Properties

Label 27.16.a.d.1.2
Level $27$
Weight $16$
Character 27.1
Self dual yes
Analytic conductor $38.527$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [27,16,Mod(1,27)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("27.1"); S:= CuspForms(chi, 16); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 16, names="a")
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 27.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.5272463770\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3152x^{4} + 2666232x^{2} - 295612416 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{13}\cdot 3^{21}\cdot 5^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(40.1247\) of defining polynomial
Character \(\chi\) \(=\) 27.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-169.081 q^{2} -4179.66 q^{4} -27639.5 q^{5} -3.84024e6 q^{7} +6.24714e6 q^{8} +4.67332e6 q^{10} -1.22259e8 q^{11} +1.81707e8 q^{13} +6.49310e8 q^{14} -9.19313e8 q^{16} -2.91612e9 q^{17} -1.69610e9 q^{19} +1.15524e8 q^{20} +2.06716e10 q^{22} -1.88617e10 q^{23} -2.97536e10 q^{25} -3.07231e10 q^{26} +1.60509e10 q^{28} -7.90277e10 q^{29} -2.87486e10 q^{31} -4.92681e10 q^{32} +4.93061e11 q^{34} +1.06142e11 q^{35} +2.75482e11 q^{37} +2.86779e11 q^{38} -1.72668e11 q^{40} +8.24004e11 q^{41} +1.79681e12 q^{43} +5.11001e11 q^{44} +3.18916e12 q^{46} +1.50562e12 q^{47} +9.99985e12 q^{49} +5.03077e12 q^{50} -7.59473e11 q^{52} -3.41933e12 q^{53} +3.37918e12 q^{55} -2.39905e13 q^{56} +1.33621e13 q^{58} -1.89591e12 q^{59} +3.35667e13 q^{61} +4.86083e12 q^{62} +3.84543e13 q^{64} -5.02229e12 q^{65} -4.47898e13 q^{67} +1.21884e13 q^{68} -1.79466e13 q^{70} -6.50858e13 q^{71} -9.09481e13 q^{73} -4.65788e13 q^{74} +7.08914e12 q^{76} +4.69503e14 q^{77} -5.11555e13 q^{79} +2.54094e13 q^{80} -1.39323e14 q^{82} -2.70444e14 q^{83} +8.06003e13 q^{85} -3.03806e14 q^{86} -7.63769e14 q^{88} +4.45904e14 q^{89} -6.97797e14 q^{91} +7.88356e13 q^{92} -2.54571e14 q^{94} +4.68795e13 q^{95} +1.12131e15 q^{97} -1.69078e15 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 71124 q^{4} + 2377362 q^{7} + 46852560 q^{10} + 387940494 q^{13} + 1056508872 q^{16} - 1979573730 q^{19} - 16927522128 q^{22} - 792180750 q^{25} + 267175396092 q^{28} + 484649028120 q^{31} + 165585346416 q^{34}+ \cdots - 718669835357730 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −169.081 −0.934049 −0.467024 0.884244i \(-0.654674\pi\)
−0.467024 + 0.884244i \(0.654674\pi\)
\(3\) 0 0
\(4\) −4179.66 −0.127553
\(5\) −27639.5 −0.158218 −0.0791090 0.996866i \(-0.525208\pi\)
−0.0791090 + 0.996866i \(0.525208\pi\)
\(6\) 0 0
\(7\) −3.84024e6 −1.76247 −0.881237 0.472675i \(-0.843288\pi\)
−0.881237 + 0.472675i \(0.843288\pi\)
\(8\) 6.24714e6 1.05319
\(9\) 0 0
\(10\) 4.67332e6 0.147783
\(11\) −1.22259e8 −1.89163 −0.945813 0.324710i \(-0.894733\pi\)
−0.945813 + 0.324710i \(0.894733\pi\)
\(12\) 0 0
\(13\) 1.81707e8 0.803149 0.401574 0.915826i \(-0.368463\pi\)
0.401574 + 0.915826i \(0.368463\pi\)
\(14\) 6.49310e8 1.64624
\(15\) 0 0
\(16\) −9.19313e8 −0.856177
\(17\) −2.91612e9 −1.72361 −0.861805 0.507240i \(-0.830666\pi\)
−0.861805 + 0.507240i \(0.830666\pi\)
\(18\) 0 0
\(19\) −1.69610e9 −0.435312 −0.217656 0.976026i \(-0.569841\pi\)
−0.217656 + 0.976026i \(0.569841\pi\)
\(20\) 1.15524e8 0.0201812
\(21\) 0 0
\(22\) 2.06716e10 1.76687
\(23\) −1.88617e10 −1.15511 −0.577554 0.816352i \(-0.695993\pi\)
−0.577554 + 0.816352i \(0.695993\pi\)
\(24\) 0 0
\(25\) −2.97536e10 −0.974967
\(26\) −3.07231e10 −0.750180
\(27\) 0 0
\(28\) 1.60509e10 0.224809
\(29\) −7.90277e10 −0.850735 −0.425368 0.905021i \(-0.639855\pi\)
−0.425368 + 0.905021i \(0.639855\pi\)
\(30\) 0 0
\(31\) −2.87486e10 −0.187674 −0.0938369 0.995588i \(-0.529913\pi\)
−0.0938369 + 0.995588i \(0.529913\pi\)
\(32\) −4.92681e10 −0.253478
\(33\) 0 0
\(34\) 4.93061e11 1.60994
\(35\) 1.06142e11 0.278855
\(36\) 0 0
\(37\) 2.75482e11 0.477069 0.238534 0.971134i \(-0.423333\pi\)
0.238534 + 0.971134i \(0.423333\pi\)
\(38\) 2.86779e11 0.406602
\(39\) 0 0
\(40\) −1.72668e11 −0.166633
\(41\) 8.24004e11 0.660770 0.330385 0.943846i \(-0.392821\pi\)
0.330385 + 0.943846i \(0.392821\pi\)
\(42\) 0 0
\(43\) 1.79681e12 1.00806 0.504032 0.863685i \(-0.331849\pi\)
0.504032 + 0.863685i \(0.331849\pi\)
