Properties

Label 2700.3.u.a.2249.4
Level $2700$
Weight $3$
Character 2700.2249
Analytic conductor $73.570$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2700,3,Mod(449,2700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2700.449"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2700, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2700.u (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(73.5696713773\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.12960000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2249.4
Root \(-1.40126 - 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 2700.2249
Dual form 2700.3.u.a.449.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(10.1723 + 5.87298i) q^{7} +(-13.1190 - 7.57423i) q^{11} +(15.3685 - 8.87298i) q^{13} +15.1485 q^{17} +11.2540 q^{19} +(16.8805 + 29.2379i) q^{23} +(8.23790 + 4.75615i) q^{29} +(-28.1109 - 48.6895i) q^{31} +14.0000i q^{37} +(22.5000 - 12.9904i) q^{41} +(-17.3065 - 9.99193i) q^{43} +(36.1531 - 62.6190i) q^{47} +(44.4839 + 77.0483i) q^{49} -37.6651 q^{53} +(-55.1190 + 31.8229i) q^{59} +(-0.618950 + 1.07205i) q^{61} +(74.4363 - 42.9758i) q^{67} +22.1046i q^{71} +60.2379i q^{73} +(-88.9666 - 154.095i) q^{77} +(51.6190 - 89.4066i) q^{79} +(45.0333 - 78.0000i) q^{83} -12.0964i q^{89} +208.444 q^{91} +(-86.3406 - 49.8488i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{11} + 152 q^{19} - 120 q^{29} - 8 q^{31} + 180 q^{41} + 108 q^{49} - 348 q^{59} + 88 q^{61} + 320 q^{79} + 800 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2700\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1351\) \(2377\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 10.1723 + 5.87298i 1.45319 + 0.838998i 0.998661 0.0517360i \(-0.0164754\pi\)
0.454526 + 0.890734i \(0.349809\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −13.1190 7.57423i −1.19263 0.688566i −0.233729 0.972302i \(-0.575093\pi\)
−0.958903 + 0.283735i \(0.908426\pi\)
\(12\) 0 0
\(13\) 15.3685 8.87298i 1.18219 0.682537i 0.225669 0.974204i \(-0.427543\pi\)
0.956520 + 0.291667i \(0.0942099\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 15.1485 0.891086 0.445543 0.895261i \(-0.353011\pi\)
0.445543 + 0.895261i \(0.353011\pi\)
\(18\) 0 0
\(19\) 11.2540 0.592318 0.296159 0.955139i \(-0.404294\pi\)
0.296159 + 0.955139i \(0.404294\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 16.8805 + 29.2379i 0.733935 + 1.27121i 0.955189 + 0.295997i \(0.0956518\pi\)
−0.221254 + 0.975216i \(0.571015\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.23790 + 4.75615i 0.284066 + 0.164005i 0.635262 0.772296i \(-0.280892\pi\)
−0.351197 + 0.936302i \(0.614225\pi\)
\(30\) 0 0
\(31\) −28.1109 48.6895i −0.906803 1.57063i −0.818479 0.574537i \(-0.805182\pi\)
−0.0883237 0.996092i \(-0.528151\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 14.0000i 0.378378i 0.981941 + 0.189189i \(0.0605859\pi\)
−0.981941 + 0.189189i \(0.939414\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 22.5000 12.9904i 0.548780 0.316839i −0.199849 0.979827i \(-0.564045\pi\)
0.748630 + 0.662988i \(0.230712\pi\)
\(42\) 0 0
\(43\) −17.3065 9.99193i −0.402478 0.232371i 0.285075 0.958505i \(-0.407982\pi\)
−0.687552 + 0.726135i \(0.741315\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 36.1531 62.6190i 0.769214 1.33232i −0.168775 0.985655i \(-0.553981\pi\)
0.937990 0.346664i \(-0.112685\pi\)
\(48\) 0 0
\(49\) 44.4839 + 77.0483i 0.907834 + 1.57241i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −37.6651 −0.710663 −0.355331 0.934740i \(-0.615632\pi\)
−0.355331 + 0.934740i \(0.615632\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −55.1190 + 31.8229i −0.934219 + 0.539372i −0.888144 0.459566i \(-0.848005\pi\)
−0.0460759 + 0.998938i \(0.514672\pi\)
\(60\) 0 0
\(61\) −0.618950 + 1.07205i −0.0101467 + 0.0175746i −0.871054 0.491187i \(-0.836563\pi\)
0.860907 + 0.508762i \(0.169897\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 74.4363 42.9758i 1.11099 0.641430i 0.171904 0.985114i \(-0.445008\pi\)
0.939085 + 0.343684i \(0.111675\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 22.1046i 0.311332i 0.987810 + 0.155666i \(0.0497524\pi\)
−0.987810 + 0.155666i \(0.950248\pi\)
\(72\) 0 0
\(73\) 60.2379i 0.825177i 0.910918 + 0.412588i \(0.135375\pi\)
