Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [270,3,Mod(29,270)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(270, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([1, 9]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("270.29");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 270 = 2 \cdot 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 270.n (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.35696713773\) |
Analytic rank: | \(0\) |
Dimension: | \(216\) |
Relative dimension: | \(36\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 | −0.245576 | + | 1.39273i | −2.95765 | − | 0.502313i | −1.87939 | − | 0.684040i | −4.92358 | + | 0.870849i | 1.42591 | − | 3.99584i | −1.65791 | − | 4.55508i | 1.41421 | − | 2.44949i | 8.49536 | + | 2.97133i | −0.00374550 | − | 7.07107i |
29.2 | −0.245576 | + | 1.39273i | −2.93139 | + | 0.637912i | −1.87939 | − | 0.684040i | 0.772686 | + | 4.93993i | −0.168560 | − | 4.23929i | 3.98607 | + | 10.9516i | 1.41421 | − | 2.44949i | 8.18614 | − | 3.73994i | −7.06974 | − | 0.136986i |
29.3 | −0.245576 | + | 1.39273i | −2.77364 | − | 1.14319i | −1.87939 | − | 0.684040i | 3.94044 | − | 3.07781i | 2.27330 | − | 3.58219i | −1.03960 | − | 2.85628i | 1.41421 | − | 2.44949i | 6.38621 | + | 6.34163i | 3.31888 | + | 6.24380i |
29.4 | −0.245576 | + | 1.39273i | −2.44467 | + | 1.73884i | −1.87939 | − | 0.684040i | 1.14986 | − | 4.86599i | −1.82139 | − | 3.83178i | 1.77882 | + | 4.88727i | 1.41421 | − | 2.44949i | 2.95284 | − | 8.50181i | 6.49462 | + | 2.79641i |
29.5 | −0.245576 | + | 1.39273i | −2.13533 | + | 2.10722i | −1.87939 | − | 0.684040i | 4.31675 | + | 2.52302i | −2.41039 | − | 3.49142i | −3.64772 | − | 10.0220i | 1.41421 | − | 2.44949i | 0.119286 | − | 8.99921i | −4.57398 | + | 5.39247i |
29.6 | −0.245576 | + | 1.39273i | −1.81716 | − | 2.38704i | −1.87939 | − | 0.684040i | 1.90906 | + | 4.62120i | 3.77074 | − | 1.94461i | −2.55043 | − | 7.00726i | 1.41421 | − | 2.44949i | −2.39588 | + | 8.67524i | −6.90490 | + | 1.52395i |
29.7 | −0.245576 | + | 1.39273i | −0.936605 | + | 2.85005i | −1.87939 | − | 0.684040i | −4.96948 | + | 0.551583i | −3.73934 | − | 2.00434i | 1.06409 | + | 2.92356i | 1.41421 | − | 2.44949i | −7.24554 | − | 5.33874i | 0.452178 | − | 7.05660i |
29.8 | −0.245576 | + | 1.39273i | −0.642397 | − | 2.93041i | −1.87939 | − | 0.684040i | −3.29699 | − | 3.75897i | 4.23903 | − | 0.175046i | −0.265944 | − | 0.730676i | 1.41421 | − | 2.44949i | −8.17465 | + | 3.76498i | 6.04489 | − | 3.66870i |
29.9 | −0.245576 | + | 1.39273i | −0.221554 | − | 2.99181i | −1.87939 | − | 0.684040i | 4.65626 | − | 1.82189i | 4.22118 | + | 0.426150i | 4.28972 | + | 11.7859i | 1.41421 | − | 2.44949i | −8.90183 | + | 1.32569i | 1.39393 | + | 6.93231i |
29.10 | −0.245576 | + | 1.39273i | 0.0244460 | − | 2.99990i | −1.87939 | − | 0.684040i | −1.99837 | + | 4.58329i | 4.17204 | + | 0.770749i | 0.118587 | + | 0.325814i | 1.41421 | − | 2.44949i | −8.99880 | − | 0.146671i | −5.89253 | − | 3.90873i |
