Properties

Label 270.3.o.a
Level $270$
Weight $3$
Character orbit 270.o
Analytic conductor $7.357$
Analytic rank $0$
Dimension $144$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,3,Mod(11,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([13, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.11");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 270.o (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.35696713773\)
Analytic rank: \(0\)
Dimension: \(144\)
Relative dimension: \(24\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 144 q - 12 q^{6} + 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 144 q - 12 q^{6} + 12 q^{9} + 24 q^{12} + 36 q^{14} + 96 q^{18} + 96 q^{21} - 72 q^{22} + 216 q^{23} - 12 q^{27} - 252 q^{29} - 516 q^{33} + 144 q^{34} - 48 q^{36} - 144 q^{38} + 48 q^{39} + 108 q^{41} - 180 q^{43} + 60 q^{45} + 432 q^{47} - 72 q^{49} - 204 q^{51} - 288 q^{54} + 72 q^{56} - 612 q^{57} - 252 q^{59} + 144 q^{61} - 720 q^{63} + 576 q^{64} + 360 q^{65} + 864 q^{66} + 252 q^{67} + 144 q^{68} + 708 q^{69} + 360 q^{70} + 1296 q^{71} - 252 q^{73} + 720 q^{74} + 144 q^{76} + 684 q^{77} + 192 q^{78} + 72 q^{79} - 492 q^{81} - 828 q^{83} - 216 q^{84} - 360 q^{85} - 648 q^{86} - 660 q^{87} - 288 q^{88} + 324 q^{89} - 480 q^{90} + 396 q^{91} - 216 q^{92} - 1548 q^{93} - 504 q^{94} - 720 q^{95} - 192 q^{96} - 180 q^{97} - 1296 q^{98} - 444 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
11.1 −0.909039 + 1.08335i −2.93678 0.612626i −0.347296 1.96962i 0.764780 2.10122i 3.33334 2.62466i 0.0495203 0.280843i 2.44949 + 1.41421i 8.24938 + 3.59830i 1.58114 + 2.73861i
11.2 −0.909039 + 1.08335i −2.83320 + 0.986392i −0.347296 1.96962i −0.764780 + 2.10122i 1.50688 3.96602i 1.48752 8.43615i 2.44949 + 1.41421i 7.05406 5.58929i −1.58114 2.73861i
11.3 −0.909039 + 1.08335i −2.68781 1.33254i −0.347296 1.96962i −0.764780 + 2.10122i 3.88693 1.70051i −0.412516 + 2.33949i 2.44949 + 1.41421i 5.44867 + 7.16324i −1.58114 2.73861i
11.4 −0.909039 + 1.08335i −1.90490 + 2.31762i −0.347296 1.96962i 0.764780 2.10122i −0.779161 4.17048i −0.438855 + 2.48887i 2.44949 + 1.41421i −1.74270 8.82967i 1.58114 + 2.73861i
11.5 −0.909039 + 1.08335i −1.34040 + 2.68390i −0.347296 1.96962i −0.764780 + 2.10122i −1.68914 3.89189i −1.75836 + 9.97218i 2.44949 + 1.41421i −5.40668 7.19498i −1.58114 2.73861i
11.6 −0.909039 + 1.08335i −0.959500 2.84242i −0.347296 1.96962i 0.764780 2.10122i 3.95156 + 1.54440i −1.57222 + 8.91648i 2.44949 + 1.41421i −7.15872 + 5.45460i 1.58114 + 2.73861i
11.7 −0.909039 + 1.08335i −0.352338 2.97924i −0.347296 1.96962i −0.764780 + 2.10122i 3.54785 + 2.32654i −0.871340 + 4.94162i 2.44949 + 1.41421i −8.75172 + 2.09940i −1.58114 2.73861i
11.8 −0.909039 + 1.08335i 0.568194 + 2.94570i −0.347296 1.96962i 0.764780 2.10122i −3.70774 2.06220i 0.715686 4.05886i 2.44949 + 1.41421i −8.35431 + 3.34746i 1.58114 + 2.73861i
11.9 −0.909039 + 1.08335i 1.25636 2.72425i −0.347296 1.96962i 0.764780 2.10122i 1.80924 + 3.83753i 1.06651 6.04848i 2.44949 + 1.41421i −5.84311 6.84529i 1.58114 + 2.73861i
11.10 −0.909039 + 1.08335i 2.46914 1.70392i −0.347296 1.96962i −0.764780 + 2.10122i −0.398600 + 4.22387i 0.704886 3.99761i 2.44949 + 1.41421i 3.19330 8.41444i −1.58114 2.73861i
11.11 −0.909039 + 1.08335i 2.62867 + 1.44571i −0.347296 1.96962i −0.764780 + 2.10122i −3.95578 + 1.53357i −0.950184 + 5.38876i 2.44949 + 1.41421i 4.81985 + 7.60060i −1.58114 2.73861i
11.12 −0.909039 + 1.08335i 2.76211 + 1.17079i −0.347296 1.96962i 0.764780 2.10122i −3.77924 + 1.92804i 1.47540 8.36743i 2.44949 + 1.41421i 6.25849 + 6.46771i 1.58114 + 2.73861i
11.13 0.909039 1.08335i −2.81378 + 1.04050i −0.347296 1.96962i −0.764780 + 2.10122i −1.43061 + 3.99416i −0.415662 + 2.35733i −2.44949 1.41421i 6.83473 5.85547i 1.58114 + 2.73861i
11.14 0.909039 1.08335i −2.77069 1.15033i −0.347296 1.96962i −0.764780 + 2.10122i −3.76488 + 1.95593i 2.20716 12.5174i −2.44949 1.41421i 6.35346 + 6.37444i 1.58114 + 2.73861i
11.15 0.909039 1.08335i −2.56486 + 1.55611i −0.347296 1.96962i 0.764780 2.10122i −0.645745 + 4.19321i −1.72161 + 9.76375i −2.44949 1.41421i 4.15703 7.98242i −1.58114 2.73861i
11.16 0.909039 1.08335i −1.68760 2.48032i −0.347296 1.96962i −0.764780 + 2.10122i −4.22115 0.426446i −2.08160 + 11.8053i −2.44949 1.41421i −3.30400 + 8.37159i 1.58114 + 2.73861i
11.17 0.909039 1.08335i −0.780619 2.89666i −0.347296 1.96962i 0.764780 2.10122i −3.84771 1.78749i 0.876165 4.96898i −2.44949 1.41421i −7.78127 + 4.52237i −1.58114 2.73861i
11.18 0.909039 1.08335i −0.723894 + 2.91135i −0.347296 1.96962i 0.764780 2.10122i 2.49597 + 3.43076i 1.23886 7.02591i −2.44949 1.41421i −7.95196 4.21502i −1.58114 2.73861i
11.19 0.909039 1.08335i −0.524408 + 2.95381i −0.347296 1.96962i −0.764780 + 2.10122i 2.72330 + 3.25325i −0.390677 + 2.21564i −2.44949 1.41421i −8.44999 3.09800i 1.58114 + 2.73861i
11.20 0.909039 1.08335i 1.47721 + 2.61110i −0.347296 1.96962i 0.764780 2.10122i 4.17158 + 0.773252i −1.92096 + 10.8943i −2.44949 1.41421i −4.63568 + 7.71430i −1.58114 2.73861i
See next 80 embeddings (of 144 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 11.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
27.f odd 18 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 270.3.o.a 144
27.f odd 18 1 inner 270.3.o.a 144
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
270.3.o.a 144 1.a even 1 1 trivial
270.3.o.a 144 27.f odd 18 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(270, [\chi])\).