−0.910918 + 0.412588i \(0.864625\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −88.9666 154.095i −1.15541 2.00123i
\(78\) 0 0
\(79\) 51.6190 89.4066i 0.653404 1.13173i −0.328887 0.944369i \(-0.606673\pi\)
0.982291 0.187360i \(-0.0599932\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 45.0333 78.0000i 0.542570 0.939759i −0.456185 0.889885i \(-0.650785\pi\)
0.998756 0.0498743i \(-0.0158821\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.0964i 0.135915i −0.997688 0.0679574i \(-0.978352\pi\)
0.997688 0.0679574i \(-0.0216482\pi\)
\(90\) 0 0
\(91\) 208.444 2.29059
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −86.3406 49.8488i −0.890110 0.513905i −0.0161312 0.999870i \(-0.505135\pi\)
−0.873978 + 0.485965i \(0.838468\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 134.238 + 77.5023i 1.32909 + 0.767349i 0.985159 0.171646i \(-0.0549086\pi\)
0.343929 + 0.938995i \(0.388242\pi\)
\(102\) 0 0
\(103\) −134.852 + 77.8569i −1.30924 + 0.755892i −0.981970 0.189038i \(-0.939463\pi\)
−0.327273 + 0.944930i \(0.606130\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 84.8705 0.793182 0.396591 0.917995i \(-0.370193\pi\)
0.396591 + 0.917995i \(0.370193\pi\)
\(108\) 0 0
\(109\) 38.0323 0.348920 0.174460 0.984664i \(-0.444182\pi\)
0.174460 + 0.984664i \(0.444182\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.46410 + 6.00000i 0.0306558 + 0.0530973i 0.880946 0.473216i \(-0.156907\pi\)
−0.850290 + 0.526314i \(0.823574\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 154.095 + 88.9666i 1.29491 + 0.747619i
\(120\) 0 0
\(121\) 54.2379 + 93.9428i 0.448247 + 0.776387i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 145.903i 1.14884i 0.818559 + 0.574422i \(0.194773\pi\)
−0.818559 + 0.574422i \(0.805227\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −57.7137 + 33.3210i −0.440563 + 0.254359i −0.703836 0.710362i \(-0.748531\pi\)
0.263274 + 0.964721i \(0.415198\pi\)
\(132\) 0 0
\(133\) 114.479 + 66.0948i 0.860748 + 0.496953i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 36.6070 63.4052i 0.267205 0.462812i −0.700934 0.713226i \(-0.747233\pi\)
0.968139 + 0.250414i \(0.0805667\pi\)
\(138\) 0 0
\(139\) −53.3569 92.4168i −0.383862 0.664869i 0.607748 0.794130i \(-0.292073\pi\)
−0.991611 + 0.129261i \(0.958740\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −268.824 −1.87989
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −144.333 + 83.3305i −0.968676 + 0.559265i −0.898832 0.438293i \(-0.855583\pi\)
−0.0698433 + 0.997558i \(0.522250\pi\)
\(150\) 0 0
\(151\) −1.71370 + 2.96822i −0.0113490 + 0.0196571i −0.871644 0.490139i \(-0.836946\pi\)
0.860295 + 0.509796i \(0.170279\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −58.8338 + 33.9677i −0.374738 + 0.216355i −0.675526 0.737336i \(-0.736084\pi\)
0.300788 + 0.953691i \(0.402750\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 396.556i 2.46308i
\(162\) 0 0
\(163\) 76.4113i 0.468781i −0.972143 0.234390i \(-0.924691\pi\)
0.972143 0.234390i \(-0.0753094\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 141.752 + 245.522i 0.848816 + 1.47019i 0.882266 + 0.470752i \(0.156017\pi\)
−0.0334495 + 0.999440i \(0.510649\pi\)
\(168\) 0 0
\(169\) 72.9597 126.370i 0.431714 0.747751i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 67.4941 116.903i 0.390139 0.675741i −0.602328 0.798248i \(-0.705760\pi\)
0.992468 + 0.122507i \(0.0390935\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 171.445i 0.957794i −0.877871 0.478897i \(-0.841037\pi\)
0.877871 0.478897i \(-0.158963\pi\)
\(180\) 0 0
\(181\) 120.794 0.667372 0.333686 0.942684i \(-0.391707\pi\)
0.333686 + 0.942684i \(0.391707\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −198.732 114.738i −1.06274 0.613572i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 241.808 + 139.608i 1.26601 + 0.730933i 0.974231 0.225552i \(-0.0724186\pi\)
0.291782 + 0.956485i \(0.405752\pi\)
\(192\) 0 0
\(193\) 91.1806 52.6431i 0.472438 0.272762i −0.244822 0.969568i \(-0.578729\pi\)
0.717260 + 0.696806i \(0.245396\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −57.9538 −0.294182 −0.147091 0.989123i \(-0.546991\pi\)
−0.147091 + 0.989123i \(0.546991\pi\)
\(198\) 0 0
\(199\) 25.2702 0.126986 0.0634929 0.997982i \(-0.479776\pi\)
