Properties

Label 27.16.c.a.10.3
Level $27$
Weight $16$
Character 27.10
Analytic conductor $38.527$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [27,16,Mod(10,27)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("27.10"); S:= CuspForms(chi, 16); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2])) N = Newforms(chi, 16, names="a")
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 27.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(38.5272463770\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 10.3
Character \(\chi\) \(=\) 27.10
Dual form 27.16.c.a.19.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-137.732 - 238.559i) q^{2} +(-21556.3 + 37336.6i) q^{4} +(-132801. + 230018. i) q^{5} +(1.52495e6 + 2.64129e6i) q^{7} +2.84956e6 q^{8} +7.31638e7 q^{10} +(3.23900e7 + 5.61011e7i) q^{11} +(-1.10951e8 + 1.92173e8i) q^{13} +(4.20069e8 - 7.27580e8i) q^{14} +(3.13880e8 + 5.43656e8i) q^{16} -3.44224e8 q^{17} -5.53098e9 q^{19} +(-5.72539e9 - 9.91667e9i) q^{20} +(8.92228e9 - 1.54538e10i) q^{22} +(2.61909e9 - 4.53640e9i) q^{23} +(-2.00134e10 - 3.46642e10i) q^{25} +6.11262e10 q^{26} -1.31489e11 q^{28} +(1.31524e10 + 2.27807e10i) q^{29} +(6.50356e10 - 1.12645e11i) q^{31} +(1.33150e11 - 2.30623e11i) q^{32} +(4.74107e10 + 8.21178e10i) q^{34} -8.10058e11 q^{35} -4.21643e11 q^{37} +(7.61794e11 + 1.31947e12i) q^{38} +(-3.78425e11 + 6.55451e11i) q^{40} +(-6.25093e11 + 1.08269e12i) q^{41} +(1.13660e12 + 1.96865e12i) q^{43} -2.79283e12 q^{44} -1.44293e12 q^{46} +(7.66415e11 + 1.32747e12i) q^{47} +(-2.27715e12 + 3.94414e12i) q^{49} +(-5.51298e12 + 9.54875e12i) q^{50} +(-4.78339e12 - 8.28507e12i) q^{52} +9.47435e12 q^{53} -1.72057e13 q^{55} +(4.34543e12 + 7.52651e12i) q^{56} +(3.62303e12 - 6.27527e12i) q^{58} +(1.97011e12 - 3.41233e12i) q^{59} +(-1.21384e13 - 2.10243e13i) q^{61} -3.58300e13 q^{62} -5.27857e13 q^{64} +(-2.94688e13 - 5.10415e13i) q^{65} +(1.82570e13 - 3.16221e13i) q^{67} +(7.42020e12 - 1.28522e13i) q^{68} +(1.11571e14 + 1.93247e14i) q^{70} +1.25963e14 q^{71} -1.07101e14 q^{73} +(5.80738e13 + 1.00587e14i) q^{74} +(1.19228e14 - 2.06508e14i) q^{76} +(-9.87860e13 + 1.71102e14i) q^{77} +(5.92284e13 + 1.02587e14i) q^{79} -1.66734e14 q^{80} +3.44382e14 q^{82} +(-5.33810e13 - 9.24586e13i) q^{83} +(4.57133e13 - 7.91777e13i) q^{85} +(3.13093e14 - 5.42293e14i) q^{86} +(9.22973e13 + 1.59864e14i) q^{88} -2.96622e14 q^{89} -6.76779e14 q^{91} +(1.12916e14 + 1.95576e14i) q^{92} +(2.11120e14 - 3.65670e14i) q^{94} +(7.34520e14 - 1.27223e15i) q^{95} +(1.66801e14 + 2.88908e14i) q^{97} +1.25455e15 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 129 q^{2} - 212993 q^{4} + 152655 q^{5} + 803705 q^{7} - 20162658 q^{8} + 65532 q^{10} + 60735990 q^{11} - 41509093 q^{13} - 215313024 q^{14} - 2952822785 q^{16} + 2121112242 q^{17} + 5670809246 q^{19}+ \cdots - 72\!\cdots\!90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −137.732 238.559i −0.760870 1.31787i −0.942403 0.334480i \(-0.891439\pi\)
0.181533 0.983385i \(-0.441894\pi\)
\(3\) 0 0
\(4\) −21556.3 + 37336.6i −0.657846 + 1.13942i
\(5\) −132801. + 230018.i −0.760197 + 1.31670i 0.182552 + 0.983196i \(0.441564\pi\)
−0.942749 + 0.333504i \(0.891769\pi\)
\(6\) 0 0
\(7\) 1.52495e6 + 2.64129e6i 0.699873 + 1.21222i 0.968510 + 0.248975i \(0.0800936\pi\)
−0.268636 + 0.963242i \(0.586573\pi\)
\(8\) 2.84956e6 0.480400
\(9\) 0 0
\(10\) 7.31638e7 2.31364
\(11\) 3.23900e7 + 5.61011e7i 0.501147 + 0.868013i 0.999999 + 0.00132545i \(0.000421903\pi\)
−0.498852 + 0.866687i \(0.666245\pi\)
\(12\) 0 0
\(13\) −1.10951e8 + 1.92173e8i −0.490407 + 0.849410i −0.999939 0.0110419i \(-0.996485\pi\)
0.509532 + 0.860452i \(0.329819\pi\)
\(14\) 4.20069e8 7.27580e8i 1.06503 1.84468i
\(15\) 0 0
\(16\) 3.13880e8 + 5.43656e8i 0.292324 + 0.506319i
\(17\) −3.44224e8 −0.203458 −0.101729 0.994812i \(-0.532437\pi\)
−0.101729 + 0.994812i \(0.532437\pi\)
\(18\) 0 0
\(19\) −5.53098e9 −1.41955 −0.709775 0.704429i \(-0.751203\pi\)
−0.709775 + 0.704429i \(0.751203\pi\)
\(20\) −5.72539e9 9.91667e9i −1.00018 1.73237i
\(21\) 0 0
\(22\) 8.92228e9 1.54538e10i 0.762616 1.32089i
\(23\) 2.61909e9 4.53640e9i 0.160395 0.277813i −0.774615 0.632433i \(-0.782056\pi\)
0.935011 + 0.354620i \(0.115390\pi\)
\(24\) 0 0
\(25\) −2.00134e10 3.46642e10i −0.655799 1.13588i
\(26\) 6.11262e10 1.49254
\(27\) 0 0
\(28\) −1.31489e11 −1.84164
\(29\) 1.31524e10 + 2.27807e10i 0.141586 + 0.245235i 0.928094 0.372346i \(-0.121446\pi\)
−0.786508 + 0.617580i \(0.788113\pi\)
\(30\) 0 0
\(31\) 6.50356e10 1.12645e11i 0.424559 0.735358i −0.571820 0.820379i \(-0.693762\pi\)
0.996379 + 0.0850209i \(0.0270957\pi\)
\(32\) 1.33150e11 2.30623e11i 0.685041 1.18653i
\(33\) 0 0
\(34\) 4.74107e10 + 8.21178e10i 0.154805 + 0.268130i
\(35\) −8.10058e11 −2.12817
\(36\) 0 0
\(37\) −4.21643e11 −0.730184 −0.365092 0.930971i \(-0.618962\pi\)
−0.365092 + 0.930971i \(0.618962\pi\)
\(38\) 7.61794e11 + 1.31947e12i 1.08009 + 1.87077i
\(39\) 0 0
\(40\) −3.78425e11 + 6.55451e11i −0.365199 + 0.632543i
\(41\) −6.25093e11 + 1.08269e12i −0.501263 + 0.868214i 0.498735 + 0.866754i \(0.333798\pi\)
−0.999999 + 0.00145952i \(0.999535\pi\)
\(42\) 0 0
\(43\) 1.13660e12 + 1.96865e12i 0.637668 + 1.10447i 0.985943 + 0.167081i \(0.0534343\pi\)
−0.348275 + 0.937392i \(0.613232\pi\)
\(44\) −2.79283e12 −1.31871
\(45\) 0 0
\(46\) −1.44293e12 −0.488160
\(47\) 7.66415e11 + 1.32747e12i 0.220663 + 0.382200i 0.955010 0.296575i \(-0.0958445\pi\)
−0.734346 + 0.678775i \(0.762511\pi\)
\(48\) 0 0
\(49\) −2.27715e12 + 3.94414e12i −0.479646 + 0.830771i
\(50\) −5.51298e12 + 9.54875e12i −0.997955 + 1.72851i
\(51\) 0 0
\(52\) −4.78339e12 8.28507e12i −0.645224 1.11756i
\(53\) 9.47435e12 1.10785 0.553925 0.832567i \(-0.313130\pi\)
0.553925 + 0.832567i \(0.313130\pi\)
\(54\) 0 0
\(55\) −1.72057e13 −1.52388
\(56\) 4.34543e12 + 7.52651e12i 0.336220 + 0.582349i
\(57\) 0 0
\(58\) 3.62303e12 6.27527e12i 0.215458 0.373184i
\(59\) 1.97011e12 3.41233e12i 0.103062 0.178509i −0.809883 0.586592i \(-0.800469\pi\)
0.912945 + 0.408083i \(0.133803\pi\)
\(60\) 0 0
\(61\) −1.21384e13 2.10243e13i −0.494525 0.856542i 0.505455 0.862853i \(-0.331325\pi\)
−0.999980 + 0.00631073i \(0.997991\pi\)
\(62\) −3.58300e13 −1.29214
\(63\) 0 0
\(64\) −5.27857e13 −1.50026
