Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [270,3,Mod(11,270)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(270, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([13, 0]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("270.11");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 270 = 2 \cdot 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 270.o (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.35696713773\) |
Analytic rank: | \(0\) |
Dimension: | \(144\) |
Relative dimension: | \(24\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 | −0.909039 | + | 1.08335i | −2.93678 | − | 0.612626i | −0.347296 | − | 1.96962i | 0.764780 | − | 2.10122i | 3.33334 | − | 2.62466i | 0.0495203 | − | 0.280843i | 2.44949 | + | 1.41421i | 8.24938 | + | 3.59830i | 1.58114 | + | 2.73861i |
11.2 | −0.909039 | + | 1.08335i | −2.83320 | + | 0.986392i | −0.347296 | − | 1.96962i | −0.764780 | + | 2.10122i | 1.50688 | − | 3.96602i | 1.48752 | − | 8.43615i | 2.44949 | + | 1.41421i | 7.05406 | − | 5.58929i | −1.58114 | − | 2.73861i |
11.3 | −0.909039 | + | 1.08335i | −2.68781 | − | 1.33254i | −0.347296 | − | 1.96962i | −0.764780 | + | 2.10122i | 3.88693 | − | 1.70051i | −0.412516 | + | 2.33949i | 2.44949 | + | 1.41421i | 5.44867 | + | 7.16324i | −1.58114 | − | 2.73861i |
11.4 | −0.909039 | + | 1.08335i | −1.90490 | + | 2.31762i | −0.347296 | − | 1.96962i | 0.764780 | − | 2.10122i | −0.779161 | − | 4.17048i | −0.438855 | + | 2.48887i | 2.44949 | + | 1.41421i | −1.74270 | − | 8.82967i | 1.58114 | + | 2.73861i |
11.5 | −0.909039 | + | 1.08335i | −1.34040 | + | 2.68390i | −0.347296 | − | 1.96962i | −0.764780 | + | 2.10122i | −1.68914 | − | 3.89189i | −1.75836 | + | 9.97218i | 2.44949 | + | 1.41421i | −5.40668 | − | 7.19498i | −1.58114 | − | 2.73861i |
11.6 | −0.909039 | + | 1.08335i | −0.959500 | − | 2.84242i | −0.347296 | − | 1.96962i | 0.764780 | − | 2.10122i | 3.95156 | + | 1.54440i | −1.57222 | + | 8.91648i | 2.44949 | + | 1.41421i | −7.15872 | + | 5.45460i | 1.58114 | + | 2.73861i |
11.7 | −0.909039 | + | 1.08335i | −0.352338 | − | 2.97924i | −0.347296 | − | 1.96962i | −0.764780 | + | 2.10122i | 3.54785 | + | 2.32654i | −0.871340 | + | 4.94162i | 2.44949 | + | 1.41421i | −8.75172 | + | 2.09940i | −1.58114 | − | 2.73861i |
11.8 | −0.909039 | + | 1.08335i | 0.568194 | + | 2.94570i | −0.347296 | − | 1.96962i | 0.764780 | − | 2.10122i | −3.70774 | − | 2.06220i | 0.715686 | − | 4.05886i | 2.44949 | + | 1.41421i | −8.35431 | + | 3.34746i | 1.58114 | + | 2.73861i |
11.9 | −0.909039 | + | 1.08335i | 1.25636 | − | 2.72425i | −0.347296 | − | 1.96962i | 0.764780 | − | 2.10122i | 1.80924 | + | 3.83753i | 1.06651 | − | 6.04848i | 2.44949 | + | 1.41421i | −5.84311 | − | 6.84529i | 1.58114 | + | 2.73861i |
11.10 | −0.909039 | + | 1.08335i | 2.46914 | − | 1.70392i | −0.347296 | − | 1.96962i | −0.764780 | + | 2.10122i | −0.398600 | + | 4.22387i | 0.704886 | − | 3.99761i | 2.44949 | + | 1.41421i | 3.19330 | − | 8.41444i | −1.58114 | − | 2.73861i |
