Properties

Label 2700.2.e
Level $2700$
Weight $2$
Character orbit 2700.e
Rep. character $\chi_{2700}(2051,\cdot)$
Character field $\Q$
Dimension $152$
Sturm bound $1080$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2700.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Sturm bound: \(1080\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2700, [\chi])\).

Total New Old
Modular forms 576 152 424
Cusp forms 504 152 352
Eisenstein series 72 0 72

Trace form

\( 152 q - 2 q^{4} + 4 q^{13} - 10 q^{16} - 26 q^{22} + 2 q^{28} - 16 q^{34} + 12 q^{37} + 16 q^{46} - 168 q^{49} + 4 q^{52} + 44 q^{58} - 36 q^{61} + 22 q^{64} + 8 q^{73} + 52 q^{82} + 22 q^{88} + 32 q^{94}+ \cdots + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2700, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2700, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2700, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(540, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(900, [\chi])\)\(^{\oplus 2}\)