Properties

Label 27.16.c.a.10.6
Level $27$
Weight $16$
Character 27.10
Analytic conductor $38.527$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [27,16,Mod(10,27)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("27.10"); S:= CuspForms(chi, 16); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2])) N = Newforms(chi, 16, names="a")
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 27.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.5272463770\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 10.6
Character \(\chi\) \(=\) 27.10
Dual form 27.16.c.a.19.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-30.1976 - 52.3037i) q^{2} +(14560.2 - 25219.0i) q^{4} +(-62931.9 + 109001. i) q^{5} +(-2.04281e6 - 3.53826e6i) q^{7} -3.73776e6 q^{8} +7.60156e6 q^{10} +(3.00835e7 + 5.21061e7i) q^{11} +(5.90623e6 - 1.02299e7i) q^{13} +(-1.23376e8 + 2.13694e8i) q^{14} +(-3.64238e8 - 6.30879e8i) q^{16} -2.65805e9 q^{17} +2.33561e9 q^{19} +(1.83260e9 + 3.17416e9i) q^{20} +(1.81690e9 - 3.14696e9i) q^{22} +(8.95648e9 - 1.55131e10i) q^{23} +(7.33795e9 + 1.27097e10i) q^{25} -7.13415e8 q^{26} -1.18975e11 q^{28} +(-1.49932e10 - 2.59690e10i) q^{29} +(-5.73455e10 + 9.93254e10i) q^{31} +(-8.32376e10 + 1.44172e11i) q^{32} +(8.02666e10 + 1.39026e11i) q^{34} +5.14232e11 q^{35} +1.02630e11 q^{37} +(-7.05297e10 - 1.22161e11i) q^{38} +(2.35224e11 - 4.07420e11i) q^{40} +(-1.01906e12 + 1.76506e12i) q^{41} +(6.33169e11 + 1.09668e12i) q^{43} +1.75209e12 q^{44} -1.08186e12 q^{46} +(2.66170e12 + 4.61020e12i) q^{47} +(-5.97240e12 + 1.03445e13i) q^{49} +(4.43176e11 - 7.67604e11i) q^{50} +(-1.71992e11 - 2.97899e11i) q^{52} +4.91335e11 q^{53} -7.57284e12 q^{55} +(7.63555e12 + 1.32252e13i) q^{56} +(-9.05518e11 + 1.56840e12i) q^{58} +(4.33799e12 - 7.51363e12i) q^{59} +(1.40603e13 + 2.43532e13i) q^{61} +6.92678e12 q^{62} -1.38164e13 q^{64} +(7.43380e11 + 1.28757e12i) q^{65} +(5.72996e12 - 9.92457e12i) q^{67} +(-3.87018e13 + 6.70334e13i) q^{68} +(-1.55286e13 - 2.68963e13i) q^{70} -4.63738e13 q^{71} -2.03563e13 q^{73} +(-3.09916e12 - 5.36791e12i) q^{74} +(3.40070e13 - 5.89018e13i) q^{76} +(1.22910e14 - 2.12886e14i) q^{77} +(4.33752e13 + 7.51280e13i) q^{79} +9.16887e13 q^{80} +1.23092e14 q^{82} +(-5.62932e13 - 9.75026e13i) q^{83} +(1.67276e14 - 2.89731e14i) q^{85} +(3.82403e13 - 6.62342e13i) q^{86} +(-1.12445e14 - 1.94760e14i) q^{88} -7.18882e14 q^{89} -4.82613e13 q^{91} +(-2.60817e14 - 4.51748e14i) q^{92} +(1.60754e14 - 2.78433e14i) q^{94} +(-1.46984e14 + 2.54584e14i) q^{95} +(-1.42070e14 - 2.46072e14i) q^{97} +7.21407e14 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 129 q^{2} - 212993 q^{4} + 152655 q^{5} + 803705 q^{7} - 20162658 q^{8} + 65532 q^{10} + 60735990 q^{11} - 41509093 q^{13} - 215313024 q^{14} - 2952822785 q^{16} + 2121112242 q^{17} + 5670809246 q^{19}+ \cdots - 72\!\cdots\!90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −30.1976 52.3037i −0.166820 0.288940i 0.770480 0.637464i \(-0.220016\pi\)
−0.937300 + 0.348524i \(0.886683\pi\)
\(3\) 0 0
\(4\) 14560.2 25219.0i 0.444342 0.769624i
\(5\) −62931.9 + 109001.i −0.360243 + 0.623959i −0.988001 0.154450i \(-0.950640\pi\)
0.627758 + 0.778409i \(0.283973\pi\)
\(6\) 0 0
\(7\) −2.04281e6 3.53826e6i −0.937548 1.62388i −0.770026 0.638013i \(-0.779757\pi\)
−0.167522 0.985868i \(-0.553577\pi\)
\(8\) −3.73776e6 −0.630139
\(9\) 0 0
\(10\) 7.60156e6 0.240382
\(11\) 3.00835e7 + 5.21061e7i 0.465461 + 0.806202i 0.999222 0.0394335i \(-0.0125553\pi\)
−0.533762 + 0.845635i \(0.679222\pi\)
\(12\) 0 0
\(13\) 5.90623e6 1.02299e7i 0.0261057 0.0452164i −0.852677 0.522438i \(-0.825023\pi\)
0.878783 + 0.477221i \(0.158356\pi\)
\(14\) −1.23376e8 + 2.13694e8i −0.312803 + 0.541790i
\(15\) 0 0
\(16\) −3.64238e8 6.30879e8i −0.339223 0.587551i
\(17\) −2.65805e9 −1.57107 −0.785536 0.618816i \(-0.787613\pi\)
−0.785536 + 0.618816i \(0.787613\pi\)
\(18\) 0 0
\(19\) 2.33561e9 0.599443 0.299722 0.954027i \(-0.403106\pi\)
0.299722 + 0.954027i \(0.403106\pi\)
\(20\) 1.83260e9 + 3.17416e9i 0.320143 + 0.554503i
\(21\) 0 0
\(22\) 1.81690e9 3.14696e9i 0.155296 0.268980i
\(23\) 8.95648e9 1.55131e10i 0.548503 0.950035i −0.449875 0.893092i \(-0.648531\pi\)
0.998377 0.0569429i \(-0.0181353\pi\)
\(24\) 0 0
\(25\) 7.33795e9 + 1.27097e10i 0.240450 + 0.416471i
\(26\) −7.13415e8 −0.0174198
\(27\) 0 0
\(28\) −1.18975e11 −1.66637
\(29\) −1.49932e10 2.59690e10i −0.161402 0.279557i 0.773969 0.633223i \(-0.218268\pi\)
−0.935372 + 0.353666i \(0.884935\pi\)
\(30\) 0 0
\(31\) −5.73455e10 + 9.93254e10i −0.374358 + 0.648407i −0.990231 0.139439i \(-0.955470\pi\)
0.615873 + 0.787846i \(0.288803\pi\)
\(32\) −8.32376e10 + 1.44172e11i −0.428248 + 0.741747i
\(33\) 0 0
\(34\) 8.02666e10 + 1.39026e11i 0.262086 + 0.453946i
\(35\) 5.14232e11 1.35098
\(36\) 0 0
\(37\) 1.02630e11 0.177730 0.0888648 0.996044i \(-0.471676\pi\)
0.0888648 + 0.996044i \(0.471676\pi\)
\(38\) −7.05297e10 1.22161e11i −0.0999989 0.173203i
\(39\) 0 0
\(40\) 2.35224e11 4.07420e11i 0.227003 0.393181i
\(41\) −1.01906e12 + 1.76506e12i −0.817184 + 1.41540i 0.0905650 + 0.995891i \(0.471133\pi\)
−0.907749 + 0.419514i \(0.862201\pi\)
\(42\) 0 0
\(43\) 6.33169e11 + 1.09668e12i 0.355227 + 0.615272i 0.987157 0.159754i \(-0.0510701\pi\)
−0.631930 + 0.775026i \(0.717737\pi\)
\(44\) 1.75209e12 0.827296
\(45\) 0 0
\(46\) −1.08186e12 −0.366004
\(47\) 2.66170e12 + 4.61020e12i 0.766346 + 1.32735i 0.939532 + 0.342461i \(0.111261\pi\)
−0.173186 + 0.984889i \(0.555406\pi\)
\(48\) 0 0
\(49\) −5.97240e12 + 1.03445e13i −1.25799 + 2.17891i
\(50\) 4.43176e11 7.67604e11i 0.0802235 0.138951i
\(51\) 0 0
\(52\) −1.71992e11 2.97899e11i −0.0231997 0.0401831i
\(53\) 4.91335e11 0.0574525 0.0287263 0.999587i \(-0.490855\pi\)
0.0287263 + 0.999587i \(0.490855\pi\)
\(54\) 0 0
\(55\) −7.57284e12 −0.670716
\(56\) 7.63555e12 + 1.32252e13i 0.590786 + 1.02327i
\(57\) 0 0
\(58\) −9.05518e11 + 1.56840e12i −0.0538502 + 0.0932712i
\(59\) 4.33799e12 7.51363e12i 0.226934 0.393061i −0.729964 0.683485i \(-0.760463\pi\)
0.956898 + 0.290425i \(0.0937966\pi\)
\(60\) 0 0
\(61\) 1.40603e13 + 2.43532e13i 0.572824 + 0.992160i 0.996274 + 0.0862406i \(0.0274854\pi\)
−0.423451 + 0.905919i \(0.639181\pi\)
\(62\) 6.92678e12 0.249801
\(63\) 0 0
\(64\) −1.38164e13 −0.392686
\(65\) 7.43380e11 + 1.28757e12i 0.0188088 + 0.0325778i