0.0634929 + 0.997982i \(0.479776\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 55.8656 + 96.7621i 0.275200 + 0.476661i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −147.641 85.2406i −0.706417 0.407850i
\(210\) 0 0
\(211\) 52.0161 + 90.0946i 0.246522 + 0.426989i 0.962558 0.271074i \(-0.0873789\pi\)
−0.716036 + 0.698063i \(0.754046\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 660.379i 3.04322i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 232.808 134.412i 1.05343 0.608199i
\(222\) 0 0
\(223\) 214.223 + 123.681i 0.960639 + 0.554625i 0.896370 0.443307i \(-0.146195\pi\)
0.0642694 + 0.997933i \(0.479528\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 151.114 261.738i 0.665702 1.15303i −0.313392 0.949624i \(-0.601465\pi\)
0.979094 0.203407i \(-0.0652013\pi\)
\(228\) 0 0
\(229\) 133.111 + 230.555i 0.581270 + 1.00679i 0.995329 + 0.0965395i \(0.0307774\pi\)
−0.414059 + 0.910250i \(0.635889\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 176.969 0.759526 0.379763 0.925084i \(-0.376006\pi\)
0.379763 + 0.925084i \(0.376006\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 68.2863 39.4251i 0.285717 0.164959i −0.350292 0.936641i \(-0.613918\pi\)
0.636009 + 0.771682i \(0.280584\pi\)
\(240\) 0 0
\(241\) 110.246 190.952i 0.457452 0.792330i −0.541373 0.840782i \(-0.682095\pi\)
0.998826 + 0.0484519i \(0.0154288\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 172.957 99.8569i 0.700231 0.404279i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 277.373i 1.10507i −0.833490 0.552535i \(-0.813661\pi\)
0.833490 0.552535i \(-0.186339\pi\)
\(252\) 0 0
\(253\) 511.427i 2.02145i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 76.0322 + 131.692i 0.295845 + 0.512418i 0.975181 0.221409i \(-0.0710655\pi\)
−0.679336 + 0.733827i \(0.737732\pi\)
\(258\) 0 0
\(259\) −82.2218 + 142.412i −0.317459 + 0.549854i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.85999 4.95365i 0.0108745 0.0188352i −0.860537 0.509388i \(-0.829872\pi\)
0.871411 + 0.490553i \(0.163205\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 361.531i 1.34398i 0.740560 + 0.671990i \(0.234560\pi\)
−0.740560 + 0.671990i \(0.765440\pi\)
\(270\) 0 0
\(271\) 507.427 1.87243 0.936213 0.351433i \(-0.114306\pi\)
0.936213 + 0.351433i \(0.114306\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −193.606 111.778i −0.698937 0.403532i 0.108014 0.994149i \(-0.465551\pi\)
−0.806951 + 0.590618i \(0.798884\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 39.8105 + 22.9846i 0.141674 + 0.0817957i 0.569162 0.822226i \(-0.307268\pi\)
−0.427487 + 0.904021i \(0.640601\pi\)
\(282\) 0 0
\(283\) −124.736 + 72.0161i −0.440762 + 0.254474i −0.703921 0.710279i \(-0.748569\pi\)
0.263159 + 0.964753i \(0.415236\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 305.169 1.06331
\(288\) 0 0
\(289\) −59.5242 −0.205966
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 208.698 + 361.476i 0.712280 + 1.23371i 0.963999 + 0.265905i \(0.0856709\pi\)
−0.251719 + 0.967800i \(0.580996\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 518.855 + 299.561i 1.73530 + 1.00188i
\(300\) 0 0
\(301\) −117.365 203.282i −0.389917 0.675355i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 310.048i 1.00993i −0.863140 0.504965i \(-0.831505\pi\)
0.863140 0.504965i \(-0.168495\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 242.238 139.856i 0.778900 0.449698i −0.0571403 0.998366i \(-0.518198\pi\)
0.836040 + 0.548668i \(0.184865\pi\)
\(312\) 0 0
\(313\) −25.2509 14.5786i −0.0806738 0.0465771i 0.459120 0.888374i \(-0.348165\pi\)
−0.539794 + 0.841797i \(0.681498\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 62.9859 109.095i 0.198694 0.344147i −0.749411 0.662105i \(-0.769663\pi\)
0.948105 + 0.317957i \(0.102997\pi\)
\(318\) 0 0
\(319\) −72.0484 124.791i −0.225857 0.391196i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 170.481 0.527806
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 735.520 424.653i 2.23562 1.29074i
\(330\) 0 0
\(331\) 232.903 403.400i 0.703635 1.21873i −0.263547 0.964647i \(-0.584892\pi\)
0.967182 0.254085i \(-0.0817743\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 303.259 175.087i 0.899878 0.519545i 0.0227177 0.999742i \(-0.492768\pi\)
0.877161 + 0.480197i \(0.159435\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 851.673i 2.49758i