\(44\) 5.11001e11 0.241283
\(45\) 0 0
\(46\) 3.18916e12 1.07893
\(47\) 1.50562e12 0.433492 0.216746 0.976228i \(-0.430456\pi\)
0.216746 + 0.976228i \(0.430456\pi\)
\(48\) 0 0
\(49\) 9.99985e12 2.10631
\(50\) 5.03077e12 0.910667
\(51\) 0 0
\(52\) −7.59473e11 −0.102444
\(53\) −3.41933e12 −0.399827 −0.199914 0.979814i \(-0.564066\pi\)
−0.199914 + 0.979814i \(0.564066\pi\)
\(54\) 0 0
\(55\) 3.37918e12 0.299289
\(56\) −2.39905e13 −1.85622
\(57\) 0 0
\(58\) 1.33621e13 0.794628
\(59\) −1.89591e12 −0.0991806 −0.0495903 0.998770i \(-0.515792\pi\)
−0.0495903 + 0.998770i \(0.515792\pi\)
\(60\) 0 0
\(61\) 3.35667e13 1.36753 0.683763 0.729704i \(-0.260342\pi\)
0.683763 + 0.729704i \(0.260342\pi\)
\(62\) 4.86083e12 0.175296
\(63\) 0 0
\(64\) 3.84543e13 1.09294
\(65\) −5.02229e12 −0.127073
\(66\) 0 0
\(67\) −4.47898e13 −0.902855 −0.451428 0.892308i \(-0.649085\pi\)
−0.451428 + 0.892308i \(0.649085\pi\)
\(68\) 1.21884e13 0.219852
\(69\) 0 0
\(70\) −1.79466e13 −0.260464
\(71\) −6.50858e13 −0.849275 −0.424638 0.905363i \(-0.639598\pi\)
−0.424638 + 0.905363i \(0.639598\pi\)
\(72\) 0 0
\(73\) −9.09481e13 −0.963546 −0.481773 0.876296i \(-0.660007\pi\)
−0.481773 + 0.876296i \(0.660007\pi\)
\(74\) −4.65788e13 −0.445605
\(75\) 0 0
\(76\) 7.08914e12 0.0555254
\(77\) 4.69503e14 3.33394
\(78\) 0 0
\(79\) −5.11555e13 −0.299702 −0.149851 0.988709i \(-0.547879\pi\)
−0.149851 + 0.988709i \(0.547879\pi\)
\(80\) 2.54094e13 0.135463
\(81\) 0 0
\(82\) −1.39323e14 −0.617192
\(83\) −2.70444e14 −1.09393 −0.546967 0.837154i \(-0.684218\pi\)
−0.546967 + 0.837154i \(0.684218\pi\)
\(84\) 0 0
\(85\) 8.06003e13 0.272706
\(86\) −3.03806e14 −0.941581
\(87\) 0 0
\(88\) −7.63769e14 −1.99224
\(89\) 4.45904e14 1.06860 0.534302 0.845294i \(-0.320575\pi\)
0.534302 + 0.845294i \(0.320575\pi\)
\(90\) 0 0
\(91\) −6.97797e14 −1.41553
\(92\) 7.88356e13 0.147338
\(93\) 0 0
\(94\) −2.54571e14 −0.404903
\(95\) 4.68795e13 0.0688741
\(96\) 0 0
\(97\) 1.12131e15 1.40909 0.704546 0.709658i \(-0.251151\pi\)
0.704546 + 0.709658i \(0.251151\pi\)
\(98\) −1.69078e15 −1.96740
\(99\) 0 0
\(100\) 1.24360e14 0.124360
\(101\) −1.07017e15 −0.993211 −0.496605 0.867976i \(-0.665420\pi\)
−0.496605 + 0.867976i \(0.665420\pi\)
\(102\) 0 0
\(103\) −6.99161e14 −0.560142 −0.280071 0.959979i \(-0.590358\pi\)
−0.280071 + 0.959979i \(0.590358\pi\)
\(104\) 1.13515e15 0.845868
\(105\) 0 0
\(106\) 5.78144e14 0.373458
\(107\) 1.44920e15 0.872471 0.436235 0.899833i \(-0.356312\pi\)
0.436235 + 0.899833i \(0.356312\pi\)
\(108\) 0 0
\(109\) −1.00973e15 −0.529063 −0.264532 0.964377i \(-0.585217\pi\)
−0.264532 + 0.964377i \(0.585217\pi\)
\(110\) −5.71355e14 −0.279551
\(111\) 0 0
\(112\) 3.53038e15 1.50899
\(113\) −1.14823e15 −0.459134 −0.229567 0.973293i \(-0.573731\pi\)
−0.229567 + 0.973293i \(0.573731\pi\)
\(114\) 0 0
\(115\) 5.21329e14 0.182759
\(116\) 3.30309e14 0.108514
\(117\) 0 0
\(118\) 3.20562e14 0.0926395
\(119\) 1.11986e16 3.03782
\(120\) 0 0
\(121\) 1.07700e16 2.57825
\(122\) −5.67549e15 −1.27734
\(123\) 0 0
\(124\) 1.20159e14 0.0239384
\(125\) 1.66587e15 0.312475
\(126\) 0 0
\(127\) −2.73884e15 −0.456077 −0.228038 0.973652i \(-0.573231\pi\)
−0.228038 + 0.973652i \(0.573231\pi\)
\(128\) −4.88748e15 −0.767379
\(129\) 0 0
\(130\) 8.49173e14 0.118692
\(131\) −3.20071e15 −0.422388 −0.211194 0.977444i \(-0.567735\pi\)
−0.211194 + 0.977444i \(0.567735\pi\)
\(132\) 0 0
\(133\) 6.51344e15 0.767226
\(134\) 7.57310e15 0.843311
\(135\) 0 0
\(136\) −1.82174e16 −1.81529
\(137\) −5.18798e15 −0.489321 −0.244661 0.969609i \(-0.578677\pi\)
−0.244661 + 0.969609i \(0.578677\pi\)
\(138\) 0 0
\(139\) 5.05637e15 0.427787 0.213894 0.976857i \(-0.431385\pi\)
0.213894 + 0.976857i \(0.431385\pi\)
\(140\) −4.43639e14 −0.0355688
\(141\) 0 0
\(142\) 1.10048e16 0.793264
\(143\) −2.22153e16 −1.51926
\(144\) 0 0
\(145\) 2.18429e15 0.134602
\(146\) 1.53776e16 0.899999
\(147\) 0 0
\(148\) −1.15142e15 −0.0608516
\(149\) −1.63384e16 −0.820942 −0.410471 0.911874i \(-0.634636\pi\)
−0.410471 + 0.911874i \(0.634636\pi\)
\(150\) 0 0
\(151\) −2.49188e16 −1.13292 −0.566461 0.824089i \(-0.691688\pi\)
−0.566461 + 0.824089i \(0.691688\pi\)
\(152\) −1.05958e16 −0.458466
\(153\) 0 0
\(154\) −7.93840e16 −3.11406
\(155\) 7.94597e14 0.0296934
\(156\) 0 0
