Properties

Label 270.3.n.a
Level $270$
Weight $3$
Character orbit 270.n
Analytic conductor $7.357$
Analytic rank $0$
Dimension $216$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,3,Mod(29,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([1, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 270.n (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.35696713773\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(36\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 216 q - 18 q^{5} + 12 q^{6} + 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 216 q - 18 q^{5} + 12 q^{6} + 12 q^{9} - 36 q^{11} + 36 q^{14} + 18 q^{15} - 72 q^{20} + 360 q^{21} + 18 q^{25} - 36 q^{29} + 144 q^{30} + 180 q^{31} + 486 q^{35} - 192 q^{36} + 348 q^{39} - 72 q^{41} + 258 q^{45} - 72 q^{49} - 288 q^{50} - 312 q^{51} - 360 q^{54} - 72 q^{56} - 612 q^{59} - 36 q^{60} - 144 q^{61} - 864 q^{64} - 234 q^{65} + 336 q^{69} + 288 q^{74} + 642 q^{75} + 72 q^{79} + 636 q^{81} - 216 q^{84} + 432 q^{86} - 1620 q^{89} - 240 q^{90} - 504 q^{94} + 108 q^{95} - 1008 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
29.1 −0.245576 + 1.39273i −2.95765 0.502313i −1.87939 0.684040i −4.92358 + 0.870849i 1.42591 3.99584i −1.65791 4.55508i 1.41421 2.44949i 8.49536 + 2.97133i −0.00374550 7.07107i
29.2 −0.245576 + 1.39273i −2.93139 + 0.637912i −1.87939 0.684040i 0.772686 + 4.93993i −0.168560 4.23929i 3.98607 + 10.9516i 1.41421 2.44949i 8.18614 3.73994i −7.06974 0.136986i
29.3 −0.245576 + 1.39273i −2.77364 1.14319i −1.87939 0.684040i 3.94044 3.07781i 2.27330 3.58219i −1.03960 2.85628i 1.41421 2.44949i 6.38621 + 6.34163i 3.31888 + 6.24380i
29.4 −0.245576 + 1.39273i −2.44467 + 1.73884i −1.87939 0.684040i 1.14986 4.86599i −1.82139 3.83178i 1.77882 + 4.88727i 1.41421 2.44949i 2.95284 8.50181i 6.49462 + 2.79641i
29.5 −0.245576 + 1.39273i −2.13533 + 2.10722i −1.87939 0.684040i 4.31675 + 2.52302i −2.41039 3.49142i −3.64772 10.0220i 1.41421 2.44949i 0.119286 8.99921i −4.57398 + 5.39247i
29.6 −0.245576 + 1.39273i −1.81716 2.38704i −1.87939 0.684040i 1.90906 + 4.62120i 3.77074 1.94461i −2.55043 7.00726i 1.41421 2.44949i −2.39588 + 8.67524i −6.90490 + 1.52395i
29.7 −0.245576 + 1.39273i −0.936605 + 2.85005i −1.87939 0.684040i −4.96948 + 0.551583i −3.73934 2.00434i 1.06409 + 2.92356i 1.41421 2.44949i −7.24554 5.33874i 0.452178 7.05660i
29.8 −0.245576 + 1.39273i −0.642397 2.93041i −1.87939 0.684040i −3.29699 3.75897i 4.23903 0.175046i −0.265944 0.730676i 1.41421 2.44949i −8.17465 + 3.76498i 6.04489 3.66870i
29.9 −0.245576 + 1.39273i −0.221554 2.99181i −1.87939 0.684040i 4.65626 1.82189i 4.22118 + 0.426150i 4.28972 + 11.7859i 1.41421 2.44949i −8.90183 + 1.32569i 1.39393 + 6.93231i
29.10 −0.245576 + 1.39273i 0.0244460 2.99990i −1.87939 0.684040i −1.99837 + 4.58329i 4.17204 + 0.770749i 0.118587 + 0.325814i 1.41421 2.44949i −8.99880 0.146671i −5.89253 3.90873i
29.11 −0.245576 + 1.39273i 0.324527 + 2.98240i −1.87939 0.684040i 4.96091 + 0.623972i −4.23336 0.280425i 0.158266 + 0.434833i 1.41421 2.44949i −8.78936 + 1.93574i −2.08730 + 6.75597i
29.12 −0.245576 + 1.39273i 1.53299 + 2.57875i −1.87939 0.684040i −0.871603 4.92344i −3.96796 + 1.50176i −3.41693 9.38793i 1.41421 2.44949i −4.29990 + 7.90638i 7.07107 0.00482815i
29.13 −0.245576 + 1.39273i 2.40493 1.79340i −1.87939 0.684040i −0.604237 4.96336i 1.90713 + 3.78983i −0.969685 2.66419i 1.41421 2.44949i 2.56740 8.62603i 7.06099 + 0.377342i
29.14 −0.245576 + 1.39273i 2.51712 + 1.63221i −1.87939 0.684040i −2.75970 + 4.16942i −2.89136 + 3.10484i −4.37787 12.0281i 1.41421 2.44949i 3.67181 + 8.21692i −5.12915 4.86742i
29.15 −0.245576 + 1.39273i 2.69147 1.32513i −1.87939 0.684040i −4.68006 + 1.75983i 1.18458 + 4.07391i −1.40747 3.86699i 1.41421 2.44949i 5.48807 7.13310i −1.30165 6.95023i
29.16 −0.245576 + 1.39273i 2.72301 + 1.25905i −1.87939 0.684040i −4.13198 2.81545i −2.42222 + 3.48322i 3.91947 + 10.7686i 1.41421 2.44949i 5.82957 + 6.85683i 4.93587 5.06332i
29.17 −0.245576 + 1.39273i 2.77167 1.14797i −1.87939 0.684040i 2.92999 + 4.05156i 0.918153 + 4.14210i 2.42688 + 6.66780i 1.41421 2.44949i 6.36434 6.36358i −6.36226 + 3.08572i
29.18 −0.245576 + 1.39273i 2.95358 + 0.525705i −1.87939 0.684040i 4.91911 0.895728i −1.45749 + 3.98443i −0.273799 0.752258i 1.41421 2.44949i 8.44727 + 3.10542i 0.0394919 + 7.07096i
29.19 0.245576 1.39273i −2.95358 0.525705i −1.87939 0.684040i −1.73631 + 4.68884i −1.45749 + 3.98443i 0.273799 + 0.752258i −1.41421 + 2.44949i 8.44727 + 3.10542i 6.10388 + 3.56968i
29.20 0.245576 1.39273i −2.77167 + 1.14797i −1.87939 0.684040i 3.48122 + 3.58903i 0.918153 + 4.14210i −2.42688 6.66780i −1.41421 + 2.44949i 6.36434 6.36358i 5.85344 3.96701i
See next 80 embeddings (of 216 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 29.36
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
27.f odd 18 1 inner
135.n odd 18 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 270.3.n.a 216
5.b even 2 1 inner 270.3.n.a 216
27.f odd 18 1 inner 270.3.n.a 216
135.n odd 18 1 inner 270.3.n.a 216
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
270.3.n.a 216 1.a even 1 1 trivial
270.3.n.a 216 5.b even 2 1 inner
270.3.n.a 216 27.f odd 18 1 inner
270.3.n.a 216 135.n odd 18 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(270, [\chi])\).