\(342\) 0 0
\(343\) 469.460i 1.36869i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −41.0594 71.1169i −0.118327 0.204948i 0.800778 0.598961i \(-0.204420\pi\)
−0.919105 + 0.394013i \(0.871086\pi\)
\(348\) 0 0
\(349\) 22.7621 39.4251i 0.0652209 0.112966i −0.831571 0.555418i \(-0.812558\pi\)
0.896792 + 0.442452i \(0.145891\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −262.046 + 453.877i −0.742340 + 1.28577i 0.209087 + 0.977897i \(0.432951\pi\)
−0.951427 + 0.307873i \(0.900383\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 295.601i 0.823401i 0.911319 + 0.411701i \(0.135065\pi\)
−0.911319 + 0.411701i \(0.864935\pi\)
\(360\) 0 0
\(361\) −234.347 −0.649160
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 28.1249 + 16.2379i 0.0766345 + 0.0442450i 0.537828 0.843055i \(-0.319245\pi\)
−0.461193 + 0.887300i \(0.652578\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −383.141 221.207i −1.03273 0.596244i
\(372\) 0 0
\(373\) 214.334 123.746i 0.574623 0.331759i −0.184371 0.982857i \(-0.559025\pi\)
0.758994 + 0.651098i \(0.225691\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 168.805 0.447759
\(378\) 0 0
\(379\) −300.746 −0.793525 −0.396762 0.917921i \(-0.629866\pi\)
−0.396762 + 0.917921i \(0.629866\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −106.039 183.665i −0.276865 0.479544i 0.693739 0.720226i \(-0.255962\pi\)
−0.970604 + 0.240683i \(0.922629\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −190.760 110.135i −0.490386 0.283124i 0.234349 0.972153i \(-0.424704\pi\)
−0.724734 + 0.689028i \(0.758038\pi\)
\(390\) 0 0
\(391\) 255.714 + 442.909i 0.653999 + 1.13276i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 97.4919i 0.245572i −0.992433 0.122786i \(-0.960817\pi\)
0.992433 0.122786i \(-0.0391828\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 66.8347 38.5870i 0.166670 0.0962270i −0.414345 0.910120i \(-0.635989\pi\)
0.581015 + 0.813893i \(0.302656\pi\)
\(402\) 0 0
\(403\) −864.042 498.855i −2.14402 1.23785i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 106.039 183.665i 0.260539 0.451266i
\(408\) 0 0
\(409\) −97.4355 168.763i −0.238229 0.412624i 0.721978 0.691917i \(-0.243233\pi\)
−0.960206 + 0.279293i \(0.909900\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −747.582 −1.81013
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 196.476 113.435i 0.468916 0.270729i −0.246870 0.969049i \(-0.579402\pi\)
0.715786 + 0.698320i \(0.246069\pi\)
\(420\) 0 0
\(421\) 150.857 261.292i 0.358330 0.620645i −0.629352 0.777120i \(-0.716680\pi\)
0.987682 + 0.156475i \(0.0500130\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −12.5923 + 7.27017i −0.0294902 + 0.0170262i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 707.661i 1.64191i 0.570996 + 0.820953i \(0.306557\pi\)
−0.570996 + 0.820953i \(0.693443\pi\)
\(432\) 0 0
\(433\) 669.883i 1.54707i 0.633751 + 0.773537i \(0.281514\pi\)
−0.633751 + 0.773537i \(0.718486\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 189.974 + 329.044i 0.434723 + 0.752962i
\(438\) 0 0
\(439\) −38.3327 + 66.3941i −0.0873181 + 0.151239i −0.906377 0.422471i \(-0.861163\pi\)
0.819059 + 0.573710i \(0.194496\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 340.704 590.117i 0.769084 1.33209i −0.168976 0.985620i \(-0.554046\pi\)
0.938060 0.346472i \(-0.112621\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 630.327i 1.40385i 0.712253 + 0.701923i \(0.247675\pi\)
−0.712253 + 0.701923i \(0.752325\pi\)
\(450\) 0 0
\(451\) −393.569 −0.872657
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 496.229 + 286.498i 1.08584 + 0.626910i 0.932466 0.361258i \(-0.117653\pi\)
0.153374 + 0.988168i \(0.450986\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −615.950 355.619i −1.33612 0.771407i −0.349887 0.936792i \(-0.613780\pi\)
−0.986229 + 0.165385i \(0.947113\pi\)
\(462\) 0 0
\(463\) −556.317 + 321.190i −1.20155 + 0.693714i −0.960899 0.276899i \(-0.910693\pi\)
−0.240648 + 0.970612i \(0.577360\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −506.331 −1.08422 −0.542111 0.840307i \(-0.682375\pi\)
−0.542111 + 0.840307i \(0.682375\pi\)
\(468\) 0 0
\(469\) 1009.58 2.15263
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 151.362 + 262.167i 0.320005 + 0.554265i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −644.044 371.839i −1.34456 0.776282i −0.357087 0.934071i \(-0.616230\pi\)