\(66\) 0 0
\(67\) 5.72996e12 9.92457e12i 0.115502 0.200056i −0.802478 0.596681i \(-0.796486\pi\)
0.917980 + 0.396626i \(0.129819\pi\)
\(68\) −3.87018e13 + 6.70334e13i −0.698094 + 1.20913i
\(69\) 0 0
\(70\) −1.55286e13 2.68963e13i −0.225370 0.390352i
\(71\) −4.63738e13 −0.605111 −0.302556 0.953132i \(-0.597840\pi\)
−0.302556 + 0.953132i \(0.597840\pi\)
\(72\) 0 0
\(73\) −2.03563e13 −0.215664 −0.107832 0.994169i \(-0.534391\pi\)
−0.107832 + 0.994169i \(0.534391\pi\)
\(74\) −3.09916e12 5.36791e12i −0.0296488 0.0513532i
\(75\) 0 0
\(76\) 3.40070e13 5.89018e13i 0.266358 0.461346i
\(77\) 1.22910e14 2.12886e14i 0.872784 1.51171i
\(78\) 0 0
\(79\) 4.33752e13 + 7.51280e13i 0.254119 + 0.440148i 0.964656 0.263513i \(-0.0848810\pi\)
−0.710537 + 0.703660i \(0.751548\pi\)
\(80\) 9.16887e13 0.488811
\(81\) 0 0
\(82\) 1.23092e14 0.545289
\(83\) −5.62932e13 9.75026e13i −0.227704 0.394394i 0.729424 0.684062i \(-0.239788\pi\)
−0.957127 + 0.289668i \(0.906455\pi\)
\(84\) 0 0
\(85\) 1.67276e14 2.89731e14i 0.565968 0.980285i
\(86\) 3.82403e13 6.62342e13i 0.118518 0.205279i
\(87\) 0 0
\(88\) −1.12445e14 1.94760e14i −0.293305 0.508019i
\(89\) −7.18882e14 −1.72279 −0.861396 0.507934i \(-0.830409\pi\)
−0.861396 + 0.507934i \(0.830409\pi\)
\(90\) 0 0
\(91\) −4.82613e13 −0.0979014
\(92\) −2.60817e14 4.51748e14i −0.487446 0.844282i
\(93\) 0 0
\(94\) 1.60754e14 2.78433e14i 0.255683 0.442856i
\(95\) −1.46984e14 + 2.54584e14i −0.215945 + 0.374028i
\(96\) 0 0
\(97\) −1.42070e14 2.46072e14i −0.178531 0.309225i 0.762847 0.646579i \(-0.223801\pi\)
−0.941378 + 0.337355i \(0.890468\pi\)
\(98\) 7.21407e14 0.839431
\(99\) 0 0
\(100\) 4.27368e14 0.427368
\(101\) 8.47542e13 + 1.46799e14i 0.0786594 + 0.136242i 0.902672 0.430330i \(-0.141603\pi\)
−0.824012 + 0.566572i \(0.808269\pi\)
\(102\) 0 0
\(103\) −1.58415e14 + 2.74383e14i −0.126916 + 0.219825i −0.922480 0.386044i \(-0.873841\pi\)
0.795564 + 0.605869i \(0.207175\pi\)
\(104\) −2.20761e13 + 3.82369e13i −0.0164502 + 0.0284926i
\(105\) 0 0
\(106\) −1.48371e13 2.56987e13i −0.00958420 0.0166003i
\(107\) −3.70048e14 −0.222782 −0.111391 0.993777i \(-0.535531\pi\)
−0.111391 + 0.993777i \(0.535531\pi\)
\(108\) 0 0
\(109\) −9.62433e14 −0.504280 −0.252140 0.967691i \(-0.581134\pi\)
−0.252140 + 0.967691i \(0.581134\pi\)
\(110\) 2.28681e14 + 3.96088e14i 0.111889 + 0.193797i
\(111\) 0 0
\(112\) −1.48814e15 + 2.57754e15i −0.636076 + 1.10172i
\(113\) 1.47557e15 2.55576e15i 0.590027 1.02196i −0.404201 0.914670i \(-0.632450\pi\)
0.994228 0.107287i \(-0.0342163\pi\)
\(114\) 0 0
\(115\) 1.12730e15 + 1.95254e15i 0.395189 + 0.684487i
\(116\) −8.73219e14 −0.286872
\(117\) 0 0
\(118\) −5.23987e14 −0.151428
\(119\) 5.42990e15 + 9.40487e15i 1.47296 + 2.55123i
\(120\) 0 0
\(121\) 2.78592e14 4.82536e14i 0.0666927 0.115515i
\(122\) 8.49174e14 1.47081e15i 0.191116 0.331023i
\(123\) 0 0
\(124\) 1.66993e15 + 2.89240e15i 0.332686 + 0.576229i
\(125\) −5.68822e15 −1.06697
\(126\) 0 0
\(127\) −3.44817e15 −0.574197 −0.287098 0.957901i \(-0.592691\pi\)
−0.287098 + 0.957901i \(0.592691\pi\)
\(128\) 3.14475e15 + 5.44687e15i 0.493755 + 0.855209i
\(129\) 0 0
\(130\) 4.48966e13 7.77631e13i 0.00627535 0.0108692i
\(131\) −2.61435e15 + 4.52818e15i −0.345007 + 0.597570i −0.985355 0.170515i \(-0.945457\pi\)
0.640348 + 0.768085i \(0.278790\pi\)
\(132\) 0 0
\(133\) −4.77122e15 8.26399e15i −0.562007 0.973425i
\(134\) −6.92123e14 −0.0770721
\(135\) 0 0
\(136\) 9.93515e15 0.989994
\(137\) −5.47818e15 9.48848e15i −0.516692 0.894937i −0.999812 0.0193829i \(-0.993830\pi\)
0.483120 0.875554i \(-0.339503\pi\)
\(138\) 0 0
\(139\) −6.16511e15 + 1.06783e16i −0.521591 + 0.903422i 0.478094 + 0.878309i \(0.341328\pi\)
−0.999685 + 0.0251130i \(0.992005\pi\)
\(140\) 7.48733e15 1.29684e16i 0.600298 1.03975i
\(141\) 0 0
\(142\) 1.40038e15 + 2.42552e15i 0.100944 + 0.174841i
\(143\) 7.10720e14 0.0486047
\(144\) 0 0
\(145\) 3.77421e15 0.232576
\(146\) 6.14710e14 + 1.06471e15i 0.0359769 + 0.0623139i
\(147\) 0 0
\(148\) 1.49431e15 2.58822e15i 0.0789728 0.136785i
\(149\) 6.86129e15 1.18841e16i 0.344754 0.597131i −0.640555 0.767912i \(-0.721296\pi\)
0.985309 + 0.170781i \(0.0546291\pi\)
\(150\) 0 0
\(151\) −5.53932e15 9.59438e15i −0.251843 0.436204i 0.712191 0.701986i \(-0.247703\pi\)
−0.964033 + 0.265782i \(0.914370\pi\)
\(152\) −8.72995e15 −0.377733
\(153\) 0 0
\(154\) −1.48463e16 −0.582389
\(155\) −7.21772e15 1.25015e16i −0.269720 0.467168i
\(156\) 0 0
\(157\) 2.67340e16 4.63046e16i 0.907437 1.57173i 0.0898239 0.995958i \(-0.471370\pi\)
0.817613 0.575769i \(-0.195297\pi\)
\(158\) 2.61965e15 4.53736e15i 0.0847842 0.146851i
\(159\) 0 0
\(160\) −1.04766e16 1.81460e16i −0.308546 0.534418i
\(161\) −7.31857e16 −2.05699
\(162\) 0 0
\(163\) 2.54506e16 0.652064 0.326032 0.945359i \(-0.394288\pi\)
0.326032 + 0.945359i \(0.394288\pi\)
\(164\) 2.96754e16 + 5.13993e16i 0.726219 + 1.25785i
\(165\) 0 0
\(166\) −3.39983e15 + 5.88868e15i −0.0759708 + 0.131585i
\(167\) 3.12872e16 5.41910e16i 0.668334 1.15759i −0.310036 0.950725i \(-0.600341\pi\)
0.978370 0.206863i \(-0.0663254\pi\)
\(168\) 0 0
\(169\) 2.55232e16 + 4.42074e16i 0.498637 + 0.863665i
\(170\) −2.02053e16 −0.377658
\(171\) 0 0
\(172\) 3.68763e16 0.631370
\(173\) 1.82106e16 + 3.15417e16i 0.298524 + 0.517059i 0.975798 0.218672i \(-0.0701724\pi\)
−0.677275 + 0.735730i \(0.736839\pi\)
\(174\) 0 0
\(175\) 2.99801e16 5.19271e16i 0.450867 0.780924i
\(176\) 2.19151e16 3.79580e16i 0.315790 0.546964i
\(177\) 0 0
\(178\) 2.17085e16 + 3.76002e16i 0.287395 + 0.497783i
\(179\) −5.71118e16 −0.724983 −0.362491 0.931987i \(-0.618074\pi\)
−0.362491 + 0.931987i \(0.618074\pi\)
\(180\) 0 0
\(181\) −1.35199e17 −1.57900 −0.789502 0.613748i \(-0.789661\pi\)
−0.789502 + 0.613748i \(0.789661\pi\)
\(182\) 1.45737e15 + 2.52425e15i 0.0163319 + 0.0282876i
\(183\) 0 0
\(184\) −3.34772e16 + 5.79842e16i −0.345633 + 0.598654i
\(185\) −6.45867e15 + 1.11867e16i −0.0640258 + 0.110896i
\(186\) 0 0
\(187\) −7.99634e16 1.38501e17i −0.731272 1.26660i
\(188\) 1.55020e17 1.36208
\(189\) 0 0
\(190\) 1.77543e16 0.144096
\(191\) 7.91112e16 + 1.37025e17i 0.617288 + 1.06917i 0.989978 + 0.141218i \(0.0451019\pi\)
−0.372691 + 0.927956i \(0.621565\pi\)
\(192\) 0 0
\(193\) −1.34353e17 + 2.32705e17i −0.969540 + 1.67929i −0.272654 + 0.962112i \(0.587901\pi\)