\(65\) −2.94688e13 5.10415e13i −0.745612 1.29144i
\(66\) 0 0
\(67\) 1.82570e13 3.16221e13i 0.368018 0.637426i −0.621238 0.783622i \(-0.713370\pi\)
0.989256 + 0.146197i \(0.0467032\pi\)
\(68\) 7.42020e12 1.28522e13i 0.133844 0.231824i
\(69\) 0 0
\(70\) 1.11571e14 + 1.93247e14i 1.61926 + 2.80464i
\(71\) 1.25963e14 1.64363 0.821817 0.569751i \(-0.192960\pi\)
0.821817 + 0.569751i \(0.192960\pi\)
\(72\) 0 0
\(73\) −1.07101e14 −1.13468 −0.567338 0.823485i \(-0.692027\pi\)
−0.567338 + 0.823485i \(0.692027\pi\)
\(74\) 5.80738e13 + 1.00587e14i 0.555575 + 0.962284i
\(75\) 0 0
\(76\) 1.19228e14 2.06508e14i 0.933844 1.61747i
\(77\) −9.87860e13 + 1.71102e14i −0.701480 + 1.21500i
\(78\) 0 0
\(79\) 5.92284e13 + 1.02587e14i 0.346998 + 0.601018i 0.985715 0.168424i \(-0.0538679\pi\)
−0.638717 + 0.769442i \(0.720535\pi\)
\(80\) −1.66734e14 −0.888894
\(81\) 0 0
\(82\) 3.44382e14 1.52558
\(83\) −5.33810e13 9.24586e13i −0.215924 0.373991i 0.737634 0.675201i \(-0.235943\pi\)
−0.953558 + 0.301209i \(0.902610\pi\)
\(84\) 0 0
\(85\) 4.57133e13 7.91777e13i 0.154668 0.267893i
\(86\) 3.13093e14 5.42293e14i 0.970365 1.68072i
\(87\) 0 0
\(88\) 9.22973e13 + 1.59864e14i 0.240751 + 0.416994i
\(89\) −2.96622e14 −0.710850 −0.355425 0.934705i \(-0.615664\pi\)
−0.355425 + 0.934705i \(0.615664\pi\)
\(90\) 0 0
\(91\) −6.76779e14 −1.37289
\(92\) 1.12916e14 + 1.95576e14i 0.211031 + 0.365516i
\(93\) 0 0
\(94\) 2.11120e14 3.65670e14i 0.335792 0.581609i
\(95\) 7.34520e14 1.27223e15i 1.07914 1.86912i
\(96\) 0 0
\(97\) 1.66801e14 + 2.88908e14i 0.209610 + 0.363054i 0.951592 0.307365i \(-0.0994474\pi\)
−0.741982 + 0.670420i \(0.766114\pi\)
\(98\) 1.25455e15 1.45979
\(99\) 0 0
\(100\) 1.72566e15 1.72566
\(101\) −6.51954e14 1.12922e15i −0.605071 1.04801i −0.992040 0.125921i \(-0.959811\pi\)
0.386969 0.922093i \(-0.373522\pi\)
\(102\) 0 0
\(103\) 4.31467e13 7.47322e13i 0.0345675 0.0598727i −0.848224 0.529638i \(-0.822328\pi\)
0.882792 + 0.469765i \(0.155661\pi\)
\(104\) −3.16162e14 + 5.47609e14i −0.235592 + 0.408057i
\(105\) 0 0
\(106\) −1.30492e15 2.26019e15i −0.842929 1.46000i
\(107\) −2.90781e15 −1.75060 −0.875302 0.483577i \(-0.839337\pi\)
−0.875302 + 0.483577i \(0.839337\pi\)
\(108\) 0 0
\(109\) −3.46287e15 −1.81442 −0.907209 0.420680i \(-0.861791\pi\)
−0.907209 + 0.420680i \(0.861791\pi\)
\(110\) 2.36978e15 + 4.10457e15i 1.15948 + 2.00827i
\(111\) 0 0
\(112\) −9.57301e14 + 1.65809e15i −0.409179 + 0.708719i
\(113\) −9.80119e14 + 1.69762e15i −0.391914 + 0.678815i −0.992702 0.120594i \(-0.961520\pi\)
0.600788 + 0.799408i \(0.294854\pi\)
\(114\) 0 0
\(115\) 6.95636e14 + 1.20488e15i 0.243864 + 0.422385i
\(116\) −1.13407e15 −0.372568
\(117\) 0 0
\(118\) −1.08539e15 −0.313668
\(119\) −5.24924e14 9.09195e14i −0.142395 0.246635i
\(120\) 0 0
\(121\) −9.59721e12 + 1.66229e13i −0.00229750 + 0.00397938i
\(122\) −3.34370e15 + 5.79146e15i −0.752538 + 1.30343i
\(123\) 0 0
\(124\) 2.80385e15 + 4.85641e15i 0.558589 + 0.967505i
\(125\) 2.52566e15 0.473751
\(126\) 0 0
\(127\) 9.85775e15 1.64153 0.820767 0.571263i \(-0.193546\pi\)
0.820767 + 0.571263i \(0.193546\pi\)
\(128\) 2.90723e15 + 5.03547e15i 0.456462 + 0.790615i
\(129\) 0 0
\(130\) −8.11761e15 + 1.40601e16i −1.13463 + 1.96523i
\(131\) 9.16339e14 1.58715e15i 0.120927 0.209451i −0.799207 0.601056i \(-0.794747\pi\)
0.920133 + 0.391605i \(0.128080\pi\)
\(132\) 0 0
\(133\) −8.43446e15 1.46089e16i −0.993505 1.72080i
\(134\) −1.00583e16 −1.12005
\(135\) 0 0
\(136\) −9.80889e14 −0.0977412
\(137\) −3.07239e15 5.32154e15i −0.289783 0.501918i 0.683975 0.729505i \(-0.260250\pi\)
−0.973758 + 0.227587i \(0.926916\pi\)
\(138\) 0 0
\(139\) 5.56924e14 9.64621e14i 0.0471178 0.0816104i −0.841505 0.540250i \(-0.818330\pi\)
0.888622 + 0.458639i \(0.151663\pi\)
\(140\) 1.74618e16 3.02448e16i 1.40001 2.42488i
\(141\) 0 0
\(142\) −1.73492e16 3.00496e16i −1.25059 2.16609i
\(143\) −1.43748e16 −0.983065
\(144\) 0 0
\(145\) −6.98663e15 −0.430534
\(146\) 1.47512e16 + 2.55499e16i 0.863341 + 1.49535i
\(147\) 0 0
\(148\) 9.08906e15 1.57427e16i 0.480348 0.831988i
\(149\) 1.39409e16 2.41463e16i 0.700476 1.21326i −0.267824 0.963468i \(-0.586305\pi\)
0.968300 0.249791i \(-0.0803621\pi\)
\(150\) 0 0
\(151\) 1.39260e16 + 2.41205e16i 0.633137 + 1.09663i 0.986907 + 0.161293i \(0.0515665\pi\)
−0.353769 + 0.935333i \(0.615100\pi\)
\(152\) −1.57609e16 −0.681952
\(153\) 0 0
\(154\) 5.44240e16 2.13494
\(155\) 1.72736e16 + 2.99187e16i 0.645497 + 1.11803i
\(156\) 0 0
\(157\) 4.68543e15 8.11541e15i 0.159039 0.275463i −0.775484 0.631368i \(-0.782494\pi\)
0.934522 + 0.355905i \(0.115827\pi\)
\(158\) 1.63153e16 2.82589e16i 0.528040 0.914592i
\(159\) 0 0
\(160\) 3.53649e16 + 6.12538e16i 1.04153 + 1.80399i
\(161\) 1.59759e16 0.449026
\(162\) 0 0
\(163\) −3.98660e14 −0.0102140 −0.00510700 0.999987i \(-0.501626\pi\)
−0.00510700 + 0.999987i \(0.501626\pi\)
\(164\) −2.69494e16 4.66777e16i −0.659508 1.14230i
\(165\) 0 0
\(166\) −1.47046e16 + 2.54690e16i −0.328580 + 0.569118i
\(167\) −2.16422e16 + 3.74854e16i −0.462304 + 0.800735i −0.999075 0.0429933i \(-0.986311\pi\)
0.536771 + 0.843728i \(0.319644\pi\)
\(168\) 0 0
\(169\) 9.72638e14 + 1.68466e15i 0.0190021 + 0.0329126i
\(170\) −2.51848e16 −0.470729
\(171\) 0 0
\(172\) −9.80037e16 −1.67795
\(173\) −2.02476e16 3.50699e16i −0.331916 0.574895i 0.650972 0.759102i \(-0.274362\pi\)
−0.982887 + 0.184207i \(0.941028\pi\)
\(174\) 0 0
\(175\) 6.10387e16 1.05722e17i 0.917952 1.58994i
\(176\) −2.03331e16 + 3.52180e16i −0.292994 + 0.507481i
\(177\) 0 0
\(178\) 4.08543e16 + 7.07618e16i 0.540864 + 0.936804i
\(179\) −3.60083e16 −0.457093 −0.228546 0.973533i \(-0.573397\pi\)
−0.228546 + 0.973533i \(0.573397\pi\)
\(180\) 0 0
\(181\) 4.60359e16 0.537660 0.268830 0.963188i \(-0.413363\pi\)
0.268830 + 0.963188i \(0.413363\pi\)
\(182\) 9.32142e16 + 1.61452e17i 1.04459 + 1.80929i
\(183\) 0 0
\(184\) 7.46327e15 1.29268e16i 0.0770540 0.133461i
\(185\) 5.59946e16 9.69855e16i 0.555084 0.961433i
\(186\) 0 0
\(187\) −1.11494e16 1.93113e16i −0.101962 0.176604i
\(188\) −6.60843e16 −0.580650
\(189\) 0 0
\(190\) −4.04668e17 −3.28433
\(191\) 6.19011e16 + 1.07216e17i 0.483001 + 0.836583i 0.999809 0.0195185i \(-0.00621333\pi\)
−0.516808 + 0.856101i \(0.672880\pi\)
\(192\) 0 0