−0.987473 + 0.157789i \(0.949563\pi\)
\(480\) 0 0
\(481\) 124.222 + 215.158i 0.258257 + 0.447315i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 154.065i 0.316354i 0.987411 + 0.158177i \(0.0505617\pi\)
−0.987411 + 0.158177i \(0.949438\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 145.167 83.8124i 0.295657 0.170697i −0.344833 0.938664i \(-0.612065\pi\)
0.640490 + 0.767967i \(0.278731\pi\)
\(492\) 0 0
\(493\) 124.791 + 72.0484i 0.253127 + 0.146143i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −129.820 + 224.855i −0.261207 + 0.452424i
\(498\) 0 0
\(499\) 247.308 + 428.351i 0.495608 + 0.858418i 0.999987 0.00506391i \(-0.00161190\pi\)
−0.504379 + 0.863482i \(0.668279\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −711.349 −1.41421 −0.707106 0.707107i \(-0.750000\pi\)
−0.707106 + 0.707107i \(0.750000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −717.714 + 414.372i −1.41005 + 0.814091i −0.995392 0.0958882i \(-0.969431\pi\)
−0.414654 + 0.909979i \(0.636098\pi\)
\(510\) 0 0
\(511\) −353.776 + 612.758i −0.692321 + 1.19914i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −948.581 + 547.663i −1.83478 + 1.05931i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 622.686i 1.19518i 0.801804 + 0.597588i \(0.203874\pi\)
−0.801804 + 0.597588i \(0.796126\pi\)
\(522\) 0 0
\(523\) 89.4274i 0.170989i 0.996339 + 0.0854946i \(0.0272471\pi\)
−0.996339 + 0.0854946i \(0.972753\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −425.837 737.571i −0.808039 1.39956i
\(528\) 0 0
\(529\) −305.403 + 528.974i −0.577322 + 0.999951i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 230.527 399.284i 0.432508 0.749126i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1347.72i 2.50042i
\(540\) 0 0
\(541\) 834.629 1.54275 0.771376 0.636380i \(-0.219569\pi\)
0.771376 + 0.636380i \(0.219569\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −765.189 441.782i −1.39888 0.807646i −0.404608 0.914490i \(-0.632592\pi\)
−0.994276 + 0.106845i \(0.965925\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 92.7096 + 53.5259i 0.168257 + 0.0971432i
\(552\) 0 0
\(553\) 1050.17 606.314i 1.89904 1.09641i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 256.448 0.460410 0.230205 0.973142i \(-0.426060\pi\)
0.230205 + 0.973142i \(0.426060\pi\)
\(558\) 0 0
\(559\) −354.633 −0.634406
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −103.937 180.024i −0.184613 0.319759i 0.758833 0.651285i \(-0.225770\pi\)
−0.943446 + 0.331526i \(0.892436\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 430.923 + 248.794i 0.757334 + 0.437247i 0.828338 0.560229i \(-0.189287\pi\)
−0.0710034 + 0.997476i \(0.522620\pi\)
\(570\) 0 0
\(571\) −453.817 786.033i −0.794775 1.37659i −0.922982 0.384843i \(-0.874256\pi\)
0.128207 0.991747i \(-0.459078\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 758.810i 1.31510i 0.753413 + 0.657548i \(0.228406\pi\)
−0.753413 + 0.657548i \(0.771594\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 916.185 528.960i 1.57691 0.910430i
\(582\) 0 0
\(583\) 494.127 + 285.284i 0.847559 + 0.489338i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 378.809 656.117i 0.645331 1.11775i −0.338894 0.940825i \(-0.610053\pi\)
0.984225 0.176921i \(-0.0566139\pi\)
\(588\) 0 0
\(589\) −316.361 547.953i −0.537115 0.930311i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 258.648 0.436169 0.218084 0.975930i \(-0.430019\pi\)
0.218084 + 0.975930i \(0.430019\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −495.665 + 286.172i −0.827488 + 0.477750i −0.852992 0.521924i \(-0.825214\pi\)
0.0255038 + 0.999675i \(0.491881\pi\)
\(600\) 0 0
\(601\) −68.8186 + 119.197i −0.114507 + 0.198332i −0.917582 0.397545i \(-0.869862\pi\)
0.803076 + 0.595877i \(0.203195\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 16.0005 9.23790i 0.0263600 0.0152189i −0.486762 0.873535i \(-0.661822\pi\)
0.513122 + 0.858316i \(0.328489\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1283.14i 2.10007i
\(612\) 0 0
\(613\) 392.569i 0.640405i −0.947349 0.320203i \(-0.896249\pi\)
0.947349 0.320203i \(-0.103751\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −132.994 230.353i −0.215550 0.373343i 0.737893 0.674918i \(-0.235821\pi\)