−0.696887 + 0.717181i \(0.745432\pi\)
\(194\) −8.58032e15 + 1.48615e16i −0.0595649 + 0.103169i
\(195\) 0 0
\(196\) 1.73919e17 + 3.01236e17i 1.11796 + 1.93636i
\(197\) −7.23126e16 −0.447422 −0.223711 0.974656i \(-0.571817\pi\)
−0.223711 + 0.974656i \(0.571817\pi\)
\(198\) 0 0
\(199\) −7.66993e16 −0.439940 −0.219970 0.975507i \(-0.570596\pi\)
−0.219970 + 0.975507i \(0.570596\pi\)
\(200\) −2.74275e16 4.75058e16i −0.151517 0.262435i
\(201\) 0 0
\(202\) 5.11874e15 8.86592e15i 0.0262439 0.0454557i
\(203\) −6.12568e16 + 1.06100e17i −0.302645 + 0.524197i
\(204\) 0 0
\(205\) −1.28262e17 2.22157e17i −0.588770 1.01978i
\(206\) 1.91350e16 0.0846884
\(207\) 0 0
\(208\) −8.60509e15 −0.0354226
\(209\) 7.02633e16 + 1.21700e17i 0.279017 + 0.483272i
\(210\) 0 0
\(211\) 1.65432e17 2.86536e17i 0.611646 1.05940i −0.379317 0.925267i \(-0.623841\pi\)
0.990963 0.134135i \(-0.0428256\pi\)
\(212\) 7.15395e15 1.23910e16i 0.0255286 0.0442168i
\(213\) 0 0
\(214\) 1.11745e16 + 1.93549e16i 0.0371643 + 0.0643705i
\(215\) −1.59386e17 −0.511873
\(216\) 0 0
\(217\) 4.68585e17 1.40391
\(218\) 2.90631e16 + 5.03388e16i 0.0841238 + 0.145707i
\(219\) 0 0
\(220\) −1.10262e17 + 1.90980e17i −0.298028 + 0.516199i
\(221\) −1.56991e16 + 2.71916e16i −0.0410139 + 0.0710382i
\(222\) 0 0
\(223\) 2.03539e16 + 3.52541e16i 0.0497007 + 0.0860841i 0.889805 0.456340i \(-0.150840\pi\)
−0.840105 + 0.542424i \(0.817507\pi\)
\(224\) 6.80156e17 1.60601
\(225\) 0 0
\(226\) −1.78235e17 −0.393712
\(227\) −3.51405e17 6.08652e17i −0.750956 1.30069i −0.947360 0.320170i \(-0.896260\pi\)
0.196404 0.980523i \(-0.437073\pi\)
\(228\) 0 0
\(229\) 2.05335e16 3.55650e16i 0.0410862 0.0711635i −0.844751 0.535160i \(-0.820251\pi\)
0.885837 + 0.463996i \(0.153585\pi\)
\(230\) 6.80832e16 1.17924e17i 0.131850 0.228372i
\(231\) 0 0
\(232\) 5.60411e16 + 9.70660e16i 0.101706 + 0.176160i
\(233\) −4.65560e17 −0.818101 −0.409050 0.912512i \(-0.634140\pi\)
−0.409050 + 0.912512i \(0.634140\pi\)
\(234\) 0 0
\(235\) −6.70023e17 −1.10428
\(236\) −1.26324e17 2.18800e17i −0.201673 0.349307i
\(237\) 0 0
\(238\) 3.27940e17 5.68008e17i 0.491436 0.851192i
\(239\) −3.06509e17 + 5.30889e17i −0.445102 + 0.770939i −0.998059 0.0622707i \(-0.980166\pi\)
0.552958 + 0.833209i \(0.313499\pi\)
\(240\) 0 0
\(241\) −4.79927e17 8.31257e17i −0.654707 1.13399i −0.981967 0.189052i \(-0.939459\pi\)
0.327260 0.944934i \(-0.393875\pi\)
\(242\) −3.36512e16 −0.0445026
\(243\) 0 0
\(244\) 8.18884e17 1.01812
\(245\) −7.51708e17 1.30200e18i −0.906366 1.56987i
\(246\) 0 0
\(247\) 1.37947e16 2.38930e16i 0.0156489 0.0271047i
\(248\) 2.14344e17 3.71254e17i 0.235898 0.408586i
\(249\) 0 0
\(250\) 1.71770e17 + 2.97515e17i 0.177991 + 0.308290i
\(251\) 9.35854e17 0.941142 0.470571 0.882362i \(-0.344048\pi\)
0.470571 + 0.882362i \(0.344048\pi\)
\(252\) 0 0
\(253\) 1.07777e18 1.02123
\(254\) 1.04126e17 + 1.80352e17i 0.0957873 + 0.165908i
\(255\) 0 0
\(256\) −3.64402e16 + 6.31162e16i −0.0316068 + 0.0547446i
\(257\) −3.05801e17 + 5.29663e17i −0.257597 + 0.446170i −0.965598 0.260041i \(-0.916264\pi\)
0.708001 + 0.706212i \(0.249597\pi\)
\(258\) 0 0
\(259\) −2.09653e17 3.63130e17i −0.166630 0.288612i
\(260\) 4.32951e16 0.0334302
\(261\) 0 0
\(262\) 3.15788e17 0.230216
\(263\) 7.75912e14 + 1.34392e15i 0.000549724 + 0.000952149i 0.866300 0.499524i \(-0.166492\pi\)
−0.865750 + 0.500476i \(0.833158\pi\)
\(264\) 0 0
\(265\) −3.09207e16 + 5.35562e16i −0.0206969 + 0.0358480i
\(266\) −2.88158e17 + 4.99105e17i −0.187508 + 0.324773i
\(267\) 0 0
\(268\) −1.66859e17 2.89008e17i −0.102645 0.177786i
\(269\) −9.58357e17 −0.573304 −0.286652 0.958035i \(-0.592542\pi\)
−0.286652 + 0.958035i \(0.592542\pi\)
\(270\) 0 0
\(271\) −2.86480e18 −1.62116 −0.810578 0.585631i \(-0.800847\pi\)
−0.810578 + 0.585631i \(0.800847\pi\)
\(272\) 9.68163e17 + 1.67691e18i 0.532944 + 0.923086i
\(273\) 0 0
\(274\) −3.30855e17 + 5.73058e17i −0.172389 + 0.298586i
\(275\) −4.41502e17 + 7.64704e17i −0.223840 + 0.387702i
\(276\) 0 0
\(277\) 1.44884e18 + 2.50946e18i 0.695700 + 1.20499i 0.969944 + 0.243328i \(0.0782390\pi\)
−0.274244 + 0.961660i \(0.588428\pi\)
\(278\) 7.44685e17 0.348046
\(279\) 0 0
\(280\) −1.92208e18 −0.851306
\(281\) −5.14159e17 8.90549e17i −0.221717 0.384026i 0.733612 0.679568i \(-0.237833\pi\)
−0.955330 + 0.295543i \(0.904500\pi\)
\(282\) 0 0
\(283\) −1.64158e18 + 2.84329e18i −0.671217 + 1.16258i 0.306342 + 0.951921i \(0.400895\pi\)
−0.977559 + 0.210660i \(0.932439\pi\)
\(284\) −6.75213e17 + 1.16950e18i −0.268877 + 0.465708i
\(285\) 0 0
\(286\) −2.14620e16 3.71733e16i −0.00810821 0.0140438i
\(287\) 8.32698e18 3.06460
\(288\) 0 0
\(289\) 4.20281e18 1.46827
\(290\) −1.13972e17 1.97405e17i −0.0387983 0.0672006i
\(291\) 0 0
\(292\) −2.96392e17 + 5.13366e17i −0.0958286 + 0.165980i
\(293\) −1.07377e18 + 1.85983e18i −0.338381 + 0.586092i −0.984128 0.177458i \(-0.943212\pi\)
0.645748 + 0.763551i \(0.276546\pi\)
\(294\) 0 0
\(295\) 5.45996e17 + 9.45693e17i 0.163503 + 0.283195i
\(296\) −3.83605e17 −0.111994
\(297\) 0 0
\(298\) −8.28777e17 −0.230047
\(299\) −1.05798e17 1.83248e17i −0.0286381 0.0496026i
\(300\) 0 0
\(301\) 2.58689e18 4.48063e18i 0.666085 1.15369i
\(302\) −3.34548e17 + 5.79454e17i −0.0840245 + 0.145535i
\(303\) 0 0
\(304\) −8.50717e17 1.47349e18i −0.203345 0.352204i
\(305\) −3.53937e18 −0.825423
\(306\) 0 0
\(307\) −5.28247e18 −1.17300 −0.586501 0.809948i \(-0.699495\pi\)
−0.586501 + 0.809948i \(0.699495\pi\)
\(308\) −3.57919e18 6.19934e18i −0.775630 1.34343i
\(309\) 0 0
\(310\) −4.35915e17 + 7.55027e17i −0.0899890 + 0.155866i
\(311\) −1.12413e18 + 1.94706e18i −0.226524 + 0.392352i −0.956776 0.290827i \(-0.906070\pi\)
0.730251 + 0.683179i \(0.239403\pi\)
\(312\) 0 0
\(313\) 2.88449e17 + 4.99608e17i 0.0553970 + 0.0959505i 0.892394 0.451257i \(-0.149024\pi\)
−0.836997 + 0.547207i \(0.815691\pi\)
\(314\) −3.22920e18 −0.605513
\(315\) 0 0
\(316\) 2.52621e18 0.451664
\(317\) 4.97239e18 + 8.61243e18i 0.868201 + 1.50377i 0.863833 + 0.503778i \(0.168057\pi\)
0.00436808 + 0.999990i \(0.498610\pi\)
\(318\) 0 0
\(319\) 9.02097e17 1.56248e18i 0.150253 0.260246i
\(320\) 8.69492e17 1.50600e18i 0.141462 0.245020i
\(321\) 0 0
\(322\) 2.21003e18 + 3.82789e18i 0.343146 + 0.594347i
\(323\) −6.20817e18 −0.941769
\(324\) 0 0