\(157\) 1.79217e16 0.608320 0.304160 0.952621i \(-0.401624\pi\)
0.304160 + 0.952621i \(0.401624\pi\)
\(158\) 8.64942e15 0.279936
\(159\) 0 0
\(160\) 1.36175e15 0.0401048
\(161\) 7.24335e16 2.03585
\(162\) 0 0
\(163\) −4.54299e16 −1.16395 −0.581976 0.813206i \(-0.697720\pi\)
−0.581976 + 0.813206i \(0.697720\pi\)
\(164\) −3.44406e15 −0.0842833
\(165\) 0 0
\(166\) 4.57269e16 1.02179
\(167\) 3.67143e16 0.784263 0.392132 0.919909i \(-0.371738\pi\)
0.392132 + 0.919909i \(0.371738\pi\)
\(168\) 0 0
\(169\) −1.81685e16 −0.354952
\(170\) −1.36280e16 −0.254721
\(171\) 0 0
\(172\) −7.51004e15 −0.128582
\(173\) −1.00354e17 −1.64509 −0.822547 0.568697i \(-0.807448\pi\)
−0.822547 + 0.568697i \(0.807448\pi\)
\(174\) 0 0
\(175\) 1.14261e17 1.71835
\(176\) 1.12394e17 1.61957
\(177\) 0 0
\(178\) −7.53939e16 −0.998128
\(179\) −1.02308e17 −1.29871 −0.649355 0.760485i \(-0.724961\pi\)
−0.649355 + 0.760485i \(0.724961\pi\)
\(180\) 0 0
\(181\) −6.05521e16 −0.707196 −0.353598 0.935397i \(-0.615042\pi\)
−0.353598 + 0.935397i \(0.615042\pi\)
\(182\) 1.17984e17 1.32217
\(183\) 0 0
\(184\) −1.17832e17 −1.21655
\(185\) −7.61420e15 −0.0754808
\(186\) 0 0
\(187\) 3.56522e17 3.26043
\(188\) −6.29298e15 −0.0552933
\(189\) 0 0
\(190\) −7.92643e15 −0.0643318
\(191\) −1.65278e17 −1.28963 −0.644814 0.764339i \(-0.723065\pi\)
−0.644814 + 0.764339i \(0.723065\pi\)
\(192\) 0 0
\(193\) 1.49641e17 1.07987 0.539935 0.841706i \(-0.318449\pi\)
0.539935 + 0.841706i \(0.318449\pi\)
\(194\) −1.89593e17 −1.31616
\(195\) 0 0
\(196\) −4.17960e16 −0.268667
\(197\) −4.98992e15 −0.0308743 −0.0154371 0.999881i \(-0.504914\pi\)
−0.0154371 + 0.999881i \(0.504914\pi\)
\(198\) 0 0
\(199\) 1.85140e17 1.06195 0.530973 0.847389i \(-0.321827\pi\)
0.530973 + 0.847389i \(0.321827\pi\)
\(200\) −1.85875e17 −1.02683
\(201\) 0 0
\(202\) 1.80945e17 0.927707
\(203\) 3.03485e17 1.49940
\(204\) 0 0
\(205\) −2.27751e16 −0.104546
\(206\) 1.18215e17 0.523200
\(207\) 0 0
\(208\) −1.67045e17 −0.687638
\(209\) 2.07364e17 0.823448
\(210\) 0 0
\(211\) 2.98141e16 0.110231 0.0551155 0.998480i \(-0.482447\pi\)
0.0551155 + 0.998480i \(0.482447\pi\)
\(212\) 1.42917e16 0.0509992
\(213\) 0 0
\(214\) −2.45032e17 −0.814930
\(215\) −4.96629e16 −0.159494
\(216\) 0 0
\(217\) 1.10401e17 0.330770
\(218\) 1.70726e17 0.494171
\(219\) 0 0
\(220\) −1.41238e16 −0.0381753
\(221\) −5.29879e17 −1.38431
\(222\) 0 0
\(223\) 1.08064e17 0.263872 0.131936 0.991258i \(-0.457881\pi\)
0.131936 + 0.991258i \(0.457881\pi\)
\(224\) 1.89201e17 0.446749
\(225\) 0 0
\(226\) 1.94143e17 0.428854
\(227\) 6.50374e17 1.38985 0.694927 0.719080i \(-0.255436\pi\)
0.694927 + 0.719080i \(0.255436\pi\)
\(228\) 0 0
\(229\) −4.01890e17 −0.804158 −0.402079 0.915605i \(-0.631712\pi\)
−0.402079 + 0.915605i \(0.631712\pi\)
\(230\) −8.81468e16 −0.170706
\(231\) 0 0
\(232\) −4.93698e17 −0.895986
\(233\) 6.27335e17 1.10238 0.551189 0.834381i \(-0.314174\pi\)
0.551189 + 0.834381i \(0.314174\pi\)
\(234\) 0 0
\(235\) −4.16146e16 −0.0685862
\(236\) 7.92425e15 0.0126508
\(237\) 0 0
\(238\) −1.89347e18 −2.83747
\(239\) −2.41672e17 −0.350947 −0.175474 0.984484i \(-0.556146\pi\)
−0.175474 + 0.984484i \(0.556146\pi\)
\(240\) 0 0
\(241\) 2.04932e17 0.279565 0.139782 0.990182i \(-0.455360\pi\)
0.139782 + 0.990182i \(0.455360\pi\)
\(242\) −1.82100e18 −2.40821
\(243\) 0 0
\(244\) −1.40298e17 −0.174432
\(245\) −2.76391e17 −0.333256
\(246\) 0 0
\(247\) −3.08194e17 −0.349620
\(248\) −1.79596e17 −0.197656
\(249\) 0 0
\(250\) −2.81666e17 −0.291867
\(251\) 7.70354e17 0.774707 0.387354 0.921931i \(-0.373389\pi\)
0.387354 + 0.921931i \(0.373389\pi\)
\(252\) 0 0
\(253\) 2.30602e18 2.18503
\(254\) 4.63085e17 0.425998
\(255\) 0 0
\(256\) −4.33693e17 −0.376169
\(257\) −6.21658e17 −0.523664 −0.261832 0.965113i \(-0.584327\pi\)
−0.261832 + 0.965113i \(0.584327\pi\)
\(258\) 0 0
\(259\) −1.05792e18 −0.840821
\(260\) 2.09915e16 0.0162085
\(261\) 0 0
\(262\) 5.41179e17 0.394531
\(263\) −2.21197e18 −1.56715 −0.783575 0.621297i \(-0.786606\pi\)
−0.783575 + 0.621297i \(0.786606\pi\)
\(264\) 0 0
\(265\) 9.45088e16 0.0632599
\(266\) −1.10130e18 −0.716626
\(267\) 0 0
\(268\) 1.87206e17 0.115162
\(269\) 2.18962e18 1.30987 0.654933 0.755687i \(-0.272697\pi\)
0.654933 + 0.755687i \(0.272697\pi\)
\(270\) 0 0
