
\(959\) 5.73557e12i 0.218974i
\(960\) 0 0
\(961\) −4.97778e13 −1.88270
\(962\) 0 0
\(963\) 7.30180e13i 2.73597i
\(964\) 0 0
\(965\) −4.92511e11 −0.0182828
\(966\) 0 0
\(967\) −3.17277e12 −0.116686 −0.0583431 0.998297i \(-0.518582\pi\)
−0.0583431 + 0.998297i \(0.518582\pi\)
\(968\) 0 0
\(969\) −2.85227e13 1.72200e13i −1.03928 0.627444i
\(970\) 0 0
\(971\) −2.55138e13 −0.921061 −0.460531 0.887644i \(-0.652341\pi\)
−0.460531 + 0.887644i \(0.652341\pi\)
\(972\) 0 0
\(973\) 2.41455e12 0.0863630
\(974\) 0 0
\(975\) 6.06392e13i 2.14898i
\(976\) 0 0
\(977\) −4.02976e12 −0.141499 −0.0707496 0.997494i \(-0.522539\pi\)
−0.0707496 + 0.997494i \(0.522539\pi\)
\(978\) 0 0
\(979\) 8.83718e12i 0.307462i
\(980\) 0 0
\(981\) 5.23676e13i 1.80531i
\(982\) 0 0
\(983\) 9.84380e12i 0.336258i 0.985765 + 0.168129i \(0.0537724\pi\)
−0.985765 + 0.168129i \(0.946228\pi\)
\(984\) 0 0
\(985\) 1.78899e12 0.0605544
\(986\) 0 0
\(987\) −3.48422e12 −0.116863
\(988\) 0 0
\(989\) 8.60186e12i 0.285897i
\(990\) 0 0
\(991\) 7.10324e12i 0.233951i 0.993135 + 0.116976i \(0.0373199\pi\)
−0.993135 + 0.116976i \(0.962680\pi\)
\(992\) 0 0
\(993\) 7.79626e13i 2.54457i
\(994\) 0 0
\(995\) −1.32313e12 −0.0427956
\(996\) 0 0
\(997\) 3.04471e13i 0.975928i −0.872864 0.487964i \(-0.837740\pi\)
0.872864 0.487964i \(-0.162260\pi\)
\(998\) 0 0
\(999\) −4.13611e13 −1.31385
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 272.10.b.c.33.12 12
4.3 odd 2 17.10.b.a.16.9 12
12.11 even 2 153.10.d.b.118.4 12
17.16 even 2 inner 272.10.b.c.33.1 12
68.47 odd 4 289.10.a.c.1.4 12
68.55 odd 4 289.10.a.c.1.3 12
68.67 odd 2 17.10.b.a.16.10 yes 12
204.203 even 2 153.10.d.b.118.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.10.b.a.16.9 12 4.3 odd 2
17.10.b.a.16.10 yes 12 68.67 odd 2
153.10.d.b.118.3 12 204.203 even 2
153.10.d.b.118.4 12 12.11 even 2
272.10.b.c.33.1 12 17.16 even 2 inner
272.10.b.c.33.12 12 1.1 even 1 trivial
289.10.a.c.1.3 12 68.55 odd 4
289.10.a.c.1.4 12 68.47 odd 4