\(325\) 1.73359e17 0.0251085
\(326\) −7.68545e17 1.33116e18i −0.108777 0.188407i
\(327\) 0 0
\(328\) 3.80899e18 6.59737e18i 0.514940 0.891902i
\(329\) 1.08747e19 1.88356e19i 1.43697 2.48891i
\(330\) 0 0
\(331\) −4.83612e18 8.37641e18i −0.610643 1.05766i −0.991132 0.132880i \(-0.957578\pi\)
0.380489 0.924785i \(-0.375756\pi\)
\(332\) −3.27856e18 −0.404714
\(333\) 0 0
\(334\) −3.77919e18 −0.445964
\(335\) 7.21194e17 + 1.24914e18i 0.0832177 + 0.144137i
\(336\) 0 0
\(337\) −4.88514e18 + 8.46130e18i −0.539079 + 0.933712i 0.459875 + 0.887984i \(0.347894\pi\)
−0.998954 + 0.0457286i \(0.985439\pi\)
\(338\) 1.54148e18 2.66991e18i 0.166365 0.288152i
\(339\) 0 0
\(340\) −4.87115e18 8.43708e18i −0.502967 0.871165i
\(341\) −6.90061e18 −0.696995
\(342\) 0 0
\(343\) 2.94052e19 2.84262
\(344\) −2.36663e18 4.09913e18i −0.223843 0.387707i
\(345\) 0 0
\(346\) 1.09983e18 1.90497e18i 0.0995993 0.172511i
\(347\) 3.89659e18 6.74908e18i 0.345313 0.598100i −0.640097 0.768294i \(-0.721106\pi\)
0.985411 + 0.170194i \(0.0544394\pi\)
\(348\) 0 0
\(349\) 2.10783e18 + 3.65086e18i 0.178914 + 0.309888i 0.941509 0.336988i \(-0.109408\pi\)
−0.762595 + 0.646876i \(0.776075\pi\)
\(350\) −3.62131e18 −0.300853
\(351\) 0 0
\(352\) −1.00163e19 −0.797330
\(353\) 4.21138e18 + 7.29433e18i 0.328182 + 0.568428i 0.982151 0.188093i \(-0.0602308\pi\)
−0.653969 + 0.756521i \(0.726897\pi\)
\(354\) 0 0
\(355\) 2.91839e18 5.05480e18i 0.217987 0.377565i
\(356\) −1.04671e19 + 1.81295e19i −0.765509 + 1.32590i
\(357\) 0 0
\(358\) 1.72464e18 + 2.98716e18i 0.120941 + 0.209477i
\(359\) 1.15004e19 0.789778 0.394889 0.918729i \(-0.370783\pi\)
0.394889 + 0.918729i \(0.370783\pi\)
\(360\) 0 0
\(361\) −9.72606e18 −0.640668
\(362\) 4.08267e18 + 7.07139e18i 0.263409 + 0.456237i
\(363\) 0 0
\(364\) −7.02695e17 + 1.21710e18i −0.0435018 + 0.0753472i
\(365\) 1.28106e18 2.21886e18i 0.0776914 0.134565i
\(366\) 0 0
\(367\) 5.75123e18 + 9.96142e18i 0.334784 + 0.579864i 0.983443 0.181216i \(-0.0580032\pi\)
−0.648659 + 0.761079i \(0.724670\pi\)
\(368\) −1.30492e19 −0.744259
\(369\) 0 0
\(370\) 7.80144e17 0.0427230
\(371\) −1.00371e18 1.73847e18i −0.0538645 0.0932961i
\(372\) 0 0
\(373\) −6.12919e18 + 1.06161e19i −0.315927 + 0.547202i −0.979634 0.200791i \(-0.935649\pi\)
0.663707 + 0.747993i \(0.268982\pi\)
\(374\) −4.82940e18 + 8.36477e18i −0.243981 + 0.422588i
\(375\) 0 0
\(376\) −9.94879e18 1.72318e19i −0.482905 0.836415i
\(377\) −3.54214e17 −0.0168541
\(378\) 0 0
\(379\) −1.54013e19 −0.704309 −0.352155 0.935942i \(-0.614551\pi\)
−0.352155 + 0.935942i \(0.614551\pi\)
\(380\) 4.28025e18 + 7.41360e18i 0.191907 + 0.332393i
\(381\) 0 0
\(382\) 4.77793e18 8.27562e18i 0.205951 0.356718i
\(383\) 8.38128e17 1.45168e18i 0.0354258 0.0613593i −0.847769 0.530366i \(-0.822055\pi\)
0.883195 + 0.469007i \(0.155388\pi\)
\(384\) 0 0
\(385\) 1.54699e19 + 2.67947e19i 0.628828 + 1.08916i
\(386\) 1.62285e19 0.646953
\(387\) 0 0
\(388\) −8.27426e18 −0.317316
\(389\) 1.84521e19 + 3.19599e19i 0.694102 + 1.20222i 0.970483 + 0.241171i \(0.0775315\pi\)
−0.276381 + 0.961048i \(0.589135\pi\)
\(390\) 0 0
\(391\) −2.38068e19 + 4.12346e19i −0.861738 + 1.49257i
\(392\) 2.23234e19 3.86652e19i 0.792710 1.37301i
\(393\) 0 0
\(394\) 2.18366e18 + 3.78222e18i 0.0746387 + 0.129278i
\(395\) −1.09187e19 −0.366179
\(396\) 0 0
\(397\) −3.49000e18 −0.112693 −0.0563464 0.998411i \(-0.517945\pi\)
−0.0563464 + 0.998411i \(0.517945\pi\)
\(398\) 2.31613e18 + 4.01166e18i 0.0733906 + 0.127116i
\(399\) 0 0
\(400\) 5.34552e18 9.25871e18i 0.163132 0.282553i
\(401\) 9.27342e18 1.60620e19i 0.277752 0.481080i −0.693074 0.720867i \(-0.743744\pi\)
0.970826 + 0.239786i \(0.0770773\pi\)
\(402\) 0 0
\(403\) 6.77392e17 + 1.17328e18i 0.0195457 + 0.0338542i
\(404\) 4.93616e18 0.139807
\(405\) 0 0
\(406\) 7.39922e18 0.201949
\(407\) 3.08746e18 + 5.34763e18i 0.0827261 + 0.143286i
\(408\) 0 0
\(409\) −9.46896e18 + 1.64007e19i −0.244555 + 0.423582i −0.962007 0.273026i \(-0.911975\pi\)
0.717451 + 0.696609i \(0.245309\pi\)
\(410\) −7.74642e18 + 1.34172e19i −0.196437 + 0.340238i
\(411\) 0 0
\(412\) 4.61311e18 + 7.99014e18i 0.112788 + 0.195355i
\(413\) −3.54469e19 −0.851045
\(414\) 0 0
\(415\) 1.41705e19 0.328115
\(416\) 9.83242e17 + 1.70302e18i 0.0223594 + 0.0387276i
\(417\) 0 0
\(418\) 4.24356e18 7.35006e18i 0.0930911 0.161239i
\(419\) −3.16496e19 + 5.48187e19i −0.681966 + 1.18120i 0.292414 + 0.956292i \(0.405542\pi\)
−0.974380 + 0.224908i \(0.927792\pi\)
\(420\) 0 0
\(421\) −4.08195e19 7.07015e19i −0.848696 1.46999i −0.882372 0.470553i \(-0.844055\pi\)
0.0336755 0.999433i \(-0.489279\pi\)
\(422\) −1.99825e19 −0.408138
\(423\) 0 0
\(424\) −1.83649e18 −0.0362031
\(425\) −1.95046e19 3.37830e19i −0.377764 0.654307i
\(426\) 0 0
\(427\) 5.74452e19 9.94980e19i 1.07410 1.86039i
\(428\) −5.38797e18 + 9.33224e18i −0.0989913 + 0.171458i
\(429\) 0 0
\(430\) 4.81307e18 + 8.33648e18i 0.0853904 + 0.147900i
\(431\) 5.26955e19 0.918744 0.459372 0.888244i \(-0.348075\pi\)
0.459372 + 0.888244i \(0.348075\pi\)
\(432\) 0 0
\(433\) 6.18330e19 1.04126 0.520632 0.853781i \(-0.325696\pi\)
0.520632 + 0.853781i \(0.325696\pi\)
\(434\) −1.41501e19 2.45087e19i −0.234200 0.405647i
\(435\) 0 0
\(436\) −1.40132e19 + 2.42716e19i −0.224073 + 0.388106i
\(437\) 2.09189e19 3.62325e19i 0.328796 0.569492i
\(438\) 0 0
\(439\) 2.95849e19 + 5.12425e19i 0.449351 + 0.778299i 0.998344 0.0575281i \(-0.0183219\pi\)
−0.548993 + 0.835827i \(0.684989\pi\)
\(440\) 2.83055e19 0.422644
\(441\) 0 0
\(442\) 1.89629e18 0.0273677
\(443\) −4.02423e19 6.97018e19i −0.571025 0.989045i −0.996461 0.0840562i \(-0.973212\pi\)
0.425436 0.904989i \(-0.360121\pi\)
\(444\) 0 0
\(445\) 4.52406e19 7.83590e19i 0.620624 1.07495i
\(446\) 1.22928e18 2.12917e18i 0.0165821 0.0287210i
\(447\) 0 0
\(448\) 2.82243e19 + 4.88860e19i 0.368162 + 0.637675i
\(449\) 1.32316e19 0.169732 0.0848662 0.996392i \(-0.472954\pi\)
0.0848662 + 0.996392i \(0.472954\pi\)
\(450\) 0 0
\(451\) −1.22627e20 −1.52147
\(452\) −4.29693e19 7.44250e19i −0.524348 0.908198i
\(453\) 0 0
\(454\) −2.12232e19 + 3.67596e19i −0.250548 + 0.433962i
\(455\) 3.03718e18 5.26054e18i 0.0352683 0.0610865i
\(456\) 0 0
\(457\) −7.28419e19 1.26166e20i −0.818483 1.41765i −0.906800 0.421562i \(-0.861482\pi\)
0.0883169 0.996092i \(-0.471851\pi\)
\(458\) −2.48024e18 −0.0274160