\(271\) 7.31740e17 0.414083 0.207041 0.978332i \(-0.433616\pi\)
0.207041 + 0.978332i \(0.433616\pi\)
\(272\) 2.68083e18 1.47571
\(273\) 0 0
\(274\) 8.77188e17 0.457050
\(275\) 3.63765e18 1.84427
\(276\) 0 0
\(277\) −3.29858e17 −0.158390 −0.0791952 0.996859i \(-0.525235\pi\)
−0.0791952 + 0.996859i \(0.525235\pi\)
\(278\) −8.54935e17 −0.399574
\(279\) 0 0
\(280\) 6.63086e17 0.293687
\(281\) −1.05923e18 −0.456766 −0.228383 0.973571i \(-0.573344\pi\)
−0.228383 + 0.973571i \(0.573344\pi\)
\(282\) 0 0
\(283\) −2.31294e16 −0.00945727 −0.00472864 0.999989i \(-0.501505\pi\)
−0.00472864 + 0.999989i \(0.501505\pi\)
\(284\) 2.72036e17 0.108328
\(285\) 0 0
\(286\) 3.75618e18 1.41906
\(287\) −3.16437e18 −1.16459
\(288\) 0 0
\(289\) 5.64135e18 1.97083
\(290\) −3.69322e17 −0.125724
\(291\) 0 0
\(292\) 3.80132e17 0.122903
\(293\) 3.71775e18 1.17158 0.585791 0.810462i \(-0.300784\pi\)
0.585791 + 0.810462i \(0.300784\pi\)
\(294\) 0 0
\(295\) 5.24020e16 0.0156922
\(296\) 1.72098e18 0.502444
\(297\) 0 0
\(298\) 2.76251e18 0.766799
\(299\) −3.42730e18 −0.927724
\(300\) 0 0
\(301\) −6.90016e18 −1.77669
\(302\) 4.21329e18 1.05820
\(303\) 0 0
\(304\) 1.55925e18 0.372704
\(305\) −9.27769e17 −0.216367
\(306\) 0 0
\(307\) −8.42886e18 −1.87168 −0.935838 0.352429i \(-0.885356\pi\)
−0.935838 + 0.352429i \(0.885356\pi\)
\(308\) −1.96236e18 −0.425255
\(309\) 0 0
\(310\) −1.34351e17 −0.0277350
\(311\) −7.67091e18 −1.54577 −0.772884 0.634548i \(-0.781186\pi\)
−0.772884 + 0.634548i \(0.781186\pi\)
\(312\) 0 0
\(313\) 2.03750e18 0.391306 0.195653 0.980673i \(-0.437317\pi\)
0.195653 + 0.980673i \(0.437317\pi\)
\(314\) −3.03022e18 −0.568201
\(315\) 0 0
\(316\) 2.13813e17 0.0382279
\(317\) −4.34339e18 −0.758376 −0.379188 0.925320i \(-0.623797\pi\)
−0.379188 + 0.925320i \(0.623797\pi\)
\(318\) 0 0
\(319\) 9.66185e18 1.60927
\(320\) −1.06286e18 −0.172922
\(321\) 0 0
\(322\) −1.22471e19 −1.90158
\(323\) 4.94605e18 0.750308
\(324\) 0 0
\(325\) −5.40644e18 −0.783044
\(326\) 7.68133e18 1.08719
\(327\) 0 0
\(328\) 5.14767e18 0.695916
\(329\) −5.78194e18 −0.764019
\(330\) 0 0
\(331\) −3.39424e18 −0.428581 −0.214291 0.976770i \(-0.568744\pi\)
−0.214291 + 0.976770i \(0.568744\pi\)
\(332\) 1.13036e18 0.139535
\(333\) 0 0
\(334\) −6.20769e18 −0.732540
\(335\) 1.23797e18 0.142848
\(336\) 0 0
\(337\) −1.37227e19 −1.51431 −0.757157 0.653233i \(-0.773412\pi\)
−0.757157 + 0.653233i \(0.773412\pi\)
\(338\) 3.07195e18 0.331542
\(339\) 0 0
\(340\) −3.36882e17 −0.0347845
\(341\) 3.51477e18 0.355009
\(342\) 0 0
\(343\) −2.01700e19 −1.94985
\(344\) 1.12249e19 1.06168
\(345\) 0 0
\(346\) 1.69680e19 1.53660
\(347\) 8.41324e18 0.745577 0.372788 0.927916i \(-0.378402\pi\)
0.372788 + 0.927916i \(0.378402\pi\)
\(348\) 0 0
\(349\) −3.99165e18 −0.338814 −0.169407 0.985546i \(-0.554185\pi\)
−0.169407 + 0.985546i \(0.554185\pi\)
\(350\) −1.93193e19 −1.60503
\(351\) 0 0
\(352\) 6.02347e18 0.479487
\(353\) −7.73764e18 −0.602974 −0.301487 0.953470i \(-0.597483\pi\)
−0.301487 + 0.953470i \(0.597483\pi\)
\(354\) 0 0
\(355\) 1.79894e18 0.134371
\(356\) −1.86373e18 −0.136304
\(357\) 0 0
\(358\) 1.72983e19 1.21306
\(359\) 2.11510e19 1.45252 0.726260 0.687420i \(-0.241257\pi\)
0.726260 + 0.687420i \(0.241257\pi\)
\(360\) 0 0
\(361\) −1.23044e19 −0.810504
\(362\) 1.02382e19 0.660556
\(363\) 0 0
\(364\) 2.91655e18 0.180555
\(365\) 2.51376e18 0.152450
\(366\) 0 0
\(367\) 2.04039e19 1.18773 0.593866 0.804564i \(-0.297601\pi\)
0.593866 + 0.804564i \(0.297601\pi\)
\(368\) 1.73398e19 0.988978
\(369\) 0 0
\(370\) 1.28742e18 0.0705027
\(371\) 1.31311e19 0.704685
\(372\) 0 0
\(373\) −1.09276e18 −0.0563260 −0.0281630 0.999603i \(-0.508966\pi\)
−0.0281630 + 0.999603i \(0.508966\pi\)
\(374\) −6.02811e19 −3.04540
\(375\) 0 0
\(376\) 9.40582e18 0.456550
\(377\) −1.43599e19 −0.683267
\(378\) 0 0
\(379\) −1.69674e19 −0.775927 −0.387964 0.921675i \(-0.626821\pi\)
−0.387964 + 0.921675i \(0.626821\pi\)
\(380\) −1.95940e17 −0.00878511
\(381\) 0 0
\(382\) 2.79453e19 1.20458
\(383\) −2.92156e19 −1.23488 −0.617439 0.786619i \(-0.711830\pi\)
−0.617439 + 0.786619i \(0.711830\pi\)
\(384\) 0 0
\(385\) −1.29768e19 −0.527489
\(386\) −2.53015e19 −1.00865
\(387\) 0 0
\(388\) −4.68671e18 −0.179734
\(389\) −3.11343e18 −0.117116 −0.0585581 0.998284i \(-0.518650\pi\)