11.11 | −0.909039 | + | 1.08335i | 2.62867 | + | 1.44571i | −0.347296 | − | 1.96962i | −0.764780 | + | 2.10122i | −3.95578 | + | 1.53357i | −0.950184 | + | 5.38876i | 2.44949 | + | 1.41421i | 4.81985 | + | 7.60060i | −1.58114 | − | 2.73861i |
11.12 | −0.909039 | + | 1.08335i | 2.76211 | + | 1.17079i | −0.347296 | − | 1.96962i | 0.764780 | − | 2.10122i | −3.77924 | + | 1.92804i | 1.47540 | − | 8.36743i | 2.44949 | + | 1.41421i | 6.25849 | + | 6.46771i | 1.58114 | + | 2.73861i |
11.13 | 0.909039 | − | 1.08335i | −2.81378 | + | 1.04050i | −0.347296 | − | 1.96962i | −0.764780 | + | 2.10122i | −1.43061 | + | 3.99416i | −0.415662 | + | 2.35733i | −2.44949 | − | 1.41421i | 6.83473 | − | 5.85547i | 1.58114 | + | 2.73861i |
11.14 | 0.909039 | − | 1.08335i | −2.77069 | − | 1.15033i | −0.347296 | − | 1.96962i | −0.764780 | + | 2.10122i | −3.76488 | + | 1.95593i | 2.20716 | − | 12.5174i | −2.44949 | − | 1.41421i | 6.35346 | + | 6.37444i | 1.58114 | + | 2.73861i |
11.15 | 0.909039 | − | 1.08335i | −2.56486 | + | 1.55611i | −0.347296 | − | 1.96962i | 0.764780 | − | 2.10122i | −0.645745 | + | 4.19321i | −1.72161 | + | 9.76375i | −2.44949 | − | 1.41421i | 4.15703 | − | 7.98242i | −1.58114 | − | 2.73861i |
11.16 | 0.909039 | − | 1.08335i | −1.68760 | − | 2.48032i | −0.347296 | − | 1.96962i | −0.764780 | + | 2.10122i | −4.22115 | − | 0.426446i | −2.08160 | + | 11.8053i | −2.44949 | − | 1.41421i | −3.30400 | + | 8.37159i | 1.58114 | + | 2.73861i |
11.17 | 0.909039 | − | 1.08335i | −0.780619 | − | 2.89666i | −0.347296 | − | 1.96962i | 0.764780 | − | 2.10122i | −3.84771 | − | 1.78749i | 0.876165 | − | 4.96898i | −2.44949 | − | 1.41421i | −7.78127 | + | 4.52237i | −1.58114 | − | 2.73861i |
11.18 | 0.909039 | − | 1.08335i | −0.723894 | + | 2.91135i | −0.347296 | − | 1.96962i | 0.764780 | − | 2.10122i | 2.49597 | + | 3.43076i | 1.23886 | − | 7.02591i | −2.44949 | − | 1.41421i | −7.95196 | − | 4.21502i | −1.58114 | − | 2.73861i |
11.19 | 0.909039 | − | 1.08335i | −0.524408 | + | 2.95381i | −0.347296 | − | 1.96962i | −0.764780 | + | 2.10122i | 2.72330 | + | 3.25325i | −0.390677 | + | 2.21564i | −2.44949 | − | 1.41421i | −8.44999 | − | 3.09800i | 1.58114 | + | 2.73861i |
11.20 | 0.909039 | − | 1.08335i | 1.47721 | + | 2.61110i | −0.347296 | − | 1.96962i | 0.764780 | − | 2.10122i | 4.17158 | + | 0.773252i | −1.92096 | + | 10.8943i | −2.44949 | − | 1.41421i | −4.63568 | + | 7.71430i | −1.58114 | − | 2.73861i |
See next 80 embeddings (of 144 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
27.f | odd | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 270.3.o.a | ✓ | 144 |
27.f | odd | 18 | 1 | inner | 270.3.o.a | ✓ | 144 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
270.3.o.a | ✓ | 144 | 1.a | even | 1 | 1 | trivial |
270.3.o.a | ✓ | 144 | 27.f | odd | 18 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(270, [\chi])\).