\(459\) 0 0
\(460\) 6.56547e19 0.702396
\(461\) −2.27701e19 3.94390e19i −0.239667 0.415115i 0.720952 0.692985i \(-0.243705\pi\)
−0.960619 + 0.277870i \(0.910372\pi\)
\(462\) 0 0
\(463\) −1.94429e19 + 3.36760e19i −0.198108 + 0.343134i −0.947915 0.318523i \(-0.896813\pi\)
0.749807 + 0.661657i \(0.230146\pi\)
\(464\) −1.09222e19 + 1.89178e19i −0.109503 + 0.189665i
\(465\) 0 0
\(466\) 1.40588e19 + 2.43505e19i 0.136475 + 0.236382i
\(467\) −1.23623e20 −1.18093 −0.590464 0.807064i \(-0.701055\pi\)
−0.590464 + 0.807064i \(0.701055\pi\)
\(468\) 0 0
\(469\) −4.68209e19 −0.433155
\(470\) 2.02331e19 + 3.50447e19i 0.184216 + 0.319072i
\(471\) 0 0
\(472\) −1.62144e19 + 2.80841e19i −0.143000 + 0.247683i
\(473\) −3.80959e19 + 6.59840e19i −0.330689 + 0.572770i
\(474\) 0 0
\(475\) 1.71386e19 + 2.96849e19i 0.144136 + 0.249651i
\(476\) 3.16242e20 2.61799
\(477\) 0 0
\(478\) 3.70233e19 0.297007
\(479\) 2.96043e19 + 5.12762e19i 0.233797 + 0.404948i 0.958922 0.283669i \(-0.0915516\pi\)
−0.725125 + 0.688617i \(0.758218\pi\)
\(480\) 0 0
\(481\) 6.06154e17 1.04989e18i 0.00463975 0.00803629i
\(482\) −2.89852e19 + 5.02039e19i −0.218436 + 0.378342i
\(483\) 0 0
\(484\) −8.11272e18 1.40516e19i −0.0592688 0.102657i
\(485\) 3.57628e19 0.257258
\(486\) 0 0
\(487\) −2.91549e19 −0.203350 −0.101675 0.994818i \(-0.532420\pi\)
−0.101675 + 0.994818i \(0.532420\pi\)
\(488\) −5.25540e19 9.10263e19i −0.360959 0.625199i
\(489\) 0 0
\(490\) −4.53995e19 + 7.86343e19i −0.302399 + 0.523771i
\(491\) −9.61204e19 + 1.66485e20i −0.630528 + 1.09211i 0.356916 + 0.934136i \(0.383828\pi\)
−0.987444 + 0.157970i \(0.949505\pi\)
\(492\) 0 0
\(493\) 3.98528e19 + 6.90270e19i 0.253575 + 0.439205i
\(494\) −1.66626e18 −0.0104422
\(495\) 0 0
\(496\) 8.35497e19 0.507963
\(497\) 9.47331e19 + 1.64083e20i 0.567321 + 0.982629i
\(498\) 0 0
\(499\) 2.40099e19 4.15863e19i 0.139520 0.241655i −0.787795 0.615937i \(-0.788777\pi\)
0.927315 + 0.374282i \(0.122111\pi\)
\(500\) −8.28217e19 + 1.43451e20i −0.474099 + 0.821164i
\(501\) 0 0
\(502\) −2.82605e19 4.89486e19i −0.157001 0.271933i
\(503\) −1.16964e20 −0.640164 −0.320082 0.947390i \(-0.603710\pi\)
−0.320082 + 0.947390i \(0.603710\pi\)
\(504\) 0 0
\(505\) −2.13350e19 −0.113346
\(506\) −3.25460e19 5.63713e19i −0.170360 0.295073i
\(507\) 0 0
\(508\) −5.02061e19 + 8.69595e19i −0.255140 + 0.441916i
\(509\) 7.81322e19 1.35329e20i 0.391243 0.677653i −0.601371 0.798970i \(-0.705378\pi\)
0.992614 + 0.121317i \(0.0387118\pi\)
\(510\) 0 0
\(511\) 4.15841e19 + 7.20258e19i 0.202195 + 0.350212i
\(512\) 2.10496e20 1.00860
\(513\) 0 0
\(514\) 3.69378e19 0.171889
\(515\) −1.99387e19 3.45348e19i −0.0914413 0.158381i
\(516\) 0 0
\(517\) −1.60146e20 + 2.77382e20i −0.713408 + 1.23566i
\(518\) −1.26620e19 + 2.19313e19i −0.0555943 + 0.0962921i
\(519\) 0 0
\(520\) −2.77858e18 4.81264e18i −0.0118522 0.0205285i
\(521\) 2.60369e20 1.09473 0.547364 0.836894i \(-0.315631\pi\)
0.547364 + 0.836894i \(0.315631\pi\)
\(522\) 0 0
\(523\) 4.22701e19 0.172691 0.0863456 0.996265i \(-0.472481\pi\)
0.0863456 + 0.996265i \(0.472481\pi\)
\(524\) 7.61309e19 + 1.31863e20i 0.306603 + 0.531052i
\(525\) 0 0
\(526\) 4.68613e16 8.11662e16i 0.000183409 0.000317674i
\(527\) 1.52427e20 2.64012e20i 0.588143 1.01869i
\(528\) 0 0
\(529\) −2.71196e19 4.69726e19i −0.101711 0.176168i
\(530\) 3.73491e18 0.0138106
\(531\) 0 0
\(532\) −2.77880e20 −0.998894
\(533\) 1.20376e19 + 2.08497e19i 0.0426663 + 0.0739002i
\(534\) 0 0
\(535\) 2.32878e19 4.03356e19i 0.0802555 0.139007i
\(536\) −2.14172e19 + 3.70957e19i −0.0727824 + 0.126063i
\(537\) 0 0
\(538\) 2.89400e19 + 5.01256e19i 0.0956383 + 0.165650i
\(539\) −7.18682e20 −2.34218
\(540\) 0 0
\(541\) 4.19877e19 0.133089 0.0665445 0.997783i \(-0.478803\pi\)
0.0665445 + 0.997783i \(0.478803\pi\)
\(542\) 8.65100e19 + 1.49840e20i 0.270440 + 0.468417i
\(543\) 0 0
\(544\) 2.21250e20 3.83216e20i 0.672808 1.16534i
\(545\) 6.05677e19 1.04906e20i 0.181663 0.314650i
\(546\) 0 0
\(547\) −2.50718e20 4.34257e20i −0.731612 1.26719i −0.956194 0.292734i \(-0.905435\pi\)
0.224582 0.974455i \(-0.427898\pi\)
\(548\) −3.19054e20 −0.918353
\(549\) 0 0
\(550\) 5.33292e19 0.149364
\(551\) −3.50183e19 6.06535e19i −0.0967517 0.167579i
\(552\) 0 0
\(553\) 1.77215e20 3.06945e20i 0.476498 0.825319i
\(554\) 8.75028e19 1.51559e20i 0.232113 0.402031i
\(555\) 0 0
\(556\) 1.79531e20 + 3.10956e20i 0.463530 + 0.802857i
\(557\) −3.32313e20 −0.846513 −0.423256 0.906010i \(-0.639113\pi\)
−0.423256 + 0.906010i \(0.639113\pi\)
\(558\) 0 0
\(559\) 1.49586e19 0.0370938
\(560\) −1.87303e20 3.24418e20i −0.458284 0.793771i
\(561\) 0 0
\(562\) −3.10527e19 + 5.37848e19i −0.0739736 + 0.128126i
\(563\) 2.04616e20 3.54405e20i 0.480979 0.833080i −0.518783 0.854906i \(-0.673615\pi\)
0.999762 + 0.0218264i \(0.00694810\pi\)
\(564\) 0 0
\(565\) 1.85721e20 + 3.21678e20i 0.425106 + 0.736306i
\(566\) 1.98286e20 0.447888
\(567\) 0 0
\(568\) 1.73334e20 0.381304
\(569\) −7.90826e19 1.36975e20i −0.171688 0.297372i 0.767322 0.641261i \(-0.221589\pi\)
−0.939010 + 0.343890i \(0.888255\pi\)
\(570\) 0 0
\(571\) 2.14768e20 3.71989e20i 0.454150 0.786610i −0.544489 0.838768i \(-0.683276\pi\)
0.998639 + 0.0521575i \(0.0166098\pi\)
\(572\) 1.03482e19 1.79237e19i 0.0215971 0.0374073i
\(573\) 0 0
\(574\) −2.51455e20 4.35532e20i −0.511235 0.885484i
\(575\) 2.62889e20 0.527550
\(576\) 0 0
\(577\) 5.03569e20 0.984557 0.492278 0.870438i \(-0.336164\pi\)
0.492278 + 0.870438i \(0.336164\pi\)
\(578\) −1.26915e20 2.19822e20i −0.244936 0.424241i
\(579\) 0 0
\(580\) 5.49533e19 9.51819e19i 0.103344 0.178996i
\(581\) −2.29993e20 + 3.98359e20i −0.426966 + 0.739527i
\(582\) 0 0
\(583\) 1.47811e19 + 2.56016e19i 0.0267419 + 0.0463183i
\(584\) 7.60869e19 0.135898
\(585\) 0 0
\(586\) 1.29701e20 0.225794
\(587\) 4.93403e20 + 8.54600e20i 0.848040 + 1.46885i 0.882955 + 0.469458i \(0.155551\pi\)
−0.0349149 + 0.999390i \(0.511116\pi\)
\(588\) 0 0
\(589\) −1.33937e20 + 2.31985e20i −0.224406 + 0.388683i
\(590\) 3.29755e19 5.71153e19i 0.0545508 0.0944848i
\(591\) 0 0
\(592\) −3.73816e19 6.47468e19i −0.0602899 0.104425i
\(593\) −2.83452e19 −0.0451409 −0.0225704 0.999745i \(-0.507185\pi\)
−0.0225704 + 0.999745i \(0.507185\pi\)
\(594\) 0 0
\(595\) −1.36686e21 −2.12249
\(596\) −1.99804e20 3.46070e20i −0.306377 0.530661i
\(597\) 0 0