−0.0585581 + 0.998284i \(0.518650\pi\)
\(390\) 0 0
\(391\) 5.50031e19 1.99096
\(392\) 6.24705e19 2.21835
\(393\) 0 0
\(394\) 8.43700e17 0.0288381
\(395\) 1.41392e18 0.0474182
\(396\) 0 0
\(397\) 5.25085e19 1.69551 0.847756 0.530387i \(-0.177953\pi\)
0.847756 + 0.530387i \(0.177953\pi\)
\(398\) −3.13037e19 −0.991909
\(399\) 0 0
\(400\) 2.73529e19 0.834744
\(401\) 5.18347e19 1.55252 0.776261 0.630412i \(-0.217114\pi\)
0.776261 + 0.630412i \(0.217114\pi\)
\(402\) 0 0
\(403\) −5.22381e18 −0.150730
\(404\) 4.47294e18 0.126687
\(405\) 0 0
\(406\) −5.13135e19 −1.40051
\(407\) −3.36802e19 −0.902436
\(408\) 0 0
\(409\) −2.77271e19 −0.716109 −0.358054 0.933701i \(-0.616560\pi\)
−0.358054 + 0.933701i \(0.616560\pi\)
\(410\) 3.85083e18 0.0976508
\(411\) 0 0
\(412\) 2.92225e18 0.0714478
\(413\) 7.28073e18 0.174803
\(414\) 0 0
\(415\) 7.47494e18 0.173080
\(416\) −8.95235e18 −0.203581
\(417\) 0 0
\(418\) −3.50613e19 −0.769140
\(419\) 1.43078e19 0.308297 0.154148 0.988048i \(-0.450737\pi\)
0.154148 + 0.988048i \(0.450737\pi\)
\(420\) 0 0
\(421\) −4.00981e18 −0.0833696 −0.0416848 0.999131i \(-0.513273\pi\)
−0.0416848 + 0.999131i \(0.513273\pi\)
\(422\) −5.04100e18 −0.102961
\(423\) 0 0
\(424\) −2.13611e19 −0.421094
\(425\) 8.67652e19 1.68046
\(426\) 0 0
\(427\) −1.28904e20 −2.41023
\(428\) −6.05718e18 −0.111286
\(429\) 0 0
\(430\) 8.39705e18 0.148975
\(431\) 2.81435e19 0.490680 0.245340 0.969437i \(-0.421100\pi\)
0.245340 + 0.969437i \(0.421100\pi\)
\(432\) 0 0
\(433\) 5.48889e19 0.924326 0.462163 0.886795i \(-0.347073\pi\)
0.462163 + 0.886795i \(0.347073\pi\)
\(434\) −1.86668e19 −0.308955
\(435\) 0 0
\(436\) 4.22034e18 0.0674837
\(437\) 3.19915e19 0.502832
\(438\) 0 0
\(439\) −5.42441e18 −0.0823889 −0.0411945 0.999151i \(-0.513116\pi\)
−0.0411945 + 0.999151i \(0.513116\pi\)
\(440\) 2.11102e19 0.315208
\(441\) 0 0
\(442\) 8.95924e19 1.29302
\(443\) −8.37943e19 −1.18901 −0.594506 0.804091i \(-0.702652\pi\)
−0.594506 + 0.804091i \(0.702652\pi\)
\(444\) 0 0
\(445\) −1.23246e19 −0.169072
\(446\) −1.82715e19 −0.246470
\(447\) 0 0
\(448\) −1.47674e20 −1.92627
\(449\) −9.00272e19 −1.15485 −0.577426 0.816443i \(-0.695943\pi\)
−0.577426 + 0.816443i \(0.695943\pi\)
\(450\) 0 0
\(451\) −1.00742e20 −1.24993
\(452\) 4.79920e18 0.0585640
\(453\) 0 0
\(454\) −1.09966e20 −1.29819
\(455\) 1.92868e19 0.223962
\(456\) 0 0
\(457\) 8.14199e19 0.914870 0.457435 0.889243i \(-0.348768\pi\)
0.457435 + 0.889243i \(0.348768\pi\)
\(458\) 6.79520e19 0.751123
\(459\) 0 0
\(460\) −2.17898e18 −0.0233115
\(461\) −1.24454e20 −1.30995 −0.654973 0.755652i \(-0.727320\pi\)
−0.654973 + 0.755652i \(0.727320\pi\)
\(462\) 0 0
\(463\) 1.05312e19 0.107305 0.0536524 0.998560i \(-0.482914\pi\)
0.0536524 + 0.998560i \(0.482914\pi\)
\(464\) 7.26512e19 0.728380
\(465\) 0 0
\(466\) −1.06070e20 −1.02967
\(467\) −5.50879e19 −0.526234 −0.263117 0.964764i \(-0.584751\pi\)
−0.263117 + 0.964764i \(0.584751\pi\)
\(468\) 0 0
\(469\) 1.72003e20 1.59126
\(470\) 7.03624e18 0.0640629
\(471\) 0 0
\(472\) −1.18440e19 −0.104456
\(473\) −2.19676e20 −1.90688
\(474\) 0 0
\(475\) 5.04653e19 0.424415
\(476\) −4.68063e19 −0.387483
\(477\) 0 0
\(478\) 4.08621e19 0.327802
\(479\) 1.73904e20 1.37339 0.686693 0.726947i \(-0.259061\pi\)
0.686693 + 0.726947i \(0.259061\pi\)
\(480\) 0 0
\(481\) 5.00570e19 0.383157
\(482\) −3.46501e19 −0.261127
\(483\) 0 0
\(484\) −4.50149e19 −0.328864
\(485\) −3.09926e19 −0.222944
\(486\) 0 0
\(487\) 2.52282e20 1.75962 0.879809 0.475327i \(-0.157670\pi\)
0.879809 + 0.475327i \(0.157670\pi\)
\(488\) 2.09696e20 1.44026
\(489\) 0 0
\(490\) 4.67325e19 0.311278
\(491\) 3.93011e19 0.257806 0.128903 0.991657i \(-0.458854\pi\)
0.128903 + 0.991657i \(0.458854\pi\)
\(492\) 0 0
\(493\) 2.30455e20 1.46634
\(494\) 5.21096e19 0.326562
\(495\) 0 0
\(496\) 2.64289e19 0.160682
\(497\) 2.49945e20 1.49683
\(498\) 0 0
\(499\) −2.13250e20 −1.23918 −0.619591 0.784925i \(-0.712701\pi\)
−0.619591 + 0.784925i \(0.712701\pi\)
\(500\) −6.96276e18 −0.0398572
\(501\) 0 0
\(502\) −1.30252e20 −0.723614
\(503\) 8.53406e19 0.467085 0.233543 0.972347i \(-0.424968\pi\)
0.233543 + 0.972347i \(0.424968\pi\)
\(504\) 0 0
\(505\) 2.95789e19 0.157144
\(506\) −3.89903e20 −2.04093
\(507\) 0 0
\(508\) 1.14474e19 0.0581740
