Properties

Label 2704.2.bh
Level $2704$
Weight $2$
Character orbit 2704.bh
Rep. character $\chi_{2704}(485,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $1192$
Sturm bound $728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2704 = 2^{4} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2704.bh (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 208 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2704, [\chi])\).

Total New Old
Modular forms 1512 1272 240
Cusp forms 1400 1192 208
Eisenstein series 112 80 32

Trace form

\( 1192 q + 6 q^{2} + 2 q^{3} + 2 q^{4} + 24 q^{6} + 2 q^{10} + 6 q^{11} - 36 q^{12} - 64 q^{14} + 12 q^{15} + 2 q^{16} + 4 q^{17} + 6 q^{19} + 30 q^{20} - 2 q^{22} - 42 q^{24} - 4 q^{27} + 72 q^{28} + 2 q^{29}+ \cdots - 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2704, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2704, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2704, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(208, [\chi])\)\(^{\oplus 2}\)