\(598\) −6.38969e18 + 1.10673e19i −0.00955479 + 0.0165494i
\(599\) 2.06362e20 3.57429e20i 0.304739 0.527823i −0.672464 0.740130i \(-0.734764\pi\)
0.977203 + 0.212306i \(0.0680975\pi\)
\(600\) 0 0
\(601\) 2.81858e18 + 4.88192e18i 0.00405949 + 0.00703125i 0.868048 0.496480i \(-0.165374\pi\)
−0.863989 + 0.503512i \(0.832041\pi\)
\(602\) −3.12472e20 −0.444464
\(603\) 0 0
\(604\) −3.22615e20 −0.447617
\(605\) 3.50646e19 + 6.07337e19i 0.0480512 + 0.0832271i
\(606\) 0 0
\(607\) −3.66530e20 + 6.34849e20i −0.489998 + 0.848702i −0.999934 0.0115107i \(-0.996336\pi\)
0.509935 + 0.860213i \(0.329669\pi\)
\(608\) −1.94411e20 + 3.36729e20i −0.256710 + 0.444635i
\(609\) 0 0
\(610\) 1.06880e20 + 1.85122e20i 0.137697 + 0.238498i
\(611\) 6.28824e19 0.0800240
\(612\) 0 0
\(613\) 9.93885e20 1.23419 0.617095 0.786888i \(-0.288309\pi\)
0.617095 + 0.786888i \(0.288309\pi\)
\(614\) 1.59518e20 + 2.76293e20i 0.195680 + 0.338927i
\(615\) 0 0
\(616\) −4.59408e20 + 7.95718e20i −0.549975 + 0.952585i
\(617\) 5.44990e20 9.43950e20i 0.644540 1.11638i −0.339868 0.940473i \(-0.610382\pi\)
0.984408 0.175902i \(-0.0562843\pi\)
\(618\) 0 0
\(619\) 7.40888e20 + 1.28326e21i 0.855210 + 1.48127i 0.876450 + 0.481493i \(0.159905\pi\)
−0.0212393 + 0.999774i \(0.506761\pi\)
\(620\) −4.20366e20 −0.479392
\(621\) 0 0
\(622\) 1.35784e20 0.151155
\(623\) 1.46854e21 + 2.54359e21i 1.61520 + 2.79761i
\(624\) 0 0
\(625\) 1.34034e20 2.32154e20i 0.143918 0.249273i
\(626\) 1.74209e19 3.01739e19i 0.0184826 0.0320128i
\(627\) 0 0
\(628\) −7.78505e20 1.34841e21i −0.806425 1.39677i
\(629\) −2.72795e20 −0.279226
\(630\) 0 0
\(631\) 1.67989e20 0.167904 0.0839520 0.996470i \(-0.473246\pi\)
0.0839520 + 0.996470i \(0.473246\pi\)
\(632\) −1.62126e20 2.80810e20i −0.160131 0.277354i
\(633\) 0 0
\(634\) 3.00308e20 5.20148e20i 0.289666 0.501716i
\(635\) 2.17000e20 3.75855e20i 0.206850 0.358275i
\(636\) 0 0
\(637\) 7.05487e19 + 1.22194e20i 0.0656816 + 0.113764i
\(638\) −1.08965e20 −0.100261
\(639\) 0 0
\(640\) −7.91621e20 −0.711488
\(641\) −3.89521e20 6.74670e20i −0.346015 0.599316i 0.639522 0.768772i \(-0.279132\pi\)
−0.985538 + 0.169456i \(0.945799\pi\)
\(642\) 0 0
\(643\) −5.14927e20 + 8.91879e20i −0.446851 + 0.773969i −0.998179 0.0603196i \(-0.980788\pi\)
0.551328 + 0.834289i \(0.314121\pi\)
\(644\) −1.06560e21 + 1.84567e21i −0.914008 + 1.58311i
\(645\) 0 0
\(646\) 1.87472e20 + 3.24710e20i 0.157105 + 0.272115i
\(647\) −1.39120e21 −1.15241 −0.576206 0.817305i \(-0.695467\pi\)
−0.576206 + 0.817305i \(0.695467\pi\)
\(648\) 0 0
\(649\) 5.22008e20 0.422515
\(650\) −5.23500e18 9.06729e18i −0.00418858 0.00725483i
\(651\) 0 0
\(652\) 3.70566e20 6.41838e20i 0.289740 0.501844i
\(653\) 1.15096e21 1.99352e21i 0.889636 1.54089i 0.0493291 0.998783i \(-0.484292\pi\)
0.840307 0.542112i \(-0.182375\pi\)
\(654\) 0 0
\(655\) −3.29051e20 5.69934e20i −0.248573 0.430541i
\(656\) 1.48472e21 1.10883
\(657\) 0 0
\(658\) −1.31356e21 −0.958861
\(659\) 8.02955e20 + 1.39076e21i 0.579496 + 1.00372i 0.995537 + 0.0943707i \(0.0300839\pi\)
−0.416041 + 0.909346i \(0.636583\pi\)
\(660\) 0 0
\(661\) −3.15323e20 + 5.46155e20i −0.222456 + 0.385305i −0.955553 0.294819i \(-0.904741\pi\)
0.733097 + 0.680124i \(0.238074\pi\)
\(662\) −2.92078e20 + 5.05894e20i −0.203734 + 0.352878i
\(663\) 0 0
\(664\) 2.10410e20 + 3.64441e20i 0.143485 + 0.248523i
\(665\) 1.20105e21 0.809837
\(666\) 0 0
\(667\) −5.37146e20 −0.354119
\(668\) −9.11097e20 1.57807e21i −0.593938 1.02873i
\(669\) 0 0
\(670\) 4.35566e19 7.54422e19i 0.0277647 0.0480898i
\(671\) −8.45966e20 + 1.46526e21i −0.533254 + 0.923623i
\(672\) 0 0
\(673\) 4.05868e20 + 7.02984e20i 0.250191 + 0.433343i 0.963578 0.267427i \(-0.0861733\pi\)
−0.713387 + 0.700770i \(0.752840\pi\)
\(674\) 5.90077e20 0.359716
\(675\) 0 0
\(676\) 1.48649e21 0.886262
\(677\) −1.61236e21 2.79269e21i −0.950707 1.64667i −0.743900 0.668291i \(-0.767026\pi\)
−0.206807 0.978382i \(-0.566307\pi\)
\(678\) 0 0
\(679\) −5.80444e20 + 1.00536e21i −0.334763 + 0.579826i
\(680\) −6.25238e20 + 1.08294e21i −0.356639 + 0.617716i
\(681\) 0 0
\(682\) 2.08382e20 + 3.60928e20i 0.116272 + 0.201390i
\(683\) 1.31933e21 0.728114 0.364057 0.931377i \(-0.381391\pi\)
0.364057 + 0.931377i \(0.381391\pi\)
\(684\) 0 0
\(685\) 1.37901e21 0.744539
\(686\) −8.87966e20 1.53800e21i −0.474204 0.821346i
\(687\) 0 0
\(688\) 4.61248e20 7.98906e20i 0.241002 0.417429i
\(689\) 2.90194e18 5.02631e18i 0.00149984 0.00259780i
\(690\) 0 0
\(691\) −1.22943e21 2.12944e21i −0.621754 1.07691i −0.989159 0.146849i \(-0.953087\pi\)
0.367405 0.930061i \(-0.380246\pi\)
\(692\) 1.06060e21 0.530588
\(693\) 0 0
\(694\) −4.70669e20 −0.230420
\(695\) −7.75964e20 1.34401e21i −0.375799 0.650903i
\(696\) 0 0
\(697\) 2.70871e21 4.69162e21i 1.28386 2.22370i
\(698\) 1.27303e20 2.20494e20i 0.0596927 0.103391i
\(699\) 0 0
\(700\) −8.73034e20 1.51214e21i −0.400678 0.693995i
\(701\) −1.42634e21 −0.647644 −0.323822 0.946118i \(-0.604968\pi\)
−0.323822 + 0.946118i \(0.604968\pi\)
\(702\) 0 0
\(703\) 2.39703e20 0.106539
\(704\) −4.15645e20 7.19919e20i −0.182780 0.316584i
\(705\) 0 0
\(706\) 2.54347e20 4.40542e20i 0.109494 0.189650i
\(707\) 3.46274e20 5.99764e20i 0.147494 0.255467i
\(708\) 0 0
\(709\) 1.03630e21 + 1.79493e21i 0.432155 + 0.748514i 0.997059 0.0766430i \(-0.0244202\pi\)
−0.564904 + 0.825157i \(0.691087\pi\)
\(710\) −3.52513e20 −0.145458
\(711\) 0 0
\(712\) 2.68701e21 1.08560
\(713\) 1.02723e21 + 1.77921e21i 0.410673 + 0.711306i
\(714\) 0 0
\(715\) −4.47269e19 + 7.74693e19i −0.0175095 + 0.0303274i
\(716\) −8.31559e20 + 1.44030e21i −0.322141 + 0.557964i
\(717\) 0 0
\(718\) −3.47284e20 6.01514e20i −0.131750 0.228198i
\(719\) −1.06103e21 −0.398348 −0.199174 0.979964i \(-0.563826\pi\)
−0.199174 + 0.979964i \(0.563826\pi\)
\(720\) 0 0
\(721\) 1.29445e21 0.475960
\(722\) 2.93703e20 + 5.08709e20i 0.106876 + 0.185114i
\(723\) 0 0
\(724\) −1.96852e21 + 3.40958e21i −0.701619 + 1.21524i
\(725\) 2.20039e20 3.81119e20i 0.0776184 0.134439i
\(726\) 0 0
\(727\) −1.87262e21 3.24347e21i −0.647054 1.12073i −0.983823 0.179143i \(-0.942667\pi\)
0.336769 0.941587i \(-0.390666\pi\)
\(728\) 1.80389e20 0.0616915
\(729\) 0 0
\(730\) −1.54740e20 −0.0518418
\(731\) −1.68300e21 2.91503e21i −0.558088 0.966636i
\(732\) 0 0
\(733\) −1.60817e21 + 2.78543e21i −0.522459 + 0.904926i 0.477199 + 0.878795i \(0.341652\pi\)