\(509\) −2.52433e20 −1.26405 −0.632023 0.774950i \(-0.717775\pi\)
−0.632023 + 0.774950i \(0.717775\pi\)
\(510\) 0 0
\(511\) 3.49262e20 1.69822
\(512\) 2.33482e20 1.11874
\(513\) 0 0
\(514\) 1.05110e20 0.489128
\(515\) 1.93245e19 0.0886245
\(516\) 0 0
\(517\) −1.84075e20 −0.820006
\(518\) 1.78874e20 0.785367
\(519\) 0 0
\(520\) −3.13750e19 −0.133831
\(521\) 2.93399e20 1.23360 0.616802 0.787118i \(-0.288428\pi\)
0.616802 + 0.787118i \(0.288428\pi\)
\(522\) 0 0
\(523\) 1.12634e20 0.460156 0.230078 0.973172i \(-0.426102\pi\)
0.230078 + 0.973172i \(0.426102\pi\)
\(524\) 1.33779e19 0.0538769
\(525\) 0 0
\(526\) 3.74001e20 1.46379
\(527\) 8.38344e19 0.323476
\(528\) 0 0
\(529\) 8.91297e19 0.334276
\(530\) −1.59796e19 −0.0590878
\(531\) 0 0
\(532\) −2.72240e19 −0.0978620
\(533\) 1.49727e20 0.530697
\(534\) 0 0
\(535\) −4.00553e19 −0.138040
\(536\) −2.79808e20 −0.950878
\(537\) 0 0
\(538\) −3.70223e20 −1.22348
\(539\) −1.22257e21 −3.98436
\(540\) 0 0
\(541\) −5.49763e20 −1.74259 −0.871297 0.490756i \(-0.836720\pi\)
−0.871297 + 0.490756i \(0.836720\pi\)
\(542\) −1.23723e20 −0.386774
\(543\) 0 0
\(544\) 1.43672e20 0.436898
\(545\) 2.79085e19 0.0837073
\(546\) 0 0
\(547\) −5.79095e20 −1.68984 −0.844919 0.534895i \(-0.820351\pi\)
−0.844919 + 0.534895i \(0.820351\pi\)
\(548\) 2.16840e19 0.0624144
\(549\) 0 0
\(550\) −6.15057e20 −1.72264
\(551\) 1.34039e20 0.370335
\(552\) 0 0
\(553\) 1.96449e20 0.528217
\(554\) 5.57727e19 0.147944
\(555\) 0 0
\(556\) −2.11339e19 −0.0545656
\(557\) 5.79591e20 1.47641 0.738207 0.674575i \(-0.235673\pi\)
0.738207 + 0.674575i \(0.235673\pi\)
\(558\) 0 0
\(559\) 3.26492e20 0.809625
\(560\) −9.75780e19 −0.238749
\(561\) 0 0
\(562\) 1.79096e20 0.426641
\(563\) 2.20743e20 0.518888 0.259444 0.965758i \(-0.416461\pi\)
0.259444 + 0.965758i \(0.416461\pi\)
\(564\) 0 0
\(565\) 3.17365e19 0.0726433
\(566\) 3.91074e18 0.00883355
\(567\) 0 0
\(568\) −4.06600e20 −0.894448
\(569\) −5.10121e20 −1.10747 −0.553734 0.832694i \(-0.686798\pi\)
−0.553734 + 0.832694i \(0.686798\pi\)
\(570\) 0 0
\(571\) −3.83960e20 −0.811924 −0.405962 0.913890i \(-0.633063\pi\)
−0.405962 + 0.913890i \(0.633063\pi\)
\(572\) 9.28523e19 0.193786
\(573\) 0 0
\(574\) 5.35034e20 1.08778
\(575\) 5.61205e20 1.12619
\(576\) 0 0
\(577\) −5.62677e20 −1.10012 −0.550061 0.835125i \(-0.685395\pi\)
−0.550061 + 0.835125i \(0.685395\pi\)
\(578\) −9.53844e20 −1.84085
\(579\) 0 0
\(580\) −9.12959e18 −0.0171689
\(581\) 1.03857e21 1.92803
\(582\) 0 0
\(583\) 4.18044e20 0.756324
\(584\) −5.68166e20 −1.01480
\(585\) 0 0
\(586\) −6.28600e20 −1.09431
\(587\) 9.29291e20 1.59722 0.798612 0.601846i \(-0.205568\pi\)
0.798612 + 0.601846i \(0.205568\pi\)
\(588\) 0 0
\(589\) 4.87606e19 0.0816966
\(590\) −8.86017e18 −0.0146572
\(591\) 0 0
\(592\) −2.53254e20 −0.408455
\(593\) −6.48210e20 −1.03230 −0.516149 0.856499i \(-0.672635\pi\)
−0.516149 + 0.856499i \(0.672635\pi\)
\(594\) 0 0
\(595\) −3.09524e20 −0.480637
\(596\) 6.82889e19 0.104714
\(597\) 0 0
\(598\) 5.79492e20 0.866539
\(599\) 1.05168e20 0.155304 0.0776521 0.996981i \(-0.475258\pi\)
0.0776521 + 0.996981i \(0.475258\pi\)
\(600\) 0 0
\(601\) 4.20944e20 0.606270 0.303135 0.952948i \(-0.401967\pi\)
0.303135 + 0.952948i \(0.401967\pi\)
\(602\) 1.16669e21 1.65951
\(603\) 0 0
\(604\) 1.04152e20 0.144508
\(605\) −2.97678e20 −0.407926
\(606\) 0 0
\(607\) −1.00492e21 −1.34344 −0.671720 0.740805i \(-0.734444\pi\)
−0.671720 + 0.740805i \(0.734444\pi\)
\(608\) 8.35638e19 0.110342
\(609\) 0 0
\(610\) 1.56868e20 0.202097
\(611\) 2.73581e20 0.348159
\(612\) 0 0
\(613\) 5.01545e20 0.622811 0.311406 0.950277i \(-0.399200\pi\)
0.311406 + 0.950277i \(0.399200\pi\)
\(614\) 1.42516e21 1.74824
\(615\) 0 0
\(616\) 2.93305e21 3.51127
\(617\) −1.10413e21 −1.30581 −0.652905 0.757440i \(-0.726450\pi\)
−0.652905 + 0.757440i \(0.726450\pi\)
\(618\) 0 0
\(619\) −6.37648e20 −0.736039 −0.368020 0.929818i \(-0.619964\pi\)
−0.368020 + 0.929818i \(0.619964\pi\)
\(620\) −3.32115e18 −0.00378748
\(621\) 0 0
\(622\) 1.29700e21 1.44382
\(623\) −1.71238e21 −1.88339
\(624\) 0 0
\(625\) 8.61965e20 0.925528
\(626\) −3.44503e20 −0.365498
\(627\) 0 0
\(628\) −7.49067e19 −0.0775931
\(629\) −8.03340e20 −0.822280
\(630\) 0 0
\(631\) −1.89099e21 −1.89003 −0.945015 0.327028i \(-0.893953\pi\)