\(193\) 4.95967e16 8.59040e16i 0.357909 0.619917i −0.629702 0.776837i \(-0.716823\pi\)
0.987611 + 0.156920i \(0.0501564\pi\)
\(194\) 4.59478e16 7.95839e16i 0.318971 0.552474i
\(195\) 0 0
\(196\) −9.81737e16 1.70042e17i −0.631066 1.09304i
\(197\) 5.95642e16 0.368543 0.184272 0.982875i \(-0.441007\pi\)
0.184272 + 0.982875i \(0.441007\pi\)
\(198\) 0 0
\(199\) 2.40730e17 1.38080 0.690401 0.723427i \(-0.257434\pi\)
0.690401 + 0.723427i \(0.257434\pi\)
\(200\) −5.70294e16 9.87779e16i −0.315046 0.545676i
\(201\) 0 0
\(202\) −1.79590e17 + 3.11059e17i −0.920761 + 1.59480i
\(203\) −4.01136e16 + 6.94787e16i −0.198185 + 0.343267i
\(204\) 0 0
\(205\) −1.66026e17 2.87565e17i −0.762118 1.32003i
\(206\) −2.37707e16 −0.105206
\(207\) 0 0
\(208\) −1.39301e17 −0.573430
\(209\) −1.79148e17 3.10294e17i −0.711403 1.23219i
\(210\) 0 0
\(211\) −1.52601e17 + 2.64313e17i −0.564209 + 0.977238i 0.432914 + 0.901435i \(0.357485\pi\)
−0.997123 + 0.0758032i \(0.975848\pi\)
\(212\) −2.04232e17 + 3.53740e17i −0.728794 + 1.26231i
\(213\) 0 0
\(214\) 4.00499e17 + 6.93685e17i 1.33198 + 2.30706i
\(215\) −6.03767e17 −1.93901
\(216\) 0 0
\(217\) 3.96703e17 1.18855
\(218\) 4.76948e17 + 8.26099e17i 1.38054 + 2.39116i
\(219\) 0 0
\(220\) 3.70891e17 6.42401e17i 1.00248 1.73635i
\(221\) 3.81921e16 6.61506e16i 0.0997771 0.172819i
\(222\) 0 0
\(223\) −1.53936e17 2.66626e17i −0.375885 0.651051i 0.614574 0.788859i \(-0.289328\pi\)
−0.990459 + 0.137808i \(0.955994\pi\)
\(224\) 8.12187e17 1.91777
\(225\) 0 0
\(226\) 5.39976e17 1.19278
\(227\) −3.78594e17 6.55744e17i −0.809058 1.40133i −0.913517 0.406800i \(-0.866645\pi\)
0.104460 0.994529i \(-0.466689\pi\)
\(228\) 0 0
\(229\) −2.96019e17 + 5.12720e17i −0.592316 + 1.02592i 0.401603 + 0.915814i \(0.368453\pi\)
−0.993920 + 0.110108i \(0.964880\pi\)
\(230\) 1.91623e17 3.31900e17i 0.371098 0.642760i
\(231\) 0 0
\(232\) 3.74787e16 + 6.49151e16i 0.0680182 + 0.117811i
\(233\) 2.89279e17 0.508332 0.254166 0.967161i \(-0.418199\pi\)
0.254166 + 0.967161i \(0.418199\pi\)
\(234\) 0 0
\(235\) −4.07122e17 −0.670990
\(236\) 8.49365e16 + 1.47114e17i 0.135598 + 0.234863i
\(237\) 0 0
\(238\) −1.44598e17 + 2.50451e17i −0.216688 + 0.375314i
\(239\) −3.55235e16 + 6.15285e16i −0.0515859 + 0.0893495i −0.890665 0.454660i \(-0.849761\pi\)
0.839079 + 0.544009i \(0.183094\pi\)
\(240\) 0 0
\(241\) −2.20699e17 3.82263e17i −0.301074 0.521476i 0.675305 0.737538i \(-0.264012\pi\)
−0.976380 + 0.216063i \(0.930678\pi\)
\(242\) 5.28738e15 0.00699238
\(243\) 0 0
\(244\) 1.04664e18 1.30128
\(245\) −6.04815e17 1.04757e18i −0.729251 1.26310i
\(246\) 0 0
\(247\) 6.13669e17 1.06291e18i 0.696157 1.20578i
\(248\) 1.85323e17 3.20989e17i 0.203958 0.353266i
\(249\) 0 0
\(250\) −3.47865e17 6.02520e17i −0.360463 0.624340i
\(251\) 8.74962e17 0.879906 0.439953 0.898021i \(-0.354995\pi\)
0.439953 + 0.898021i \(0.354995\pi\)
\(252\) 0 0
\(253\) 3.39329e17 0.321527
\(254\) −1.35773e18 2.35166e18i −1.24899 2.16332i
\(255\) 0 0
\(256\) −6.40032e16 + 1.10857e17i −0.0555139 + 0.0961529i
\(257\) 4.67476e16 8.09692e16i 0.0393787 0.0682058i −0.845664 0.533715i \(-0.820795\pi\)
0.885043 + 0.465509i \(0.154129\pi\)
\(258\) 0 0
\(259\) −6.42984e17 1.11368e18i −0.511036 0.885141i
\(260\) 2.54095e18 1.96199
\(261\) 0 0
\(262\) −5.04838e17 −0.368037
\(263\) 3.94870e17 + 6.83935e17i 0.279760 + 0.484559i 0.971325 0.237756i \(-0.0764117\pi\)
−0.691565 + 0.722314i \(0.743078\pi\)
\(264\) 0 0
\(265\) −1.25820e18 + 2.17927e18i −0.842184 + 1.45870i
\(266\) −2.32339e18 + 4.02423e18i −1.51186 + 2.61861i
\(267\) 0 0
\(268\) 7.87107e17 + 1.36331e18i 0.484198 + 0.838656i
\(269\) −1.05884e18 −0.633417 −0.316708 0.948523i \(-0.602578\pi\)
−0.316708 + 0.948523i \(0.602578\pi\)
\(270\) 0 0
\(271\) 5.31177e17 0.300586 0.150293 0.988641i \(-0.451978\pi\)
0.150293 + 0.988641i \(0.451978\pi\)
\(272\) −1.08045e17 1.87140e17i −0.0594755 0.103015i
\(273\) 0 0
\(274\) −8.46334e17 + 1.46589e18i −0.440974 + 0.763789i
\(275\) 1.29647e18 2.24555e18i 0.657304 1.13848i
\(276\) 0 0
\(277\) 1.50118e16 + 2.60012e16i 0.00720834 + 0.0124852i 0.869607 0.493744i \(-0.164372\pi\)
−0.862399 + 0.506230i \(0.831039\pi\)
\(278\) −3.06825e17 −0.143402
\(279\) 0 0
\(280\) −2.30831e18 −1.02237
\(281\) 1.89478e18 + 3.28185e18i 0.817073 + 1.41521i 0.907830 + 0.419339i \(0.137738\pi\)
−0.0907564 + 0.995873i \(0.528928\pi\)
\(282\) 0 0
\(283\) 2.16296e18 3.74635e18i 0.884402 1.53183i 0.0380054 0.999278i \(-0.487900\pi\)
0.846397 0.532552i \(-0.178767\pi\)
\(284\) −2.71530e18 + 4.70303e18i −1.08126 + 1.87279i
\(285\) 0 0
\(286\) 1.97987e18 + 3.42924e18i 0.747984 + 1.29555i
\(287\) −3.81294e18 −1.40328
\(288\) 0 0
\(289\) −2.74393e18 −0.958605
\(290\) 9.62283e17 + 1.66672e18i 0.327581 + 0.567386i
\(291\) 0 0
\(292\) 2.30870e18 3.99879e18i 0.746442 1.29288i
\(293\) −1.11203e18 + 1.92609e18i −0.350436 + 0.606972i −0.986326 0.164807i \(-0.947300\pi\)
0.635890 + 0.771780i \(0.280633\pi\)
\(294\) 0 0
\(295\) 5.23265e17 + 9.06321e17i 0.156695 + 0.271404i
\(296\) −1.20150e18 −0.350781
\(297\) 0 0
\(298\) −7.68043e18 −2.13188
\(299\) 5.81182e17 + 1.00664e18i 0.157318 + 0.272483i
\(300\) 0 0
\(301\) −3.46651e18 + 6.00418e18i −0.892574 + 1.54598i
\(302\) 3.83610e18 6.64433e18i 0.963470 1.66878i
\(303\) 0 0
\(304\) −1.73607e18 3.00695e18i −0.414968 0.718745i
\(305\) 6.44797e18 1.50374
\(306\) 0 0
\(307\) 5.41818e18 1.20314 0.601569 0.798821i \(-0.294543\pi\)
0.601569 + 0.798821i \(0.294543\pi\)
\(308\) −4.25892e18 7.37667e18i −0.922931 1.59856i
\(309\) 0 0
\(310\) 4.75825e18 8.24154e18i 0.982279 1.70136i
\(311\) −1.16446e18 + 2.01691e18i −0.234651 + 0.406428i −0.959171 0.282826i \(-0.908728\pi\)
0.724520 + 0.689254i \(0.242062\pi\)
\(312\) 0 0
\(313\) 3.30724e18 + 5.72831e18i 0.635161 + 1.10013i 0.986481 + 0.163875i \(0.0523994\pi\)
−0.351321 + 0.936255i \(0.614267\pi\)
\(314\) −2.58134e18 −0.484031
\(315\) 0 0
\(316\) −5.10697e18 −0.913084
\(317\) −2.12222e18 3.67579e18i −0.370549 0.641809i 0.619101 0.785311i \(-0.287497\pi\)
−0.989650 + 0.143502i \(0.954164\pi\)
\(318\) 0 0
\(319\) −8.52015e17 + 1.47573e18i −0.141911 + 0.245798i
\(320\) 7.00999e18 1.21417e19i 1.14049 1.97539i
\(321\) 0 0
\(322\) −2.20040e18 3.81120e18i −0.341650 0.591756i
\(323\) 1.90390e18 0.288818
\(324\) 0 0
\(325\) 8.88204e18 1.28643