−0.999659 + 0.0261307i \(0.991681\pi\)
\(734\) 3.47346e20 6.01621e20i 0.111697 0.193465i
\(735\) 0 0
\(736\) 1.49103e21 + 2.58255e21i 0.469790 + 0.813700i
\(737\) 6.89508e20 0.215047
\(738\) 0 0
\(739\) −4.58274e21 −1.40053 −0.700264 0.713884i \(-0.746934\pi\)
−0.700264 + 0.713884i \(0.746934\pi\)
\(740\) 1.88079e20 + 3.25763e20i 0.0568988 + 0.0985516i
\(741\) 0 0
\(742\) −6.06190e19 + 1.04995e20i −0.0179713 + 0.0311272i
\(743\) −2.71748e21 + 4.70681e21i −0.797535 + 1.38137i 0.123683 + 0.992322i \(0.460529\pi\)
−0.921217 + 0.389048i \(0.872804\pi\)
\(744\) 0 0
\(745\) 8.63588e20 + 1.49578e21i 0.248390 + 0.430224i
\(746\) 7.40346e20 0.210811
\(747\) 0 0
\(748\) −4.65714e21 −1.29974
\(749\) 7.55939e20 + 1.30932e21i 0.208868 + 0.361771i
\(750\) 0 0
\(751\) 1.96608e21 3.40535e21i 0.532478 0.922279i −0.466803 0.884362i \(-0.654594\pi\)
0.999281 0.0379178i \(-0.0120725\pi\)
\(752\) 1.93898e21 3.35842e21i 0.519924 0.900536i
\(753\) 0 0
\(754\) 1.06964e19 + 1.85267e19i 0.00281159 + 0.00486982i
\(755\) 1.39440e21 0.362898
\(756\) 0 0
\(757\) −1.39623e21 −0.356235 −0.178118 0.984009i \(-0.557001\pi\)
−0.178118 + 0.984009i \(0.557001\pi\)
\(758\) 4.65082e20 + 8.05545e20i 0.117493 + 0.203503i
\(759\) 0 0
\(760\) 5.49392e20 9.51575e20i 0.136076 0.235690i
\(761\) −4.95635e20 + 8.58464e20i −0.121556 + 0.210541i −0.920381 0.391022i \(-0.872122\pi\)
0.798825 + 0.601563i \(0.205455\pi\)
\(762\) 0 0
\(763\) 1.96607e21 + 3.40534e21i 0.472787 + 0.818891i
\(764\) 4.60750e21 1.09715
\(765\) 0 0
\(766\) −1.01238e20 −0.0236389
\(767\) −5.12424e19 8.87544e19i −0.0118485 0.0205222i
\(768\) 0 0
\(769\) −1.07945e21 + 1.86966e21i −0.244768 + 0.423951i −0.962066 0.272815i \(-0.912045\pi\)
0.717298 + 0.696766i \(0.245379\pi\)
\(770\) 9.34307e20 1.61827e21i 0.209802 0.363387i
\(771\) 0 0
\(772\) 3.91240e21 + 6.77648e21i 0.861616 + 1.49236i
\(773\) 4.60666e21 1.00471 0.502354 0.864662i \(-0.332468\pi\)
0.502354 + 0.864662i \(0.332468\pi\)
\(774\) 0 0
\(775\) −1.68319e21 −0.360057
\(776\) 5.31022e20 + 9.19758e20i 0.112499 + 0.194855i
\(777\) 0 0
\(778\) 1.11441e21 1.93022e21i 0.231579 0.401107i
\(779\) −2.38012e21 + 4.12249e21i −0.489856 + 0.848455i
\(780\) 0 0
\(781\) −1.39509e21 2.41636e21i −0.281655 0.487842i
\(782\) 2.87563e21 0.575019
\(783\) 0 0
\(784\) 8.70149e21 1.70696
\(785\) 3.36484e21 + 5.82807e21i 0.653795 + 1.13241i
\(786\) 0 0
\(787\) −4.94200e21 + 8.55979e21i −0.942089 + 1.63175i −0.180612 + 0.983555i \(0.557808\pi\)
−0.761477 + 0.648191i \(0.775526\pi\)
\(788\) −1.05289e21 + 1.82365e21i −0.198809 + 0.344347i
\(789\) 0 0
\(790\) 3.29719e20 + 5.71090e20i 0.0610858 + 0.105804i
\(791\) −1.20573e22 −2.21272
\(792\) 0 0
\(793\) 3.32174e20 0.0598159
\(794\) 1.05389e20 + 1.82540e20i 0.0187994 + 0.0325615i
\(795\) 0 0
\(796\) −1.11676e21 + 1.93428e21i −0.195484 + 0.338588i
\(797\) 9.44066e20 1.63517e21i 0.163706 0.283547i −0.772489 0.635028i \(-0.780988\pi\)
0.936195 + 0.351481i \(0.114322\pi\)
\(798\) 0 0
\(799\) −7.07493e21 1.22541e22i −1.20399 2.08536i
\(800\) −2.44317e21 −0.411888
\(801\) 0 0
\(802\) −1.12014e21 −0.185338
\(803\) −6.12388e20 1.06069e21i −0.100383 0.173868i
\(804\) 0 0
\(805\) 4.60572e21 7.97733e21i 0.741017 1.28348i
\(806\) 4.09112e19 7.08602e19i 0.00652122 0.0112951i
\(807\) 0 0
\(808\) −3.16791e20 5.48698e20i −0.0495664 0.0858515i
\(809\) −5.89774e21 −0.914264 −0.457132 0.889399i \(-0.651123\pi\)
−0.457132 + 0.889399i \(0.651123\pi\)
\(810\) 0 0
\(811\) 4.05402e20 0.0616921 0.0308461 0.999524i \(-0.490180\pi\)
0.0308461 + 0.999524i \(0.490180\pi\)
\(812\) 1.78382e21 + 3.08967e21i 0.268956 + 0.465846i
\(813\) 0 0
\(814\) 1.86467e20 3.22971e20i 0.0276007 0.0478057i
\(815\) −1.60165e21 + 2.77414e21i −0.234902 + 0.406861i
\(816\) 0 0
\(817\) 1.47884e21 + 2.56142e21i 0.212939 + 0.368821i
\(818\) 1.14376e21 0.163187
\(819\) 0 0
\(820\) −7.47011e21 −1.04646
\(821\) −1.37275e21 2.37768e21i −0.190554 0.330049i 0.754880 0.655863i \(-0.227695\pi\)
−0.945434 + 0.325814i \(0.894362\pi\)
\(822\) 0 0
\(823\) −1.27136e21 + 2.20205e21i −0.173288 + 0.300144i −0.939567 0.342364i \(-0.888772\pi\)
0.766280 + 0.642507i \(0.222106\pi\)
\(824\) 5.92117e20 1.02558e21i 0.0799748 0.138520i
\(825\) 0 0
\(826\) 1.07041e21 + 1.85400e21i 0.141971 + 0.245901i
\(827\) 2.76080e21 0.362864 0.181432 0.983403i \(-0.441927\pi\)
0.181432 + 0.983403i \(0.441927\pi\)
\(828\) 0 0
\(829\) 1.03335e22 1.33379 0.666895 0.745152i \(-0.267623\pi\)
0.666895 + 0.745152i \(0.267623\pi\)
\(830\) −4.27916e20 7.41171e20i −0.0547359 0.0948054i
\(831\) 0 0
\(832\) −8.16029e19 + 1.41340e20i −0.0102513 + 0.0177558i
\(833\) 1.58749e22 2.74962e22i 1.97640 3.42322i
\(834\) 0 0
\(835\) 3.93792e21 + 6.82069e21i 0.481525 + 0.834026i
\(836\) 4.09219e21 0.495917
\(837\) 0 0
\(838\) 3.82296e21 0.455061
\(839\) −2.54647e21 4.41062e21i −0.300417 0.520337i 0.675814 0.737072i \(-0.263792\pi\)
−0.976230 + 0.216736i \(0.930459\pi\)
\(840\) 0 0
\(841\) 3.86500e21 6.69438e21i 0.447898 0.775783i
\(842\) −2.46530e21 + 4.27003e21i −0.283158 + 0.490445i
\(843\) 0 0
\(844\) −4.81744e21 8.34405e21i −0.543561 0.941474i
\(845\) −6.42489e21 −0.718522
\(846\) 0 0
\(847\) −2.27645e21 −0.250111
\(848\) −1.78963e20 3.09973e20i −0.0194892 0.0337563i
\(849\) 0 0
\(850\) −1.17798e21 + 2.04033e21i −0.126037 + 0.218302i
\(851\) 9.19200e20 1.59210e21i 0.0974851 0.168849i
\(852\) 0 0
\(853\) −4.66263e21 8.07591e21i −0.485862 0.841538i 0.514006 0.857787i \(-0.328161\pi\)
−0.999868 + 0.0162486i \(0.994828\pi\)
\(854\) −6.93882e21 −0.716723
\(855\) 0 0
\(856\) 1.38315e21 0.140383
\(857\) −5.26915e21 9.12644e21i −0.530133 0.918217i −0.999382 0.0351509i \(-0.988809\pi\)
0.469249 0.883066i \(-0.344525\pi\)
\(858\) 0 0
\(859\) −6.41079e20 + 1.11038e21i −0.0633815 + 0.109780i −0.895975 0.444105i \(-0.853522\pi\)
0.832593 + 0.553885i \(0.186855\pi\)
\(860\) −2.32070e21 + 4.01956e21i −0.227447 + 0.393949i
\(861\) 0 0
\(862\) −1.59128e21 2.75617e21i −0.153264 0.265462i
\(863\) −1.31224e22 −1.25295 −0.626474 0.779443i \(-0.715502\pi\)
−0.626474 + 0.779443i \(0.715502\pi\)
\(864\) 0 0
\(865\) −4.58412e21 −0.430165
\(866\) −1.86721e21 3.23409e21i −0.173703 0.300863i
\(867\) 0 0
\(868\) 6.82270e21 1.18173e22i 0.623819 1.08049i
\(869\) −2.60975e21 + 4.52022e21i −0.236565 + 0.409743i
