Properties

Label 2700.1
Level 2700
Weight 1
Dimension 91
Nonzero newspaces 10
Newform subspaces 16
Sturm bound 388800
Trace bound 16

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 10 \)
Newform subspaces: \( 16 \)
Sturm bound: \(388800\)
Trace bound: \(16\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(2700))\).

Total New Old
Modular forms 4604 747 3857
Cusp forms 404 91 313
Eisenstein series 4200 656 3544

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 83 0 0 8

Trace form

\( 91 q + 6 q^{6} + q^{7} - q^{13} + 8 q^{14} - 4 q^{16} - q^{19} + 2 q^{25} + 8 q^{29} - 8 q^{31} - 2 q^{34} - 18 q^{36} - 3 q^{37} - 2 q^{41} + 2 q^{43} - 22 q^{46} + 2 q^{49} + 6 q^{55} - 32 q^{56} + 35 q^{61}+ \cdots - q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(2700))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2700.1.b \(\chi_{2700}(1349, \cdot)\) 2700.1.b.a 2 1
2700.1.b.b 2
2700.1.c \(\chi_{2700}(1351, \cdot)\) 2700.1.c.a 2 1
2700.1.c.b 2
2700.1.f \(\chi_{2700}(1999, \cdot)\) None 0 1
2700.1.g \(\chi_{2700}(701, \cdot)\) 2700.1.g.a 1 1
2700.1.g.b 1
2700.1.g.c 1
2700.1.l \(\chi_{2700}(757, \cdot)\) 2700.1.l.a 4 2
2700.1.l.b 4
2700.1.m \(\chi_{2700}(107, \cdot)\) 2700.1.m.a 8 2
2700.1.m.b 8
2700.1.p \(\chi_{2700}(1601, \cdot)\) None 0 2
2700.1.q \(\chi_{2700}(199, \cdot)\) None 0 2
2700.1.t \(\chi_{2700}(451, \cdot)\) 2700.1.t.a 4 2
2700.1.u \(\chi_{2700}(449, \cdot)\) None 0 2
2700.1.y \(\chi_{2700}(271, \cdot)\) None 0 4
2700.1.z \(\chi_{2700}(269, \cdot)\) None 0 4
2700.1.bb \(\chi_{2700}(161, \cdot)\) 2700.1.bb.a 8 4
2700.1.bc \(\chi_{2700}(379, \cdot)\) None 0 4
2700.1.bd \(\chi_{2700}(793, \cdot)\) None 0 4
2700.1.be \(\chi_{2700}(143, \cdot)\) 2700.1.be.a 8 4
2700.1.bi \(\chi_{2700}(149, \cdot)\) None 0 6
2700.1.bj \(\chi_{2700}(151, \cdot)\) 2700.1.bj.a 12 6
2700.1.bl \(\chi_{2700}(101, \cdot)\) None 0 6
2700.1.bo \(\chi_{2700}(499, \cdot)\) None 0 6
2700.1.bp \(\chi_{2700}(323, \cdot)\) None 0 8
2700.1.bq \(\chi_{2700}(217, \cdot)\) None 0 8
2700.1.bt \(\chi_{2700}(19, \cdot)\) None 0 8
2700.1.bu \(\chi_{2700}(341, \cdot)\) None 0 8
2700.1.bw \(\chi_{2700}(89, \cdot)\) None 0 8
2700.1.bx \(\chi_{2700}(91, \cdot)\) None 0 8
2700.1.ca \(\chi_{2700}(407, \cdot)\) 2700.1.ca.a 24 12
2700.1.cc \(\chi_{2700}(157, \cdot)\) None 0 12
2700.1.ch \(\chi_{2700}(287, \cdot)\) None 0 16
2700.1.ci \(\chi_{2700}(37, \cdot)\) None 0 16
2700.1.cj \(\chi_{2700}(79, \cdot)\) None 0 24
2700.1.cm \(\chi_{2700}(41, \cdot)\) None 0 24
2700.1.co \(\chi_{2700}(31, \cdot)\) None 0 24
2700.1.cp \(\chi_{2700}(29, \cdot)\) None 0 24
2700.1.cr \(\chi_{2700}(13, \cdot)\) None 0 48
2700.1.ct \(\chi_{2700}(23, \cdot)\) None 0 48

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(2700))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(2700)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 36}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 24}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 27}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 24}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 18}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 18}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 16}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 9}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 18}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 9}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 12}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 9}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(108))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(135))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(150))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(180))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(225))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(270))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(300))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(450))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(540))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(675))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(900))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(1350))\)\(^{\oplus 2}\)