\(326\) 5.49083e16 + 9.51040e16i 0.00777152 + 0.0134607i
\(327\) 0 0
\(328\) −1.78124e18 + 3.08520e18i −0.240807 + 0.417090i
\(329\) −2.33748e18 + 4.04864e18i −0.308873 + 0.534983i
\(330\) 0 0
\(331\) −3.04691e18 5.27739e18i −0.384724 0.666361i 0.607007 0.794696i \(-0.292370\pi\)
−0.991731 + 0.128335i \(0.959037\pi\)
\(332\) 4.60279e18 0.568179
\(333\) 0 0
\(334\) 1.19233e19 1.40701
\(335\) 4.84910e18 + 8.39889e18i 0.559532 + 0.969138i
\(336\) 0 0
\(337\) 4.73297e18 8.19775e18i 0.522288 0.904629i −0.477376 0.878699i \(-0.658412\pi\)
0.999664 0.0259299i \(-0.00825467\pi\)
\(338\) 2.67927e17 4.64063e17i 0.0289162 0.0500843i
\(339\) 0 0
\(340\) 1.97082e18 + 3.41356e18i 0.203495 + 0.352464i
\(341\) 8.42600e18 0.851067
\(342\) 0 0
\(343\) 5.89441e17 0.0569816
\(344\) 3.23882e18 + 5.60980e18i 0.306336 + 0.530590i
\(345\) 0 0
\(346\) −5.57749e18 + 9.66050e18i −0.505089 + 0.874841i
\(347\) −6.75063e18 + 1.16924e19i −0.598237 + 1.03618i 0.394845 + 0.918748i \(0.370798\pi\)
−0.993081 + 0.117428i \(0.962535\pi\)
\(348\) 0 0
\(349\) −5.27022e18 9.12828e18i −0.447340 0.774816i 0.550872 0.834590i \(-0.314295\pi\)
−0.998212 + 0.0597741i \(0.980962\pi\)
\(350\) −3.36280e19 −2.79377
\(351\) 0 0
\(352\) 1.72509e19 1.37323
\(353\) −1.15252e18 1.99623e18i −0.0898131 0.155561i 0.817619 0.575760i \(-0.195294\pi\)
−0.907432 + 0.420199i \(0.861960\pi\)
\(354\) 0 0
\(355\) −1.67280e19 + 2.89738e19i −1.24949 + 2.16417i
\(356\) 6.39406e18 1.10748e19i 0.467629 0.809958i
\(357\) 0 0
\(358\) 4.95949e18 + 8.59010e18i 0.347788 + 0.602387i
\(359\) −4.68983e18 −0.322069 −0.161034 0.986949i \(-0.551483\pi\)
−0.161034 + 0.986949i \(0.551483\pi\)
\(360\) 0 0
\(361\) 1.54107e19 1.01512
\(362\) −6.34062e18 1.09823e19i −0.409089 0.708563i
\(363\) 0 0
\(364\) 1.45888e19 2.52686e19i 0.903151 1.56430i
\(365\) 1.42231e19 2.46352e19i 0.862578 1.49403i
\(366\) 0 0
\(367\) 3.97573e17 + 6.88617e17i 0.0231431 + 0.0400851i 0.877365 0.479824i \(-0.159299\pi\)
−0.854222 + 0.519909i \(0.825966\pi\)
\(368\) 3.28832e18 0.187549
\(369\) 0 0
\(370\) −3.08490e19 −1.68939
\(371\) 1.44479e19 + 2.50245e19i 0.775354 + 1.34295i
\(372\) 0 0
\(373\) −1.76537e19 + 3.05771e19i −0.909953 + 1.57608i −0.0958261 + 0.995398i \(0.530549\pi\)
−0.814127 + 0.580687i \(0.802784\pi\)
\(374\) −3.07127e18 + 5.31959e18i −0.155160 + 0.268745i
\(375\) 0 0
\(376\) 2.18395e18 + 3.78271e18i 0.106007 + 0.183609i
\(377\) −5.83712e18 −0.277740
\(378\) 0 0
\(379\) −2.08994e19 −0.955741 −0.477871 0.878430i \(-0.658591\pi\)
−0.477871 + 0.878430i \(0.658591\pi\)
\(380\) 3.16671e19 + 5.48489e19i 1.41981 + 2.45919i
\(381\) 0 0
\(382\) 1.70515e19 2.95341e19i 0.735002 1.27306i
\(383\) 1.28802e19 2.23092e19i 0.544419 0.942961i −0.454224 0.890887i \(-0.650084\pi\)
0.998643 0.0520738i \(-0.0165831\pi\)
\(384\) 0 0
\(385\) −2.62378e19 4.54451e19i −1.06653 1.84728i
\(386\) −2.73242e19 −1.08929
\(387\) 0 0
\(388\) −1.43825e19 −0.551563
\(389\) −2.76150e18 4.78306e18i −0.103878 0.179922i 0.809401 0.587256i \(-0.199792\pi\)
−0.913279 + 0.407334i \(0.866458\pi\)
\(390\) 0 0
\(391\) −9.01555e17 + 1.56154e18i −0.0326337 + 0.0565232i
\(392\) −6.48888e18 + 1.12391e19i −0.230422 + 0.399103i
\(393\) 0 0
\(394\) −8.20391e18 1.42096e19i −0.280414 0.485691i
\(395\) −3.14623e19 −1.05515
\(396\) 0 0
\(397\) −3.81570e19 −1.23210 −0.616049 0.787708i \(-0.711268\pi\)
−0.616049 + 0.787708i \(0.711268\pi\)
\(398\) −3.31562e19 5.74283e19i −1.05061 1.81971i
\(399\) 0 0
\(400\) 1.25636e19 2.17608e19i 0.383411 0.664087i
\(401\) −6.63101e18 + 1.14853e19i −0.198608 + 0.343999i −0.948077 0.318040i \(-0.896975\pi\)
0.749469 + 0.662039i \(0.230309\pi\)
\(402\) 0 0
\(403\) 1.44315e19 + 2.49962e19i 0.416414 + 0.721250i
\(404\) 5.62148e19 1.59217
\(405\) 0 0
\(406\) 2.20997e19 0.603172
\(407\) −1.36570e19 2.36546e19i −0.365930 0.633809i
\(408\) 0 0
\(409\) −7.98802e18 + 1.38357e19i −0.206307 + 0.357334i −0.950548 0.310576i \(-0.899478\pi\)
0.744241 + 0.667911i \(0.232811\pi\)
\(410\) −4.57342e19 + 7.92140e19i −1.15975 + 2.00874i
\(411\) 0 0
\(412\) 1.86016e18 + 3.22190e18i 0.0454802 + 0.0787740i
\(413\) 1.20172e19 0.288522
\(414\) 0 0
\(415\) 2.83562e19 0.656579
\(416\) 2.95463e19 + 5.11757e19i 0.671897 + 1.16376i
\(417\) 0 0
\(418\) −4.93490e19 + 8.54750e19i −1.08257 + 1.87507i
\(419\) −3.55495e18 + 6.15736e18i −0.0766000 + 0.132675i −0.901781 0.432193i \(-0.857740\pi\)
0.825181 + 0.564868i \(0.191073\pi\)
\(420\) 0 0
\(421\) 2.81716e19 + 4.87946e19i 0.585728 + 1.01451i 0.994784 + 0.102001i \(0.0325245\pi\)
−0.409057 + 0.912509i \(0.634142\pi\)
\(422\) 8.40724e19 1.71716
\(423\) 0 0
\(424\) 2.69978e19 0.532211
\(425\) 6.88909e18 + 1.19323e19i 0.133427 + 0.231103i
\(426\) 0 0
\(427\) 3.70209e19 6.41220e19i 0.692210 1.19894i
\(428\) 6.26816e19 1.08568e20i 1.15163 1.99468i
\(429\) 0 0
\(430\) 8.31581e19 + 1.44034e20i 1.47534 + 2.55536i
\(431\) −7.02079e19 −1.22407 −0.612036 0.790830i \(-0.709649\pi\)
−0.612036 + 0.790830i \(0.709649\pi\)
\(432\) 0 0
\(433\) 3.18856e19 0.536952 0.268476 0.963286i \(-0.413480\pi\)
0.268476 + 0.963286i \(0.413480\pi\)
\(434\) −5.46388e19 9.46372e19i −0.904333 1.56635i
\(435\) 0 0
\(436\) 7.46466e19 1.29292e20i 1.19361 2.06739i
\(437\) −1.44862e19 + 2.50908e19i −0.227689 + 0.394369i
\(438\) 0 0
\(439\) 2.80411e18 + 4.85686e18i 0.0425903 + 0.0737686i 0.886535 0.462662i \(-0.153106\pi\)
−0.843944 + 0.536431i \(0.819772\pi\)
\(440\) −4.90287e19 −0.732074
\(441\) 0 0
\(442\) −2.10411e19 −0.303670
\(443\) 2.39636e19 + 4.15062e19i 0.340036 + 0.588960i 0.984439 0.175726i \(-0.0562274\pi\)
−0.644403 + 0.764686i \(0.722894\pi\)
\(444\) 0 0
\(445\) 3.93916e19 6.82283e19i 0.540386 0.935975i
\(446\) −4.24040e19 + 7.34458e19i −0.571999 + 0.990731i
\(447\) 0 0
\(448\) −8.04954e19 1.39422e20i −1.04999 1.81864i
\(449\) −7.81847e18 −0.100294 −0.0501469 0.998742i \(-0.515969\pi\)
−0.0501469 + 0.998742i \(0.515969\pi\)
\(450\) 0 0
\(451\) −8.09871e19 −1.00483
\(452\) −4.22555e19 7.31886e19i −0.515638 0.893111i
\(453\) 0 0
\(454\) −1.04289e20 + 1.80634e20i −1.23118 + 2.13246i
\(455\) 8.98768e19 1.55671e20i 1.04367 1.80769i
\(456\) 0 0
\(457\) −3.51740e19 6.09231e19i −0.395230 0.684559i 0.597900 0.801570i \(-0.296002\pi\)
−0.993131 + 0.117012i \(0.962668\pi\)
\(458\) 1.63085e20 1.80270