−0.953443 + 0.301575i \(0.902488\pi\)
\(618\) 0 0
\(619\) 416.736 721.808i 0.673240 1.16609i −0.303739 0.952755i \(-0.598235\pi\)
0.976980 0.213332i \(-0.0684315\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 71.0420 123.048i 0.114032 0.197509i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 212.078i 0.337168i
\(630\) 0 0
\(631\) −351.875 −0.557647 −0.278823 0.960342i \(-0.589944\pi\)
−0.278823 + 0.960342i \(0.589944\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1367.30 + 789.409i 2.14646 + 1.23926i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −355.645 205.332i −0.554829 0.320331i 0.196239 0.980556i \(-0.437127\pi\)
−0.751067 + 0.660226i \(0.770461\pi\)
\(642\) 0 0
\(643\) 191.552 110.593i 0.297904 0.171995i −0.343597 0.939117i \(-0.611645\pi\)
0.641501 + 0.767122i \(0.278312\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1095.26 −1.69282 −0.846412 0.532529i \(-0.821242\pi\)
−0.846412 + 0.532529i \(0.821242\pi\)
\(648\) 0 0
\(649\) 964.137 1.48557
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 516.179 + 894.048i 0.790473 + 1.36914i 0.925674 + 0.378322i \(0.123499\pi\)
−0.135201 + 0.990818i \(0.543168\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −988.851 570.913i −1.50053 0.866333i −1.00000 0.000614829i \(-0.999804\pi\)
−0.500532 0.865718i \(-0.666862\pi\)
\(660\) 0 0
\(661\) 513.282 + 889.031i 0.776524 + 1.34498i 0.933934 + 0.357445i \(0.116352\pi\)
−0.157410 + 0.987533i \(0.550315\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 321.145i 0.481477i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 16.2399 9.37614i 0.0242026 0.0139734i
\(672\) 0 0
\(673\) −242.403 139.952i −0.360183 0.207952i 0.308978 0.951069i \(-0.400013\pi\)
−0.669161 + 0.743117i \(0.733346\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −144.060 + 249.520i −0.212792 + 0.368567i −0.952587 0.304265i \(-0.901589\pi\)
0.739795 + 0.672832i \(0.234922\pi\)
\(678\) 0 0
\(679\) −585.522 1014.15i −0.862330 1.49360i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 283.805 0.415527 0.207763 0.978179i \(-0.433382\pi\)
0.207763 + 0.978179i \(0.433382\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −578.855 + 334.202i −0.840138 + 0.485054i
\(690\) 0 0
\(691\) −440.331 + 762.675i −0.637237 + 1.10373i 0.348800 + 0.937197i \(0.386589\pi\)
−0.986037 + 0.166529i \(0.946744\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 340.840 196.784i 0.489011 0.282330i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 680.500i 0.970757i −0.874304 0.485378i \(-0.838682\pi\)
0.874304 0.485378i \(-0.161318\pi\)
\(702\) 0 0
\(703\) 157.556i 0.224120i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 910.339 + 1576.75i 1.28761 + 2.23020i
\(708\) 0 0
\(709\) −289.696 + 501.767i −0.408597 + 0.707711i −0.994733 0.102502i \(-0.967315\pi\)
0.586135 + 0.810213i \(0.300649\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 949.052 1643.81i 1.33107 2.30548i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 597.306i 0.830746i −0.909651 0.415373i \(-0.863651\pi\)
0.909651 0.415373i \(-0.136349\pi\)
\(720\) 0 0
\(721\) −1829.01 −2.53677
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 583.537 + 336.905i 0.802664 + 0.463419i 0.844402 0.535710i \(-0.179956\pi\)
−0.0417376 + 0.999129i \(0.513289\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −262.167 151.362i −0.358642 0.207062i
\(732\) 0 0
\(733\) 676.816 390.760i 0.923351 0.533097i 0.0386484 0.999253i \(-0.487695\pi\)
0.884703 + 0.466156i \(0.154361\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1302.03 −1.76667
\(738\) 0 0
\(739\) −232.335 −0.314391 −0.157195 0.987568i \(-0.550245\pi\)
−0.157195 + 0.987568i \(0.550245\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 251.036 + 434.806i 0.337868 + 0.585204i 0.984031 0.177995i \(-0.0569611\pi\)
−0.646164 + 0.763199i \(0.723628\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 863.329 + 498.443i 1.15264 + 0.665478i
\(750\) 0 0
\(751\) −477.190 826.516i −0.635405 1.10055i −0.986429 0.164188i \(-0.947500\pi\)
0.351024 0.936367i \(-0.385834\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 266.379i 0.351888i −0.984400 0.175944i \(-0.943702\pi\)
0.984400 0.175944i \(-0.0562977\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −294.665 + 170.125i −0.387208 + 0.223555i −0.680950 0.732330i \(-0.738433\pi\)
