Properties

Label 2700.1.be
Level $2700$
Weight $1$
Character orbit 2700.be
Rep. character $\chi_{2700}(143,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $8$
Newform subspaces $1$
Sturm bound $540$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2700.be (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 180 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(540\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2700, [\chi])\).

Total New Old
Modular forms 168 24 144
Cusp forms 24 8 16
Eisenstein series 144 16 128

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 8 0 0 0

Trace form

\( 8 q + 4 q^{16} + 12 q^{41} - 8 q^{46} - 12 q^{56} - 4 q^{61}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(2700, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2700.1.be.a 2700.be 180.v $8$ $1.347$ \(\Q(\zeta_{24})\) $D_{6}$ \(\Q(\sqrt{-5}) \) None 900.1.bd.a \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{24}^{7}q^{2}-\zeta_{24}^{2}q^{4}+(\zeta_{24}^{3}-\zeta_{24}^{11}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(2700, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2700, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(900, [\chi])\)\(^{\oplus 2}\)