\(459\) 0 0
\(460\) −5.99813e19 −0.641700
\(461\) −5.33612e19 9.24243e19i −0.561653 0.972812i −0.997352 0.0727199i \(-0.976832\pi\)
0.435699 0.900092i \(-0.356501\pi\)
\(462\) 0 0
\(463\) 7.14261e19 1.23714e20i 0.727779 1.26055i −0.230041 0.973181i \(-0.573886\pi\)
0.957820 0.287370i \(-0.0927808\pi\)
\(464\) −8.25658e18 + 1.43008e19i −0.0827781 + 0.143376i
\(465\) 0 0
\(466\) −3.98430e19 6.90101e19i −0.386774 0.669913i
\(467\) 1.76373e20 1.68482 0.842412 0.538834i \(-0.181135\pi\)
0.842412 + 0.538834i \(0.181135\pi\)
\(468\) 0 0
\(469\) 1.11364e20 1.03026
\(470\) 5.60739e19 + 9.71228e19i 0.510536 + 0.884275i
\(471\) 0 0
\(472\) 5.61395e18 9.72364e18i 0.0495112 0.0857559i
\(473\) −7.36290e19 + 1.27529e20i −0.639132 + 1.10701i
\(474\) 0 0
\(475\) 1.10694e20 + 1.91727e20i 0.930939 + 1.61243i
\(476\) 4.52616e19 0.374695
\(477\) 0 0
\(478\) 1.95709e19 0.157001
\(479\) −7.23554e19 1.25323e20i −0.571419 0.989726i −0.996421 0.0845340i \(-0.973060\pi\)
0.425002 0.905193i \(-0.360273\pi\)
\(480\) 0 0
\(481\) 4.67818e19 8.10284e19i 0.358087 0.620225i
\(482\) −6.07948e19 + 1.05300e20i −0.458156 + 0.793550i
\(483\) 0 0
\(484\) −4.13760e17 7.16654e17i −0.00302280 0.00523564i
\(485\) −8.86054e19 −0.637378
\(486\) 0 0
\(487\) −1.42606e20 −0.994653 −0.497326 0.867563i \(-0.665685\pi\)
−0.497326 + 0.867563i \(0.665685\pi\)
\(488\) −3.45892e19 5.99102e19i −0.237570 0.411483i
\(489\) 0 0
\(490\) −1.66605e20 + 2.88568e20i −1.10973 + 1.92211i
\(491\) 1.39466e19 2.41562e19i 0.0914865 0.158459i −0.816650 0.577133i \(-0.804171\pi\)
0.908137 + 0.418674i \(0.137505\pi\)
\(492\) 0 0
\(493\) −4.52739e18 7.84167e18i −0.0288069 0.0498950i
\(494\) −3.38088e20 −2.11874
\(495\) 0 0
\(496\) 8.16535e19 0.496435
\(497\) 1.92087e20 + 3.32704e20i 1.15034 + 1.99244i
\(498\) 0 0
\(499\) −8.04873e19 + 1.39408e20i −0.467706 + 0.810091i −0.999319 0.0368966i \(-0.988253\pi\)
0.531613 + 0.846987i \(0.321586\pi\)
\(500\) −5.44440e19 + 9.42997e19i −0.311655 + 0.539803i
\(501\) 0 0
\(502\) −1.20510e20 2.08730e20i −0.669494 1.15960i
\(503\) −1.11533e20 −0.610441 −0.305220 0.952282i \(-0.598730\pi\)
−0.305220 + 0.952282i \(0.598730\pi\)
\(504\) 0 0
\(505\) 3.46320e20 1.83989
\(506\) −4.67366e19 8.09501e19i −0.244640 0.423729i
\(507\) 0 0
\(508\) −2.12497e20 + 3.68055e20i −1.07988 + 1.87040i
\(509\) −6.32640e19 + 1.09576e20i −0.316791 + 0.548699i −0.979817 0.199898i \(-0.935939\pi\)
0.663025 + 0.748597i \(0.269272\pi\)
\(510\) 0 0
\(511\) −1.63323e20 2.82884e20i −0.794130 1.37547i
\(512\) 2.25789e20 1.08188
\(513\) 0 0
\(514\) −2.57546e19 −0.119848
\(515\) 1.14598e19 + 1.98490e19i 0.0525562 + 0.0910301i
\(516\) 0 0
\(517\) −4.96483e19 + 8.59934e19i −0.221170 + 0.383077i
\(518\) −1.77119e20 + 3.06779e20i −0.777664 + 1.34695i
\(519\) 0 0
\(520\) −8.39733e19 1.45446e20i −0.358192 0.620407i
\(521\) −7.06719e19 −0.297142 −0.148571 0.988902i \(-0.547467\pi\)
−0.148571 + 0.988902i \(0.547467\pi\)
\(522\) 0 0
\(523\) −4.36571e20 −1.78358 −0.891789 0.452451i \(-0.850550\pi\)
−0.891789 + 0.452451i \(0.850550\pi\)
\(524\) 3.95058e19 + 6.84260e19i 0.159102 + 0.275573i
\(525\) 0 0
\(526\) 1.08773e20 1.88400e20i 0.425722 0.737372i
\(527\) −2.23868e19 + 3.87751e19i −0.0863799 + 0.149614i
\(528\) 0 0
\(529\) 1.19598e20 + 2.07150e20i 0.448547 + 0.776906i
\(530\) 6.93180e20 2.56317
\(531\) 0 0
\(532\) 7.27263e20 2.61429
\(533\) −1.38710e20 2.40252e20i −0.491646 0.851556i
\(534\) 0 0
\(535\) 3.86160e20 6.68849e20i 1.33080 2.30502i
\(536\) 5.20245e19 9.01091e19i 0.176796 0.306220i
\(537\) 0 0
\(538\) 1.45837e20 + 2.52597e20i 0.481948 + 0.834758i
\(539\) −2.95027e20 −0.961493
\(540\) 0 0
\(541\) −1.54088e20 −0.488416 −0.244208 0.969723i \(-0.578528\pi\)
−0.244208 + 0.969723i \(0.578528\pi\)
\(542\) −7.31601e19 1.26717e20i −0.228707 0.396132i
\(543\) 0 0
\(544\) −4.58334e19 + 7.93859e19i −0.139377 + 0.241408i
\(545\) 4.59872e20 7.96522e20i 1.37932 2.38904i
\(546\) 0 0
\(547\) 1.02165e20 + 1.76955e20i 0.298124 + 0.516366i 0.975707 0.219081i \(-0.0703057\pi\)
−0.677583 + 0.735447i \(0.736972\pi\)
\(548\) 2.64917e20 0.762529
\(549\) 0 0
\(550\) −7.14261e20 −2.00049
\(551\) −7.27460e19 1.26000e20i −0.200989 0.348123i
\(552\) 0 0
\(553\) −1.80640e20 + 3.12878e20i −0.485709 + 0.841272i
\(554\) 4.13522e18 7.16241e18i 0.0109692 0.0189992i
\(555\) 0 0
\(556\) 2.40104e19 + 4.15873e19i 0.0619925 + 0.107374i
\(557\) 1.00161e20 0.255145 0.127572 0.991829i \(-0.459282\pi\)
0.127572 + 0.991829i \(0.459282\pi\)
\(558\) 0 0
\(559\) −5.04429e20 −1.25087
\(560\) −2.54261e20 4.40393e20i −0.622113 1.07753i
\(561\) 0 0
\(562\) 5.21944e20 9.04033e20i 1.24337 2.15358i
\(563\) 1.78978e20 3.09998e20i 0.420713 0.728696i −0.575296 0.817945i \(-0.695113\pi\)
0.996009 + 0.0892488i \(0.0284466\pi\)
\(564\) 0 0
\(565\) −2.60322e20 4.50890e20i −0.595864 1.03207i
\(566\) −1.19164e21 −2.69166
\(567\) 0 0
\(568\) 3.58940e20 0.789603
\(569\) 3.49356e20 + 6.05102e20i 0.758448 + 1.31367i 0.943642 + 0.330969i \(0.107376\pi\)
−0.185193 + 0.982702i \(0.559291\pi\)
\(570\) 0 0
\(571\) 1.39464e19 2.41559e19i 0.0294912 0.0510802i −0.850903 0.525323i \(-0.823945\pi\)
0.880394 + 0.474242i \(0.157278\pi\)
\(572\) 3.09868e20 5.36707e20i 0.646705 1.12013i
\(573\) 0 0
\(574\) 5.25164e20 + 9.09611e20i 1.06772 + 1.84934i
\(575\) −2.09668e20 −0.420749
\(576\) 0 0
\(577\) 5.54993e20 1.08510 0.542549 0.840024i \(-0.317459\pi\)
0.542549 + 0.840024i \(0.317459\pi\)
\(578\) 3.77928e20 + 6.54590e20i 0.729374 + 1.26331i
\(579\) 0 0
\(580\) 1.50606e20 2.60857e20i 0.283225 0.490560i
\(581\) 1.62806e20 2.81989e20i 0.302239 0.523493i
\(582\) 0 0
\(583\) 3.06874e20 + 5.31522e20i 0.555196 + 0.961627i
\(584\) −3.05191e20 −0.545099
\(585\) 0 0
\(586\) 6.12647e20 1.06654
\(587\) 2.93187e20 + 5.07815e20i 0.503917 + 0.872811i 0.999990 + 0.00452937i \(0.00144175\pi\)
−0.496072 + 0.868281i \(0.665225\pi\)
\(588\) 0 0
\(589\) −3.59711e20 + 6.23037e20i −0.602683 + 1.04388i
\(590\) 1.44141e20 2.49659e20i 0.238450 0.413007i
\(591\) 0 0
\(592\) −1.32345e20 2.29229e20i −0.213450 0.369706i
\(593\) −8.57002e20 −1.36481 −0.682404 0.730975i \(-0.739066\pi\)
−0.682404 + 0.730975i \(0.739066\pi\)
\(594\) 0 0
\(595\) 2.78841e20 0.432992
\(596\) 6.01027e20 + 1.04101e21i 0.921610 + 1.59628i
\(597\) 0 0