−0.945015 + 0.327028i \(0.893953\pi\)
\(632\) −3.19576e20 −0.315643
\(633\) 0 0
\(634\) 7.34385e20 0.708360
\(635\) 7.57002e19 0.0721595
\(636\) 0 0
\(637\) 1.81704e21 1.69168
\(638\) −1.63363e21 −1.50314
\(639\) 0 0
\(640\) 1.35088e20 0.121413
\(641\) 8.20388e20 0.728759 0.364380 0.931251i \(-0.381281\pi\)
0.364380 + 0.931251i \(0.381281\pi\)
\(642\) 0 0
\(643\) −1.68828e21 −1.46508 −0.732541 0.680723i \(-0.761666\pi\)
−0.732541 + 0.680723i \(0.761666\pi\)
\(644\) −3.02747e20 −0.259679
\(645\) 0 0
\(646\) −8.36282e20 −0.700824
\(647\) 1.34343e21 1.11284 0.556419 0.830902i \(-0.312175\pi\)
0.556419 + 0.830902i \(0.312175\pi\)
\(648\) 0 0
\(649\) 2.31792e20 0.187613
\(650\) 9.14125e20 0.731401
\(651\) 0 0
\(652\) 1.89882e20 0.148466
\(653\) 2.18575e20 0.168948 0.0844738 0.996426i \(-0.473079\pi\)
0.0844738 + 0.996426i \(0.473079\pi\)
\(654\) 0 0
\(655\) 8.84662e19 0.0668294
\(656\) −7.57518e20 −0.565736
\(657\) 0 0
\(658\) 9.77615e20 0.713631
\(659\) 6.75320e19 0.0487382 0.0243691 0.999703i \(-0.492242\pi\)
0.0243691 + 0.999703i \(0.492242\pi\)
\(660\) 0 0
\(661\) −2.43099e20 −0.171503 −0.0857517 0.996317i \(-0.527329\pi\)
−0.0857517 + 0.996317i \(0.527329\pi\)
\(662\) 5.73902e20 0.400316
\(663\) 0 0
\(664\) −1.68950e21 −1.15212
\(665\) −1.80028e20 −0.121389
\(666\) 0 0
\(667\) 1.49060e21 0.982692
\(668\) −1.53453e20 −0.100035
\(669\) 0 0
\(670\) −2.09317e20 −0.133427
\(671\) −4.10383e21 −2.58685
\(672\) 0 0
\(673\) 2.42357e21 1.49397 0.746986 0.664840i \(-0.231500\pi\)
0.746986 + 0.664840i \(0.231500\pi\)
\(674\) 2.32025e21 1.41444
\(675\) 0 0
\(676\) 7.59383e19 0.0452752
\(677\) 9.73991e20 0.574302 0.287151 0.957885i \(-0.407292\pi\)
0.287151 + 0.957885i \(0.407292\pi\)
\(678\) 0 0
\(679\) −4.30611e21 −2.48349
\(680\) 5.03521e20 0.287211
\(681\) 0 0
\(682\) −5.94280e20 −0.331596
\(683\) 2.57604e21 1.42167 0.710833 0.703360i \(-0.248318\pi\)
0.710833 + 0.703360i \(0.248318\pi\)
\(684\) 0 0
\(685\) 1.43393e20 0.0774194
\(686\) 3.41037e21 1.82125
\(687\) 0 0
\(688\) −1.65183e21 −0.863081
\(689\) −6.21316e20 −0.321121
\(690\) 0 0
\(691\) −1.30645e21 −0.660704 −0.330352 0.943858i \(-0.607167\pi\)
−0.330352 + 0.943858i \(0.607167\pi\)
\(692\) 4.19447e20 0.209837
\(693\) 0 0
\(694\) −1.42252e21 −0.696405
\(695\) −1.39756e20 −0.0676836
\(696\) 0 0
\(697\) −2.40290e21 −1.13891
\(698\) 6.74911e20 0.316469
\(699\) 0 0
\(700\) −4.77572e20 −0.219181
\(701\) −3.27047e21 −1.48499 −0.742497 0.669849i \(-0.766359\pi\)
−0.742497 + 0.669849i \(0.766359\pi\)
\(702\) 0 0
\(703\) −4.67247e20 −0.207674
\(704\) −4.70139e21 −2.06743
\(705\) 0 0
\(706\) 1.30829e21 0.563207
\(707\) 4.10970e21 1.75051
\(708\) 0 0
\(709\) −1.81669e21 −0.757592 −0.378796 0.925480i \(-0.623662\pi\)
−0.378796 + 0.925480i \(0.623662\pi\)
\(710\) −3.04166e20 −0.125509
\(711\) 0 0
\(712\) 2.78563e21 1.12544
\(713\) 5.42248e20 0.216784
\(714\) 0 0
\(715\) 6.14020e20 0.240374
\(716\) 4.27613e20 0.165655
\(717\) 0 0
\(718\) −3.57623e21 −1.35672
\(719\) −2.05441e21 −0.771296 −0.385648 0.922646i \(-0.626022\pi\)
−0.385648 + 0.922646i \(0.626022\pi\)
\(720\) 0 0
\(721\) 2.68494e21 0.987235
\(722\) 2.08043e21 0.757050
\(723\) 0 0
\(724\) 2.53087e20 0.0902051
\(725\) 2.35136e21 0.829439
\(726\) 0 0
\(727\) 6.34657e20 0.219296 0.109648 0.993970i \(-0.465028\pi\)
0.109648 + 0.993970i \(0.465028\pi\)
\(728\) −4.35924e21 −1.49082
\(729\) 0 0
\(730\) −4.25029e20 −0.142396
\(731\) −5.23971e21 −1.73751
\(732\) 0 0
\(733\) 1.26674e21 0.411534 0.205767 0.978601i \(-0.434031\pi\)
0.205767 + 0.978601i \(0.434031\pi\)
\(734\) −3.44991e21 −1.10940
\(735\) 0 0
\(736\) 9.29282e20 0.292795
\(737\) 5.47596e21 1.70787
\(738\) 0 0
\(739\) 1.83101e21 0.559574 0.279787 0.960062i \(-0.409736\pi\)
0.279787 + 0.960062i \(0.409736\pi\)
\(740\) 3.18248e19 0.00962781
\(741\) 0 0
\(742\) −2.22021e21 −0.658210
\(743\) 4.76308e19 0.0139789 0.00698943 0.999976i \(-0.497775\pi\)
0.00698943 + 0.999976i \(0.497775\pi\)
\(744\) 0 0
\(745\) 4.51586e20 0.129888
\(746\) 1.84765e20 0.0526112
\(747\) 0 0
\(748\) −1.49014e21 −0.415877
\(749\) −5.56528e21 −1.53771
\(750\) 0 0
\(751\) −5.58937e21 −1.51378 −0.756891 0.653541i \(-0.773283\pi\)
−0.756891 + 0.653541i \(0.773283\pi\)
\(752\) −1.38414e21 −0.371146
\(753\) 0 0
\(754\) 2.42798e21 0.638205