0.293742 + 0.955885i \(0.405099\pi\)
\(762\) 0 0
\(763\) 386.876 + 223.363i 0.507046 + 0.292743i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −564.729 + 978.139i −0.736283 + 1.27528i
\(768\) 0 0
\(769\) 644.552 + 1116.40i 0.838170 + 1.45175i 0.891423 + 0.453171i \(0.149707\pi\)
−0.0532540 + 0.998581i \(0.516959\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −919.244 −1.18919 −0.594595 0.804025i \(-0.702688\pi\)
−0.594595 + 0.804025i \(0.702688\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 253.216 146.194i 0.325052 0.187669i
\(780\) 0 0
\(781\) 167.425 289.989i 0.214373 0.371305i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1094.40 + 631.855i −1.39060 + 0.802865i −0.993382 0.114858i \(-0.963359\pi\)
−0.397221 + 0.917723i \(0.630025\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 81.3784i 0.102880i
\(792\) 0 0
\(793\) 21.9677i 0.0277021i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 306.461 + 530.806i 0.384518 + 0.666006i 0.991702 0.128556i \(-0.0410342\pi\)
−0.607184 + 0.794561i \(0.707701\pi\)
\(798\) 0 0
\(799\) 547.663 948.581i 0.685436 1.18721i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 456.256 790.258i 0.568189 0.984132i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 273.189i 0.337687i −0.985643 0.168844i \(-0.945997\pi\)
0.985643 0.168844i \(-0.0540033\pi\)
\(810\) 0 0
\(811\) −1446.49 −1.78359 −0.891793 0.452444i \(-0.850552\pi\)
−0.891793 + 0.452444i \(0.850552\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −194.768 112.450i −0.238395 0.137637i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −221.813 128.064i −0.270174 0.155985i 0.358793 0.933417i \(-0.383188\pi\)
−0.628967 + 0.777432i \(0.716522\pi\)
\(822\) 0 0
\(823\) −1065.59 + 615.218i −1.29476 + 0.747531i −0.979494 0.201473i \(-0.935427\pi\)
−0.315267 + 0.949003i \(0.602094\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 726.246 0.878169 0.439085 0.898446i \(-0.355303\pi\)
0.439085 + 0.898446i \(0.355303\pi\)
\(828\) 0 0
\(829\) −1439.23 −1.73610 −0.868052 0.496474i \(-0.834628\pi\)
−0.868052 + 0.496474i \(0.834628\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 673.862 + 1167.16i 0.808958 + 1.40116i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 968.135 + 558.953i 1.15392 + 0.666213i 0.949838 0.312742i \(-0.101247\pi\)
0.204077 + 0.978955i \(0.434581\pi\)
\(840\) 0 0
\(841\) −375.258 649.966i −0.446205 0.772849i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1274.15i 1.50431i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −409.331 + 236.327i −0.481000 + 0.277705i
\(852\) 0 0
\(853\) −602.834 348.046i −0.706722 0.408026i 0.103124 0.994669i \(-0.467116\pi\)
−0.809846 + 0.586642i \(0.800449\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 430.149 745.040i 0.501924 0.869358i −0.498073 0.867135i \(-0.665959\pi\)
0.999998 0.00222347i \(-0.000707752\pi\)
\(858\) 0 0
\(859\) −321.216 556.362i −0.373942 0.647686i 0.616226 0.787569i \(-0.288661\pi\)
−0.990168 + 0.139883i \(0.955327\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1466.58 −1.69940 −0.849698 0.527269i \(-0.823216\pi\)
−0.849698 + 0.527269i \(0.823216\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1354.37 + 781.948i −1.55854 + 0.899825i
\(870\) 0 0
\(871\) 762.647 1320.94i 0.875599 1.51658i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −167.461 + 96.6835i −0.190947 + 0.110243i −0.592426 0.805625i \(-0.701830\pi\)
0.401479 + 0.915868i \(0.368496\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 554.368i 0.629249i −0.949216 0.314624i \(-0.898121\pi\)
0.949216 0.314624i \(-0.101879\pi\)
\(882\) 0 0
\(883\) 352.460i 0.399162i −0.979881 0.199581i \(-0.936042\pi\)
0.979881 0.199581i \(-0.0639580\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −538.140 932.087i −0.606697 1.05083i −0.991781 0.127949i \(-0.959161\pi\)
0.385084 0.922882i \(-0.374173\pi\)
\(888\) 0 0
\(889\) −856.887 + 1484.17i −0.963877 + 1.66948i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 406.868 704.716i 0.455619 0.789155i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 534.799i 0.594882i
\(900\) 0 0
\(901\) −570.569 −0.633261
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 191.385 + 110.496i 0.211008 + 0.121826i 0.601780 0.798662i \(-0.294458\pi\)