\(598\) 1.60095e20 2.77293e20i 0.239397 0.414648i
\(599\) −6.65191e20 + 1.15214e21i −0.982302 + 1.70140i −0.328940 + 0.944351i \(0.606691\pi\)
−0.653362 + 0.757045i \(0.726642\pi\)
\(600\) 0 0
\(601\) 5.36679e20 + 9.29555e20i 0.772958 + 1.33880i 0.935935 + 0.352172i \(0.114557\pi\)
−0.162977 + 0.986630i \(0.552110\pi\)
\(602\) 1.90980e21 2.71653
\(603\) 0 0
\(604\) −1.20077e21 −1.66603
\(605\) −2.54904e18 4.41506e18i −0.00349310 0.00605022i
\(606\) 0 0
\(607\) −2.45835e20 + 4.25799e20i −0.328647 + 0.569233i −0.982244 0.187610i \(-0.939926\pi\)
0.653597 + 0.756843i \(0.273259\pi\)
\(608\) −7.36451e20 + 1.27557e21i −0.972449 + 1.68433i
\(609\) 0 0
\(610\) −8.88093e20 1.53822e21i −1.14415 1.98173i
\(611\) −3.40138e20 −0.432859
\(612\) 0 0
\(613\) −1.38146e21 −1.71548 −0.857739 0.514086i \(-0.828131\pi\)
−0.857739 + 0.514086i \(0.828131\pi\)
\(614\) −7.46257e20 1.29255e21i −0.915431 1.58557i
\(615\) 0 0
\(616\) −2.81497e20 + 4.87567e20i −0.336991 + 0.583686i
\(617\) 6.74377e20 1.16805e21i 0.797561 1.38142i −0.123639 0.992327i \(-0.539457\pi\)
0.921200 0.389089i \(-0.127210\pi\)
\(618\) 0 0
\(619\) −4.41242e20 7.64253e20i −0.509327 0.882180i −0.999942 0.0108037i \(-0.996561\pi\)
0.490615 0.871377i \(-0.336772\pi\)
\(620\) −1.48942e21 −1.69855
\(621\) 0 0
\(622\) 6.41537e20 0.714157
\(623\) −4.52332e20 7.83462e20i −0.497505 0.861703i
\(624\) 0 0
\(625\) 2.75350e20 4.76920e20i 0.295655 0.512089i
\(626\) 9.11027e20 1.57795e21i 0.966549 1.67411i
\(627\) 0 0
\(628\) 2.02001e20 + 3.49876e20i 0.209246 + 0.362424i
\(629\) 1.45140e20 0.148562
\(630\) 0 0
\(631\) 6.96183e20 0.695830 0.347915 0.937526i \(-0.386890\pi\)
0.347915 + 0.937526i \(0.386890\pi\)
\(632\) 1.68775e20 + 2.92327e20i 0.166698 + 0.288729i
\(633\) 0 0
\(634\) −5.84595e20 + 1.01255e21i −0.563879 + 0.976667i
\(635\) −1.30912e21 + 2.26746e21i −1.24789 + 2.16141i
\(636\) 0 0
\(637\) −5.05304e20 8.75213e20i −0.470443 0.814832i
\(638\) 4.69399e20 0.431904
\(639\) 0 0
\(640\) −1.54433e21 −1.38800
\(641\) 8.83800e20 + 1.53079e21i 0.785089 + 1.35981i 0.928946 + 0.370215i \(0.120716\pi\)
−0.143857 + 0.989598i \(0.545951\pi\)
\(642\) 0 0
\(643\) 4.30187e20 7.45106e20i 0.373315 0.646600i −0.616758 0.787152i \(-0.711554\pi\)
0.990073 + 0.140552i \(0.0448878\pi\)
\(644\) −3.44381e20 + 5.96486e20i −0.295390 + 0.511630i
\(645\) 0 0
\(646\) −2.62228e20 4.54192e20i −0.219753 0.380624i
\(647\) 4.99076e20 0.413414 0.206707 0.978403i \(-0.433725\pi\)
0.206707 + 0.978403i \(0.433725\pi\)
\(648\) 0 0
\(649\) 2.55247e20 0.206598
\(650\) −1.22334e21 2.11889e21i −0.978808 1.69535i
\(651\) 0 0
\(652\) 8.59363e18 1.48846e19i 0.00671924 0.0116381i
\(653\) 1.03787e21 1.79764e21i 0.802218 1.38948i −0.115935 0.993257i \(-0.536986\pi\)
0.918153 0.396226i \(-0.129680\pi\)
\(654\) 0 0
\(655\) 2.43381e20 + 4.21549e20i 0.183856 + 0.318448i
\(656\) −7.84818e20 −0.586125
\(657\) 0 0
\(658\) 1.28779e21 0.940048
\(659\) 8.40166e20 + 1.45521e21i 0.606351 + 1.05023i 0.991836 + 0.127517i \(0.0407008\pi\)
−0.385485 + 0.922714i \(0.625966\pi\)
\(660\) 0 0
\(661\) −1.26525e21 + 2.19147e21i −0.892616 + 1.54606i −0.0558878 + 0.998437i \(0.517799\pi\)
−0.836728 + 0.547619i \(0.815534\pi\)
\(662\) −8.39314e20 + 1.45373e21i −0.585449 + 1.01403i
\(663\) 0 0
\(664\) −1.52113e20 2.63467e20i −0.103730 0.179666i
\(665\) 4.48042e21 3.02104
\(666\) 0 0
\(667\) 1.37790e20 0.0908392
\(668\) −9.33051e20 1.61609e21i −0.608250 1.05352i
\(669\) 0 0
\(670\) 1.33575e21 2.31359e21i 0.851462 1.47478i
\(671\) 7.86326e20 1.36196e21i 0.495660 0.858508i
\(672\) 0 0
\(673\) 9.57488e20 + 1.65842e21i 0.590229 + 1.02231i 0.994201 + 0.107535i \(0.0342958\pi\)
−0.403972 + 0.914771i \(0.632371\pi\)
\(674\) −2.60753e21 −1.58957
\(675\) 0 0
\(676\) −8.38659e19 −0.0500017
\(677\) 1.14475e21 + 1.98277e21i 0.674988 + 1.16911i 0.976472 + 0.215642i \(0.0691844\pi\)
−0.301485 + 0.953471i \(0.597482\pi\)
\(678\) 0 0
\(679\) −5.08726e20 + 8.81139e20i −0.293400 + 0.508184i
\(680\) 1.30263e20 2.25622e20i 0.0743026 0.128696i
\(681\) 0 0
\(682\) −1.16053e21 2.01010e21i −0.647551 1.12159i
\(683\) −2.69703e21 −1.48844 −0.744220 0.667935i \(-0.767179\pi\)
−0.744220 + 0.667935i \(0.767179\pi\)
\(684\) 0 0
\(685\) 1.63207e21 0.881167
\(686\) −8.11850e19 1.40617e20i −0.0433556 0.0750941i
\(687\) 0 0
\(688\) −7.13513e20 + 1.23584e21i −0.372811 + 0.645728i
\(689\) −1.05119e21 + 1.82072e21i −0.543297 + 0.941018i
\(690\) 0 0
\(691\) −7.18974e20 1.24530e21i −0.363603 0.629779i 0.624948 0.780667i \(-0.285120\pi\)
−0.988551 + 0.150887i \(0.951787\pi\)
\(692\) 1.74585e21 0.873398
\(693\) 0 0
\(694\) 3.71911e21 1.82072
\(695\) 1.47920e20 + 2.56205e20i 0.0716376 + 0.124080i
\(696\) 0 0
\(697\) 2.15172e20 3.72689e20i 0.101986 0.176645i
\(698\) −1.45176e21 + 2.51452e21i −0.680735 + 1.17907i
\(699\) 0 0
\(700\) 2.63154e21 + 4.55796e21i 1.20774 + 2.09187i
\(701\) −3.57059e21 −1.62127 −0.810634 0.585553i \(-0.800877\pi\)
−0.810634 + 0.585553i \(0.800877\pi\)
\(702\) 0 0
\(703\) 2.33210e21 1.03653
\(704\) −1.70973e21 2.96134e21i −0.751851 1.30224i
\(705\) 0 0
\(706\) −3.17479e20 + 5.49890e20i −0.136672 + 0.236723i
\(707\) 1.98839e21 3.44399e21i 0.846946 1.46695i
\(708\) 0 0
\(709\) −3.06577e20 5.31006e20i −0.127848 0.221438i 0.794995 0.606616i \(-0.207473\pi\)
−0.922842 + 0.385178i \(0.874140\pi\)
\(710\) 9.21594e21 3.80279
\(711\) 0 0
\(712\) −8.45242e20 −0.341492
\(713\) −3.40668e20 5.90055e20i −0.136195 0.235896i
\(714\) 0 0
\(715\) 1.90899e21 3.30647e21i 0.747323 1.29440i
\(716\) 7.76204e20 1.34443e21i 0.300697 0.520822i
\(717\) 0 0
\(718\) 6.45940e20 + 1.11880e21i 0.245052 + 0.424443i
\(719\) −1.13082e21 −0.424549 −0.212275 0.977210i \(-0.568087\pi\)
−0.212275 + 0.977210i \(0.568087\pi\)
\(720\) 0 0
\(721\) 2.63186e20 0.0967716
\(722\) −2.12254e21 3.67635e21i −0.772374 1.33779i
\(723\) 0 0
\(724\) −9.92363e20 + 1.71882e21i −0.353697 + 0.612621i
\(725\) 5.26450e20 9.11838e20i 0.185704 0.321649i
\(726\) 0 0
\(727\) −2.57478e21 4.45964e21i −0.889675 1.54096i −0.840260 0.542183i \(-0.817598\pi\)
−0.0494144 0.998778i \(-0.515735\pi\)
\(728\) −1.92852e21 −0.659538
\(729\) 0 0
\(730\) −7.83592e21 −2.62524
\(731\) −3.91246e20 6.77657e20i −0.129739 0.224714i
\(732\) 0 0
\(733\) −1.43966e20 + 2.49357e20i −0.0467715 + 0.0810106i −0.888463 0.458947i \(-0.848227\pi\)