29.11 | −0.245576 | + | 1.39273i | 0.324527 | + | 2.98240i | −1.87939 | − | 0.684040i | 4.96091 | + | 0.623972i | −4.23336 | − | 0.280425i | 0.158266 | + | 0.434833i | 1.41421 | − | 2.44949i | −8.78936 | + | 1.93574i | −2.08730 | + | 6.75597i |
29.12 | −0.245576 | + | 1.39273i | 1.53299 | + | 2.57875i | −1.87939 | − | 0.684040i | −0.871603 | − | 4.92344i | −3.96796 | + | 1.50176i | −3.41693 | − | 9.38793i | 1.41421 | − | 2.44949i | −4.29990 | + | 7.90638i | 7.07107 | − | 0.00482815i |
29.13 | −0.245576 | + | 1.39273i | 2.40493 | − | 1.79340i | −1.87939 | − | 0.684040i | −0.604237 | − | 4.96336i | 1.90713 | + | 3.78983i | −0.969685 | − | 2.66419i | 1.41421 | − | 2.44949i | 2.56740 | − | 8.62603i | 7.06099 | + | 0.377342i |
29.14 | −0.245576 | + | 1.39273i | 2.51712 | + | 1.63221i | −1.87939 | − | 0.684040i | −2.75970 | + | 4.16942i | −2.89136 | + | 3.10484i | −4.37787 | − | 12.0281i | 1.41421 | − | 2.44949i | 3.67181 | + | 8.21692i | −5.12915 | − | 4.86742i |
29.15 | −0.245576 | + | 1.39273i | 2.69147 | − | 1.32513i | −1.87939 | − | 0.684040i | −4.68006 | + | 1.75983i | 1.18458 | + | 4.07391i | −1.40747 | − | 3.86699i | 1.41421 | − | 2.44949i | 5.48807 | − | 7.13310i | −1.30165 | − | 6.95023i |
29.16 | −0.245576 | + | 1.39273i | 2.72301 | + | 1.25905i | −1.87939 | − | 0.684040i | −4.13198 | − | 2.81545i | −2.42222 | + | 3.48322i | 3.91947 | + | 10.7686i | 1.41421 | − | 2.44949i | 5.82957 | + | 6.85683i | 4.93587 | − | 5.06332i |
29.17 | −0.245576 | + | 1.39273i | 2.77167 | − | 1.14797i | −1.87939 | − | 0.684040i | 2.92999 | + | 4.05156i | 0.918153 | + | 4.14210i | 2.42688 | + | 6.66780i | 1.41421 | − | 2.44949i | 6.36434 | − | 6.36358i | −6.36226 | + | 3.08572i |
29.18 | −0.245576 | + | 1.39273i | 2.95358 | + | 0.525705i | −1.87939 | − | 0.684040i | 4.91911 | − | 0.895728i | −1.45749 | + | 3.98443i | −0.273799 | − | 0.752258i | 1.41421 | − | 2.44949i | 8.44727 | + | 3.10542i | 0.0394919 | + | 7.07096i |
29.19 | 0.245576 | − | 1.39273i | −2.95358 | − | 0.525705i | −1.87939 | − | 0.684040i | −1.73631 | + | 4.68884i | −1.45749 | + | 3.98443i | 0.273799 | + | 0.752258i | −1.41421 | + | 2.44949i | 8.44727 | + | 3.10542i | 6.10388 | + | 3.56968i |
29.20 | 0.245576 | − | 1.39273i | −2.77167 | + | 1.14797i | −1.87939 | − | 0.684040i | 3.48122 | + | 3.58903i | 0.918153 | + | 4.14210i | −2.42688 | − | 6.66780i | −1.41421 | + | 2.44949i | 6.36434 | − | 6.36358i | 5.85344 | − | 3.96701i |
See next 80 embeddings (of 216 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
27.f | odd | 18 | 1 | inner |
135.n | odd | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 270.3.n.a | ✓ | 216 |
5.b | even | 2 | 1 | inner | 270.3.n.a | ✓ | 216 |
27.f | odd | 18 | 1 | inner | 270.3.n.a | ✓ | 216 |
135.n | odd | 18 | 1 | inner | 270.3.n.a | ✓ | 216 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
270.3.n.a | ✓ | 216 | 1.a | even | 1 | 1 | trivial |
270.3.n.a | ✓ | 216 | 5.b | even | 2 | 1 | inner |
270.3.n.a | ✓ | 216 | 27.f | odd | 18 | 1 | inner |
270.3.n.a | ✓ | 216 | 135.n | odd | 18 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(270, [\chi])\).