−0.390772 + 0.920488i \(0.627792\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1535.28 886.394i −1.68527 0.972991i −0.958057 0.286578i \(-0.907482\pi\)
−0.727212 0.686413i \(-0.759184\pi\)
\(912\) 0 0
\(913\) −1181.58 + 682.185i −1.29417 + 0.747191i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −782.775 −0.853626
\(918\) 0 0
\(919\) −1006.85 −1.09560 −0.547799 0.836610i \(-0.684534\pi\)
−0.547799 + 0.836610i \(0.684534\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 196.134 + 339.714i 0.212496 + 0.368054i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −974.758 562.777i −1.04926 0.605788i −0.126814 0.991926i \(-0.540475\pi\)
−0.922441 + 0.386139i \(0.873809\pi\)
\(930\) 0 0
\(931\) 500.623 + 867.104i 0.537726 + 0.931369i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1343.20i 1.43351i 0.697324 + 0.716756i \(0.254374\pi\)
−0.697324 + 0.716756i \(0.745626\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −618.375 + 357.019i −0.657147 + 0.379404i −0.791189 0.611572i \(-0.790538\pi\)
0.134042 + 0.990976i \(0.457204\pi\)
\(942\) 0 0
\(943\) 759.623 + 438.569i 0.805539 + 0.465078i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −358.220 + 620.456i −0.378268 + 0.655180i −0.990810 0.135258i \(-0.956814\pi\)
0.612542 + 0.790438i \(0.290147\pi\)
\(948\) 0 0
\(949\) 534.490 + 925.764i 0.563214 + 0.975515i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −793.300 −0.832424 −0.416212 0.909268i \(-0.636643\pi\)
−0.416212 + 0.909268i \(0.636643\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 744.756 429.985i 0.776596 0.448368i
\(960\) 0 0
\(961\) −1099.94 + 1905.16i −1.14458 + 1.98247i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1583.67 914.331i 1.63771 0.945533i 0.656093 0.754680i \(-0.272208\pi\)
0.981619 0.190853i \(-0.0611254\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1843.33i 1.89839i 0.314691 + 0.949194i \(0.398099\pi\)
−0.314691 + 0.949194i \(0.601901\pi\)
\(972\) 0 0
\(973\) 1253.46i 1.28824i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −167.195 289.591i −0.171131 0.296408i 0.767684 0.640828i \(-0.221409\pi\)
−0.938816 + 0.344420i \(0.888076\pi\)
\(978\) 0 0
\(979\) −91.6210 + 158.692i −0.0935863 + 0.162096i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −926.480 + 1604.71i −0.942502 + 1.63246i −0.181825 + 0.983331i \(0.558200\pi\)
−0.760677 + 0.649131i \(0.775133\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 674.676i 0.682180i
\(990\) 0 0
\(991\) 415.419 0.419192 0.209596 0.977788i \(-0.432785\pi\)
0.209596 + 0.977788i \(0.432785\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −1033.70 596.808i −1.03681 0.598604i −0.117884 0.993027i \(-0.537611\pi\)
−0.918929 + 0.394423i \(0.870944\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2700.3.u.a.2249.4 8
3.2 odd 2 900.3.u.b.749.4 8
5.2 odd 4 2700.3.p.a.1601.1 4
5.3 odd 4 540.3.o.a.521.1 4
5.4 even 2 inner 2700.3.u.a.2249.1 8
9.4 even 3 900.3.u.b.149.1 8
9.5 odd 6 inner 2700.3.u.a.449.1 8
15.2 even 4 900.3.p.b.101.1 4
15.8 even 4 180.3.o.a.101.2 yes 4
15.14 odd 2 900.3.u.b.749.1 8
20.3 even 4 2160.3.bs.a.1601.1 4
45.4 even 6 900.3.u.b.149.4 8
45.13 odd 12 180.3.o.a.41.2 4
45.14 odd 6 inner 2700.3.u.a.449.4 8
45.22 odd 12 900.3.p.b.401.1 4
45.23 even 12 540.3.o.a.341.1 4
45.32 even 12 2700.3.p.a.2501.1 4
45.38 even 12 1620.3.g.a.161.3 4
45.43 odd 12 1620.3.g.a.161.1 4
60.23 odd 4 720.3.bs.a.641.2 4
180.23 odd 12 2160.3.bs.a.881.1 4
180.103 even 12 720.3.bs.a.401.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.3.o.a.41.2 4 45.13 odd 12
180.3.o.a.101.2 yes 4 15.8 even 4
540.3.o.a.341.1 4 45.23 even 12
540.3.o.a.521.1 4 5.3 odd 4
720.3.bs.a.401.2 4 180.103 even 12
720.3.bs.a.641.2 4 60.23 odd 4
900.3.p.b.101.1 4 15.2 even 4
900.3.p.b.401.1 4 45.22 odd 12
900.3.u.b.149.1 8 9.4 even 3
900.3.u.b.149.4 8 45.4 even 6
900.3.u.b.749.1 8 15.14 odd 2
900.3.u.b.749.4 8 3.2 odd 2
1620.3.g.a.161.1 4 45.43 odd 12
1620.3.g.a.161.3 4 45.38 even 12
2160.3.bs.a.881.1 4 180.23 odd 12
2160.3.bs.a.1601.1 4 20.3 even 4
2700.3.p.a.1601.1 4 5.2 odd 4
2700.3.p.a.2501.1 4 45.32 even 12
2700.3.u.a.449.1 8 9.5 odd 6 inner
2700.3.u.a.449.4 8 45.14 odd 6 inner
2700.3.u.a.2249.1 8 5.4 even 2 inner
2700.3.u.a.2249.4 8 1.1 even 1 trivial