0.841692 + 0.539958i \(0.181560\pi\)
\(734\) 1.09517e20 1.89689e20i 0.0352178 0.0609990i
\(735\) 0 0
\(736\) −6.97464e20 1.20804e21i −0.219755 0.380626i
\(737\) 2.36538e21 0.737725
\(738\) 0 0
\(739\) −4.06686e21 −1.24287 −0.621435 0.783466i \(-0.713450\pi\)
−0.621435 + 0.783466i \(0.713450\pi\)
\(740\) 2.41407e21 + 4.18130e21i 0.730319 + 1.26495i
\(741\) 0 0
\(742\) 3.97988e21 6.89335e21i 1.17989 2.04362i
\(743\) −2.32553e21 + 4.02794e21i −0.682506 + 1.18213i 0.291708 + 0.956507i \(0.405776\pi\)
−0.974214 + 0.225627i \(0.927557\pi\)
\(744\) 0 0
\(745\) 3.70272e21 + 6.41330e21i 1.06500 + 1.84463i
\(746\) 9.72592e21 2.76942
\(747\) 0 0
\(748\) 9.61360e20 0.268302
\(749\) −4.43426e21 7.68036e21i −1.22520 2.12211i
\(750\) 0 0
\(751\) −3.28330e21 + 5.68684e21i −0.889224 + 1.54018i −0.0484293 + 0.998827i \(0.515422\pi\)
−0.840795 + 0.541354i \(0.817912\pi\)
\(752\) −4.81125e20 + 8.33332e20i −0.129010 + 0.223452i
\(753\) 0 0
\(754\) 8.03958e20 + 1.39250e21i 0.211324 + 0.366024i
\(755\) −7.39752e21 −1.92524
\(756\) 0 0
\(757\) 2.37137e21 0.605034 0.302517 0.953144i \(-0.402173\pi\)
0.302517 + 0.953144i \(0.402173\pi\)
\(758\) 2.87852e21 + 4.98575e21i 0.727195 + 1.25954i
\(759\) 0 0
\(760\) 2.09306e21 3.62529e21i 0.518418 0.897926i
\(761\) −1.85117e21 + 3.20632e21i −0.454005 + 0.786360i −0.998630 0.0523193i \(-0.983339\pi\)
0.544625 + 0.838680i \(0.316672\pi\)
\(762\) 0 0
\(763\) −5.28069e21 9.14643e21i −1.26986 2.19947i
\(764\) −5.33743e21 −1.27096
\(765\) 0 0
\(766\) −7.09609e21 −1.65693
\(767\) 4.37172e20 + 7.57203e20i 0.101085 + 0.175084i
\(768\) 0 0
\(769\) 1.96260e21 3.39932e21i 0.445024 0.770804i −0.553030 0.833161i \(-0.686528\pi\)
0.998054 + 0.0623572i \(0.0198618\pi\)
\(770\) −7.22756e21 + 1.25185e22i −1.62297 + 2.81107i
\(771\) 0 0
\(772\) 2.13824e21 + 3.70354e21i 0.470898 + 0.815619i
\(773\) 5.12588e21 1.11795 0.558975 0.829185i \(-0.311195\pi\)
0.558975 + 0.829185i \(0.311195\pi\)
\(774\) 0 0
\(775\) −5.20633e21 −1.11370
\(776\) 4.75311e20 + 8.23262e20i 0.100697 + 0.174412i
\(777\) 0 0
\(778\) −7.60695e20 + 1.31756e21i −0.158075 + 0.273794i
\(779\) 3.45738e21 5.98836e21i 0.711568 1.23247i
\(780\) 0 0
\(781\) 4.07994e21 + 7.06666e21i 0.823703 + 1.42670i
\(782\) 4.96692e20 0.0993200
\(783\) 0 0
\(784\) −2.85901e21 −0.560847
\(785\) 1.24446e21 + 2.15547e21i 0.241801 + 0.418812i
\(786\) 0 0
\(787\) 8.81628e20 1.52702e21i 0.168064 0.291095i −0.769675 0.638436i \(-0.779582\pi\)
0.937739 + 0.347340i \(0.112915\pi\)
\(788\) −1.28398e21 + 2.22392e21i −0.242445 + 0.419927i
\(789\) 0 0
\(790\) 4.33337e21 + 7.50562e21i 0.802829 + 1.39054i
\(791\) −5.97852e21 −1.09716
\(792\) 0 0
\(793\) 5.38708e21 0.970074
\(794\) 5.25544e21 + 9.10270e21i 0.937466 + 1.62374i
\(795\) 0 0
\(796\) −5.18924e21 + 8.98803e21i −0.908355 + 1.57332i
\(797\) 4.59047e21 7.95093e21i 0.796012 1.37873i −0.126182 0.992007i \(-0.540272\pi\)
0.922194 0.386726i \(-0.126394\pi\)
\(798\) 0 0
\(799\) −2.63819e20 4.56947e20i −0.0448957 0.0777616i
\(800\) −1.06591e22 −1.79700
\(801\) 0 0
\(802\) 3.65322e21 0.604460
\(803\) −3.46900e21 6.00848e21i −0.568640 0.984914i
\(804\) 0 0
\(805\) −2.12162e21 + 3.67475e21i −0.341348 + 0.591232i
\(806\) 3.97538e21 6.88555e21i 0.633673 1.09755i
\(807\) 0 0
\(808\) −1.85778e21 3.21777e21i −0.290676 0.503466i
\(809\) −4.19147e20 −0.0649759 −0.0324879 0.999472i \(-0.510343\pi\)
−0.0324879 + 0.999472i \(0.510343\pi\)
\(810\) 0 0
\(811\) 6.97363e21 1.06121 0.530606 0.847618i \(-0.321964\pi\)
0.530606 + 0.847618i \(0.321964\pi\)
\(812\) −1.72940e21 2.99541e21i −0.260751 0.451633i
\(813\) 0 0
\(814\) −3.76202e21 + 6.51601e21i −0.556850 + 0.964492i
\(815\) 5.29424e19 9.16990e19i 0.00776465 0.0134488i
\(816\) 0 0
\(817\) −6.28653e21 1.08886e22i −0.905201 1.56785i
\(818\) 4.40083e21 0.627891
\(819\) 0 0
\(820\) 1.43156e22 2.00542
\(821\) 5.91825e21 + 1.02507e22i 0.821523 + 1.42292i 0.904548 + 0.426373i \(0.140209\pi\)
−0.0830241 + 0.996548i \(0.526458\pi\)
\(822\) 0 0
\(823\) 3.41893e20 5.92177e20i 0.0466006 0.0807147i −0.841784 0.539814i \(-0.818495\pi\)
0.888385 + 0.459099i \(0.151828\pi\)
\(824\) 1.22949e20 2.12954e20i 0.0166063 0.0287629i
\(825\) 0 0
\(826\) −1.65516e21 2.86682e21i −0.219528 0.380234i
\(827\) 1.03897e20 0.0136557 0.00682784 0.999977i \(-0.497827\pi\)
0.00682784 + 0.999977i \(0.497827\pi\)
\(828\) 0 0
\(829\) −3.32808e21 −0.429571 −0.214785 0.976661i \(-0.568905\pi\)
−0.214785 + 0.976661i \(0.568905\pi\)
\(830\) −3.90556e21 6.76463e21i −0.499571 0.865283i
\(831\) 0 0
\(832\) 5.85663e21 1.01440e22i 0.735738 1.27434i
\(833\) 7.83849e20 1.35767e21i 0.0975877 0.169027i
\(834\) 0 0
\(835\) −5.74821e21 9.95619e21i −0.702885 1.21743i
\(836\) 1.54471e22 1.87198
\(837\) 0 0
\(838\) 1.95853e21 0.233131
\(839\) −3.56319e21 6.17162e21i −0.420363 0.728090i 0.575612 0.817723i \(-0.304764\pi\)
−0.995975 + 0.0896333i \(0.971430\pi\)
\(840\) 0 0
\(841\) 3.96862e21 6.87385e21i 0.459907 0.796582i
\(842\) 7.76027e21 1.34412e22i 0.891325 1.54382i
\(843\) 0 0
\(844\) −6.57904e21 1.13952e22i −0.742325 1.28574i
\(845\) −5.16669e20 −0.0577813
\(846\) 0 0
\(847\) −5.85410e19 −0.00643182
\(848\) 2.97381e21 + 5.15079e21i 0.323850 + 0.560925i
\(849\) 0 0
\(850\) 1.89770e21 3.28691e21i 0.203042 0.351679i
\(851\) −1.10432e21 + 1.91274e21i −0.117118 + 0.202855i
\(852\) 0 0
\(853\) −7.94231e19 1.37565e20i −0.00827616 0.0143347i 0.861858 0.507150i \(-0.169301\pi\)
−0.870134 + 0.492816i \(0.835968\pi\)
\(854\) −2.03959e22 −2.10673
\(855\) 0 0
\(856\) −8.28599e21 −0.840991
\(857\) 4.63723e21 + 8.03191e21i 0.466554 + 0.808095i 0.999270 0.0381986i \(-0.0121619\pi\)
−0.532716 + 0.846294i \(0.678829\pi\)
\(858\) 0 0
\(859\) −4.67905e21 + 8.10436e21i −0.462604 + 0.801253i −0.999090 0.0426560i \(-0.986418\pi\)
0.536486 + 0.843909i \(0.319751\pi\)
\(860\) 1.30150e22 2.25426e22i 1.27557 2.20936i
\(861\) 0 0
\(862\) 9.66989e21 + 1.67487e22i 0.931359 + 1.61316i
\(863\) 3.98396e20 0.0380394 0.0190197 0.999819i \(-0.493945\pi\)
0.0190197 + 0.999819i \(0.493945\pi\)
\(864\) 0 0
\(865\) 1.07556e22 1.00929
\(866\) −4.39167e21 7.60660e21i −0.408550 0.707630i
\(867\) 0 0
\(868\) −8.55145e21 + 1.48116e22i −0.781883 + 1.35426i
\(869\) −3.83681e21 + 6.64555e21i −0.347794 + 0.602397i