\(870\) 0 0
\(871\) −6.76849e19 1.17234e20i −0.00603053 0.0104452i
\(872\) 3.59734e21 0.317767
\(873\) 0 0
\(874\) −2.52679e21 −0.219399
\(875\) 1.16200e22 + 2.01264e22i 1.00033 + 1.73263i
\(876\) 0 0
\(877\) −2.74874e21 + 4.76095e21i −0.232614 + 0.402900i −0.958577 0.284835i \(-0.908061\pi\)
0.725962 + 0.687734i \(0.241395\pi\)
\(878\) 1.78678e21 3.09480e21i 0.149921 0.259671i
\(879\) 0 0
\(880\) 2.75832e21 + 4.77754e21i 0.227522 + 0.394080i
\(881\) 2.95621e21 0.241778 0.120889 0.992666i \(-0.461426\pi\)
0.120889 + 0.992666i \(0.461426\pi\)
\(882\) 0 0
\(883\) 1.03794e22 0.834580 0.417290 0.908773i \(-0.362980\pi\)
0.417290 + 0.908773i \(0.362980\pi\)
\(884\) 4.57163e20 + 7.91830e20i 0.0364485 + 0.0631306i
\(885\) 0 0
\(886\) −2.43044e21 + 4.20965e21i −0.190516 + 0.329984i
\(887\) −9.84283e21 + 1.70483e22i −0.765055 + 1.32511i 0.175162 + 0.984540i \(0.443955\pi\)
−0.940217 + 0.340575i \(0.889378\pi\)
\(888\) 0 0
\(889\) 7.04397e21 + 1.22005e22i 0.538337 + 0.932427i
\(890\) −5.46462e21 −0.414129
\(891\) 0 0
\(892\) 1.18543e21 0.0883365
\(893\) 6.21669e21 + 1.07676e22i 0.459381 + 0.795672i
\(894\) 0 0
\(895\) 3.59415e21 6.22525e21i 0.261170 0.452360i
\(896\) 1.28483e22 2.22539e22i 0.925839 1.60360i
\(897\) 0 0
\(898\) −3.99562e20 6.92062e20i −0.0283147 0.0490425i
\(899\) 3.43918e21 0.241689
\(900\) 0 0
\(901\) −1.30599e21 −0.0902621
\(902\) 3.70304e21 + 6.41386e21i 0.253811 + 0.439613i
\(903\) 0 0
\(904\) −5.51533e21 + 9.55283e21i −0.371799 + 0.643975i
\(905\) 8.50831e21 1.47368e22i 0.568825 0.985234i
\(906\) 0 0
\(907\) −9.75556e20 1.68971e21i −0.0641501 0.111111i 0.832167 0.554526i \(-0.187100\pi\)
−0.896317 + 0.443414i \(0.853767\pi\)
\(908\) −2.04661e22 −1.33473
\(909\) 0 0
\(910\) −3.66861e20 −0.0235338
\(911\) 1.01824e22 + 1.76365e22i 0.647835 + 1.12208i 0.983639 + 0.180151i \(0.0576585\pi\)
−0.335804 + 0.941932i \(0.609008\pi\)
\(912\) 0 0
\(913\) 3.38699e21 5.86644e21i 0.211974 0.367150i
\(914\) −4.39929e21 + 7.61980e21i −0.273078 + 0.472985i
\(915\) 0 0
\(916\) −5.97944e20 1.03567e21i −0.0365127 0.0632419i
\(917\) 2.13625e22 1.29384
\(918\) 0 0
\(919\) −2.69737e22 −1.60722 −0.803609 0.595158i \(-0.797089\pi\)
−0.803609 + 0.595158i \(0.797089\pi\)
\(920\) −4.21356e21 7.29811e21i −0.249024 0.431322i
\(921\) 0 0
\(922\) −1.37520e21 + 2.38192e21i −0.0799623 + 0.138499i
\(923\) −2.73895e20 + 4.74399e20i −0.0157969 + 0.0273610i
\(924\) 0 0
\(925\) 7.53091e20 + 1.30439e21i 0.0427350 + 0.0740193i
\(926\) 2.34851e21 0.132193
\(927\) 0 0
\(928\) 4.99200e21 0.276481
\(929\) −2.60653e21 4.51464e21i −0.143200 0.248030i 0.785500 0.618862i \(-0.212406\pi\)
−0.928700 + 0.370832i \(0.879073\pi\)
\(930\) 0 0
\(931\) −1.39492e22 + 2.41607e22i −0.754096 + 1.30613i
\(932\) −6.77866e21 + 1.17410e22i −0.363517 + 0.629630i
\(933\) 0 0
\(934\) 3.73312e21 + 6.46595e21i 0.197002 + 0.341217i
\(935\) 2.01290e22 1.05374
\(936\) 0 0
\(937\) 3.05737e21 0.157507 0.0787537 0.996894i \(-0.474906\pi\)
0.0787537 + 0.996894i \(0.474906\pi\)
\(938\) 1.41388e21 + 2.44891e21i 0.0722588 + 0.125156i
\(939\) 0 0
\(940\) −9.75568e21 + 1.68973e22i −0.490680 + 0.849883i
\(941\) −4.83303e20 + 8.37104e20i −0.0241155 + 0.0417693i −0.877831 0.478970i \(-0.841010\pi\)
0.853716 + 0.520739i \(0.174344\pi\)
\(942\) 0 0
\(943\) 1.82543e22 + 3.16175e22i 0.896455 + 1.55271i
\(944\) −6.32025e21 −0.307924
\(945\) 0 0
\(946\) 4.60161e21 0.220661
\(947\) −1.25395e22 2.17191e22i −0.596564 1.03328i −0.993324 0.115357i \(-0.963199\pi\)
0.396760 0.917922i \(-0.370134\pi\)
\(948\) 0 0
\(949\) −1.20229e20 + 2.08243e20i −0.00563005 + 0.00975154i
\(950\) 1.03509e21 1.79282e21i 0.0480894 0.0832934i
\(951\) 0 0
\(952\) −2.02957e22 3.51531e22i −0.928167 1.60763i
\(953\) 1.90817e22 0.865804 0.432902 0.901441i \(-0.357490\pi\)
0.432902 + 0.901441i \(0.357490\pi\)
\(954\) 0 0
\(955\) −1.99145e22 −0.889495
\(956\) 8.92568e21 + 1.54597e22i 0.395555 + 0.685122i
\(957\) 0 0
\(958\) 1.78796e21 3.09683e21i 0.0780038 0.135107i
\(959\) −2.23818e22 + 3.87664e22i −0.968847 + 1.67809i
\(960\) 0 0
\(961\) 5.15561e21 + 8.92978e21i 0.219712 + 0.380553i
\(962\) −7.32175e19 −0.00309601
\(963\) 0 0
\(964\) −2.79513e22 −1.16366
\(965\) −1.69101e22 2.92892e22i −0.698540 1.20991i
\(966\) 0 0
\(967\) 1.63752e22 2.83627e22i 0.666022 1.15358i −0.312985 0.949758i \(-0.601329\pi\)
0.979007 0.203826i \(-0.0653377\pi\)
\(968\) −1.04131e21 + 1.80360e21i −0.0420257 + 0.0727906i
\(969\) 0 0
\(970\) −1.07995e21 1.87053e21i −0.0429157 0.0743321i
\(971\) 3.53904e22 1.39554 0.697768 0.716324i \(-0.254177\pi\)
0.697768 + 0.716324i \(0.254177\pi\)
\(972\) 0 0
\(973\) 5.03767e22 1.95607
\(974\) 8.80407e20 + 1.52491e21i 0.0339228 + 0.0587560i
\(975\) 0 0
\(976\) 1.02426e22 1.77407e22i 0.388630 0.673127i
\(977\) −1.63624e22 + 2.83406e22i −0.616082 + 1.06709i 0.374111 + 0.927384i \(0.377948\pi\)
−0.990194 + 0.139702i \(0.955386\pi\)
\(978\) 0 0
\(979\) −2.16265e22 3.74582e22i −0.801892 1.38892i
\(980\) −4.37801e22 −1.61095
\(981\) 0 0
\(982\) 1.16104e22 0.420737
\(983\) −2.39235e22 4.14367e22i −0.860346 1.49016i −0.871595 0.490227i \(-0.836914\pi\)
0.0112484 0.999937i \(-0.496419\pi\)
\(984\) 0 0
\(985\) 4.55077e21 7.88216e21i 0.161181 0.279173i
\(986\) 2.40691e21 4.16889e21i 0.0846025 0.146536i
\(987\) 0 0
\(988\) −4.01706e20 6.95775e20i −0.0139069 0.0240875i
\(989\) 2.26839e22 0.779373
\(990\) 0 0
\(991\) −1.02329e21 −0.0346296 −0.0173148 0.999850i \(-0.505512\pi\)
−0.0173148 + 0.999850i \(0.505512\pi\)
\(992\) −9.54661e21 1.65352e22i −0.320636 0.555357i
\(993\) 0 0
\(994\) 5.72142e21 9.90978e21i 0.189280 0.327843i
\(995\) 4.82683e21 8.36032e21i 0.158485 0.274505i
\(996\) 0 0
\(997\) 2.10812e22 + 3.65136e22i 0.681838 + 1.18098i 0.974420 + 0.224737i \(0.0721522\pi\)
−0.292582 + 0.956240i \(0.594514\pi\)
\(998\) −2.90016e21 −0.0930985
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.16.c.a.10.6 28
3.2 odd 2 9.16.c.a.4.9 28
9.2 odd 6 9.16.c.a.7.9 yes 28
9.4 even 3 81.16.a.c.1.9 14
9.5 odd 6 81.16.a.e.1.6 14
9.7 even 3 inner 27.16.c.a.19.6 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.16.c.a.4.9 28 3.2 odd 2
9.16.c.a.7.9 yes 28 9.2 odd 6
27.16.c.a.10.6 28 1.1 even 1 trivial
27.16.c.a.19.6 28 9.7 even 3 inner
81.16.a.c.1.9 14 9.4 even 3
81.16.a.e.1.6 14 9.5 odd 6