Properties

Label 2700.2.ce
Level $2700$
Weight $2$
Character orbit 2700.ce
Rep. character $\chi_{2700}(61,\cdot)$
Character field $\Q(\zeta_{45})$
Dimension $2160$
Sturm bound $1080$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2700.ce (of order \(45\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 675 \)
Character field: \(\Q(\zeta_{45})\)
Sturm bound: \(1080\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2700, [\chi])\).

Total New Old
Modular forms 13104 2160 10944
Cusp forms 12816 2160 10656
Eisenstein series 288 0 288

Trace form

\( 2160 q + 12 q^{5} - 51 q^{15} + 36 q^{21} + 24 q^{23} + 36 q^{25} + 12 q^{27} - 18 q^{31} - 6 q^{33} + 9 q^{35} - 30 q^{39} + 129 q^{45} + 57 q^{47} - 60 q^{53} - 18 q^{57} + 9 q^{59} - 42 q^{63} - 45 q^{65}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2700, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2700, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2700, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(675, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1350, [\chi])\)\(^{\oplus 2}\)