\(870\) 0 0
\(871\) 4.05127e21 + 7.01701e21i 0.360957 + 0.625196i
\(872\) −9.86766e21 −0.871647
\(873\) 0 0
\(874\) 7.98084e21 0.692967
\(875\) 3.85150e21 + 6.67100e21i 0.331566 + 0.574289i
\(876\) 0 0
\(877\) −2.05723e21 + 3.56322e21i −0.174094 + 0.301540i −0.939848 0.341594i \(-0.889033\pi\)
0.765753 + 0.643135i \(0.222366\pi\)
\(878\) 7.72432e20 1.33789e21i 0.0648114 0.112257i
\(879\) 0 0
\(880\) −5.40052e21 9.35397e21i −0.445467 0.771571i
\(881\) 1.18310e22 0.967614 0.483807 0.875175i \(-0.339254\pi\)
0.483807 + 0.875175i \(0.339254\pi\)
\(882\) 0 0
\(883\) 5.86964e20 0.0471961 0.0235980 0.999722i \(-0.492488\pi\)
0.0235980 + 0.999722i \(0.492488\pi\)
\(884\) 1.64656e21 + 2.85192e21i 0.131276 + 0.227377i
\(885\) 0 0
\(886\) 6.60113e21 1.14335e22i 0.517446 0.896243i
\(887\) −1.39035e21 + 2.40816e21i −0.108068 + 0.187179i −0.914987 0.403482i \(-0.867800\pi\)
0.806920 + 0.590661i \(0.201133\pi\)
\(888\) 0 0
\(889\) 1.50326e22 + 2.60371e22i 1.14887 + 1.98990i
\(890\) −2.17020e22 −1.64465
\(891\) 0 0
\(892\) 1.32732e22 0.989097
\(893\) −4.23903e21 7.34221e21i −0.313242 0.542552i
\(894\) 0 0
\(895\) 4.78193e21 8.28255e21i 0.347481 0.601854i
\(896\) −8.86674e21 + 1.53576e22i −0.638931 + 1.10666i
\(897\) 0 0
\(898\) 1.07685e21 + 1.86517e21i 0.0763106 + 0.132174i
\(899\) 3.42151e21 0.240447
\(900\) 0 0
\(901\) −3.26130e21 −0.225401
\(902\) 1.11545e22 + 1.93202e22i 0.764543 + 1.32423i
\(903\) 0 0
\(904\) −2.79291e21 + 4.83747e21i −0.188276 + 0.326103i
\(905\) −6.11361e21 + 1.05891e22i −0.408727 + 0.707936i
\(906\) 0 0
\(907\) 5.35469e21 + 9.27459e21i 0.352111 + 0.609874i 0.986619 0.163042i \(-0.0521306\pi\)
−0.634508 + 0.772916i \(0.718797\pi\)
\(908\) 3.26443e22 2.12894
\(909\) 0 0
\(910\) −4.95157e22 −3.17638
\(911\) −1.44585e21 2.50428e21i −0.0919888 0.159329i 0.816359 0.577545i \(-0.195989\pi\)
−0.908348 + 0.418215i \(0.862656\pi\)
\(912\) 0 0
\(913\) 3.45802e21 5.98946e21i 0.216420 0.374850i
\(914\) −9.68918e21 + 1.67821e22i −0.601437 + 1.04172i
\(915\) 0 0
\(916\) −1.27621e22 2.21047e22i −0.779305 1.34980i
\(917\) 5.58948e21 0.338533
\(918\) 0 0
\(919\) −1.58079e22 −0.941908 −0.470954 0.882158i \(-0.656090\pi\)
−0.470954 + 0.882158i \(0.656090\pi\)
\(920\) 1.98226e21 + 3.43337e21i 0.117152 + 0.202914i
\(921\) 0 0
\(922\) −1.46991e22 + 2.54596e22i −0.854690 + 1.48037i
\(923\) −1.39757e22 + 2.42067e22i −0.806050 + 1.39612i
\(924\) 0 0
\(925\) 8.43851e21 + 1.46159e22i 0.478854 + 0.829399i
\(926\) −3.93507e22 −2.21498
\(927\) 0 0
\(928\) 7.00499e21 0.387970
\(929\) −6.35595e21 1.10088e22i −0.349191 0.604816i 0.636915 0.770934i \(-0.280210\pi\)
−0.986106 + 0.166118i \(0.946877\pi\)
\(930\) 0 0
\(931\) 1.25949e22 2.18150e22i 0.680881 1.17932i
\(932\) −6.23578e21 + 1.08007e22i −0.334404 + 0.579205i
\(933\) 0 0
\(934\) −2.42922e22 4.20753e22i −1.28193 2.22037i
\(935\) 5.92261e21 0.310046
\(936\) 0 0
\(937\) −3.40311e22 −1.75319 −0.876595 0.481230i \(-0.840190\pi\)
−0.876595 + 0.481230i \(0.840190\pi\)
\(938\) −1.53384e22 2.65669e22i −0.783897 1.35775i
\(939\) 0 0
\(940\) 8.77605e21 1.52006e22i 0.441408 0.764541i
\(941\) 9.84071e21 1.70446e22i 0.491026 0.850482i −0.508921 0.860813i \(-0.669955\pi\)
0.999947 + 0.0103315i \(0.00328869\pi\)
\(942\) 0 0
\(943\) 3.27435e21 + 5.67135e21i 0.160801 + 0.278515i
\(944\) 2.47351e21 0.120510
\(945\) 0 0
\(946\) 4.05643e22 1.94518
\(947\) 1.07304e22 + 1.85856e22i 0.510494 + 0.884202i 0.999926 + 0.0121603i \(0.00387085\pi\)
−0.489432 + 0.872042i \(0.662796\pi\)
\(948\) 0 0
\(949\) 1.18830e22 2.05819e22i 0.556453 0.963805i
\(950\) 3.04922e22 5.28140e22i 1.41665 2.45370i
\(951\) 0 0
\(952\) −1.49580e21 2.59081e21i −0.0684065 0.118484i
\(953\) 3.51332e22 1.59412 0.797060 0.603900i \(-0.206388\pi\)
0.797060 + 0.603900i \(0.206388\pi\)
\(954\) 0 0
\(955\) −3.28821e22 −1.46870
\(956\) −1.53151e21 2.65265e21i −0.0678712 0.117556i
\(957\) 0 0
\(958\) −1.99313e22 + 3.45221e22i −0.869551 + 1.50611i
\(959\) 9.37047e21 1.62301e22i 0.405622 0.702558i
\(960\) 0 0
\(961\) 3.27338e21 + 5.66965e21i 0.139499 + 0.241619i
\(962\) −2.57734e22 −1.08983
\(963\) 0 0
\(964\) 1.90298e22 0.792241
\(965\) 1.31730e22 + 2.28163e22i 0.544163 + 0.942518i
\(966\) 0 0
\(967\) −1.23936e22 + 2.14663e22i −0.504078 + 0.873089i 0.495911 + 0.868373i \(0.334834\pi\)
−0.999989 + 0.00471519i \(0.998499\pi\)
\(968\) −2.73479e19 + 4.73679e19i −0.00110372 + 0.00191170i
\(969\) 0 0
\(970\) 1.22038e22 + 2.11376e22i 0.484962 + 0.839979i
\(971\) −4.50208e22 −1.77529 −0.887645 0.460528i \(-0.847660\pi\)
−0.887645 + 0.460528i \(0.847660\pi\)
\(972\) 0 0
\(973\) 3.39712e21 0.131906
\(974\) 1.96415e22 + 3.40200e22i 0.756801 + 1.31082i
\(975\) 0 0
\(976\) 7.62001e21 1.31982e22i 0.289123 0.500775i
\(977\) 2.66812e21 4.62132e21i 0.100461 0.174003i −0.811414 0.584472i \(-0.801302\pi\)
0.911875 + 0.410469i \(0.134635\pi\)
\(978\) 0 0
\(979\) −9.60757e21 1.66408e22i −0.356240 0.617026i
\(980\) 5.21503e22 1.91894
\(981\) 0 0
\(982\) −7.68358e21 −0.278437
\(983\) −1.99181e22 3.44992e22i −0.716303 1.24067i −0.962455 0.271442i \(-0.912500\pi\)
0.246152 0.969231i \(-0.420834\pi\)
\(984\) 0 0
\(985\) −7.91018e21 + 1.37008e22i −0.280166 + 0.485261i
\(986\) −1.24713e21 + 2.16010e21i −0.0438365 + 0.0759271i
\(987\) 0 0
\(988\) 2.64569e22 + 4.58246e22i 0.915928 + 1.58643i
\(989\) 1.19075e22 0.409116
\(990\) 0 0
\(991\) 4.10420e22 1.38892 0.694459 0.719533i \(-0.255644\pi\)
0.694459 + 0.719533i \(0.255644\pi\)
\(992\) −1.73190e22 2.99973e22i −0.581681 1.00750i
\(993\) 0 0
\(994\) 5.29131e22 9.16482e22i 1.75051 3.03198i
\(995\) −3.19691e22 + 5.53722e22i −1.04968 + 1.81810i
\(996\) 0 0
\(997\) 7.82722e21 + 1.35571e22i 0.253159 + 0.438485i 0.964394 0.264470i \(-0.0851970\pi\)
−0.711235 + 0.702955i \(0.751864\pi\)
\(998\) 4.43427e22 1.42345
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.16.c.a.10.3 28
3.2 odd 2 9.16.c.a.4.12 28
9.2 odd 6 9.16.c.a.7.12 yes 28
9.4 even 3 81.16.a.c.1.12 14
9.5 odd 6 81.16.a.e.1.3 14
9.7 even 3 inner 27.16.c.a.19.3 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.16.c.a.4.12 28 3.2 odd 2
9.16.c.a.7.12 yes 28 9.2 odd 6
27.16.c.a.10.3 28 1.1 even 1 trivial
27.16.c.a.19.3 28 9.7 even 3 inner
81.16.a.c.1.12 14 9.4 even 3
81.16.a.e.1.3 14 9.5 odd 6