\(755\) 6.88744e20 0.179248
\(756\) 0 0
\(757\) 7.22893e21 1.84440 0.922200 0.386714i \(-0.126390\pi\)
0.922200 + 0.386714i \(0.126390\pi\)
\(758\) 2.86886e21 0.724754
\(759\) 0 0
\(760\) 2.92863e20 0.0725375
\(761\) 3.85444e21 0.945313 0.472657 0.881247i \(-0.343295\pi\)
0.472657 + 0.881247i \(0.343295\pi\)
\(762\) 0 0
\(763\) 3.87761e21 0.932460
\(764\) 6.90805e20 0.164496
\(765\) 0 0
\(766\) 4.93980e21 1.15344
\(767\) −3.44499e20 −0.0796568
\(768\) 0 0
\(769\) 3.65675e21 0.829179 0.414589 0.910009i \(-0.363925\pi\)
0.414589 + 0.910009i \(0.363925\pi\)
\(770\) 2.19414e21 0.492701
\(771\) 0 0
\(772\) −6.25450e20 −0.137741
\(773\) 2.41516e21 0.526745 0.263372 0.964694i \(-0.415165\pi\)
0.263372 + 0.964694i \(0.415165\pi\)
\(774\) 0 0
\(775\) 8.55375e20 0.182976
\(776\) 7.00501e21 1.48404
\(777\) 0 0
\(778\) 5.26421e20 0.109392
\(779\) −1.39760e21 −0.287641
\(780\) 0 0
\(781\) 7.95732e21 1.60651
\(782\) −9.29998e21 −1.85965
\(783\) 0 0
\(784\) −9.19300e21 −1.80338
\(785\) −4.95348e20 −0.0962472
\(786\) 0 0
\(787\) 6.48388e21 1.23602 0.618009 0.786171i \(-0.287940\pi\)
0.618009 + 0.786171i \(0.287940\pi\)
\(788\) 2.08562e19 0.00393811
\(789\) 0 0
\(790\) −2.39066e20 −0.0442909
\(791\) 4.40947e21 0.809212
\(792\) 0 0
\(793\) 6.09931e21 1.09833
\(794\) −8.87818e21 −1.58369
\(795\) 0 0
\(796\) −7.73823e20 −0.135455
\(797\) 7.56562e21 1.31192 0.655959 0.754796i \(-0.272264\pi\)
0.655959 + 0.754796i \(0.272264\pi\)
\(798\) 0 0
\(799\) −4.39057e21 −0.747171
\(800\) 1.46590e21 0.247133
\(801\) 0 0
\(802\) −8.76425e21 −1.45013
\(803\) 1.11192e22 1.82267
\(804\) 0 0
\(805\) −2.00203e21 −0.322108
\(806\) 8.83247e20 0.140789
\(807\) 0 0
\(808\) −6.68549e21 −1.04604
\(809\) 1.66091e21 0.257473 0.128736 0.991679i \(-0.458908\pi\)
0.128736 + 0.991679i \(0.458908\pi\)
\(810\) 0 0
\(811\) −7.92902e21 −1.20660 −0.603300 0.797514i \(-0.706148\pi\)
−0.603300 + 0.797514i \(0.706148\pi\)
\(812\) −1.26846e21 −0.191253
\(813\) 0 0
\(814\) 5.69467e21 0.842919
\(815\) 1.25566e21 0.184158
\(816\) 0 0
\(817\) −3.04757e21 −0.438822
\(818\) 4.68811e21 0.668880
\(819\) 0 0
\(820\) 9.51921e19 0.0133351
\(821\) −6.66282e21 −0.924878 −0.462439 0.886651i \(-0.653026\pi\)
−0.462439 + 0.886651i \(0.653026\pi\)
\(822\) 0 0
\(823\) 6.96585e21 0.949457 0.474729 0.880132i \(-0.342546\pi\)
0.474729 + 0.880132i \(0.342546\pi\)
\(824\) −4.36776e21 −0.589935
\(825\) 0 0
\(826\) −1.23103e21 −0.163275
\(827\) −1.15750e22 −1.52136 −0.760678 0.649130i \(-0.775133\pi\)
−0.760678 + 0.649130i \(0.775133\pi\)
\(828\) 0 0
\(829\) 2.92212e21 0.377172 0.188586 0.982057i \(-0.439610\pi\)
0.188586 + 0.982057i \(0.439610\pi\)
\(830\) −1.26387e21 −0.161665
\(831\) 0 0
\(832\) 6.98742e21 0.877792
\(833\) −2.91608e22 −3.63046
\(834\) 0 0
\(835\) −1.01477e21 −0.124084
\(836\) −8.66711e20 −0.105033
\(837\) 0 0
\(838\) −2.41918e21 −0.287964
\(839\) 1.11314e22 1.31322 0.656608 0.754232i \(-0.271991\pi\)
0.656608 + 0.754232i \(0.271991\pi\)
\(840\) 0 0
\(841\) −2.38381e21 −0.276249
\(842\) 6.77982e20 0.0778713
\(843\) 0 0
\(844\) −1.24613e20 −0.0140603
\(845\) 5.02170e20 0.0561598
\(846\) 0 0
\(847\) −4.13593e22 −4.54410
\(848\) 3.14344e21 0.342323
\(849\) 0 0
\(850\) −1.46703e22 −1.56963
\(851\) −5.19607e21 −0.551066
\(852\) 0 0
\(853\) 1.58068e22 1.64712 0.823561 0.567228i \(-0.191984\pi\)
0.823561 + 0.567228i \(0.191984\pi\)
\(854\) 2.17952e22 2.25127
\(855\) 0 0
\(856\) 9.05338e21 0.918877
\(857\) 1.08467e22 1.09130 0.545648 0.838014i \(-0.316284\pi\)
0.545648 + 0.838014i \(0.316284\pi\)
\(858\) 0 0
\(859\) −2.89651e21 −0.286370 −0.143185 0.989696i \(-0.545734\pi\)
−0.143185 + 0.989696i \(0.545734\pi\)
\(860\) 2.07574e20 0.0203439
\(861\) 0 0
\(862\) −4.75853e21 −0.458319
\(863\) −9.65661e21 −0.922027 −0.461014 0.887393i \(-0.652514\pi\)
−0.461014 + 0.887393i \(0.652514\pi\)
\(864\) 0 0
\(865\) 2.77375e21 0.260283
\(866\) −9.28066e21 −0.863365
\(867\) 0 0
\(868\) −4.61440e20 −0.0421908
\(869\) 6.25422e21 0.566924
\(870\) 0 0
\(871\) −8.13861e21 −0.725127
\(872\) −6.30794e21 −0.557204
\(873\) 0 0
\(874\) −5.40914e21 −0.469670
\(875\) −6.39733e21 −0.550729
\(876\) 0 0
\(877\) 7.14527e21 0.604674 0.302337 0.953201i \(-0.402233\pi\)
0.302337 + 0.953201i \(0.402233\pi\)
\(878\) 9.17164e20 0.0769553
\(879\) 0 0
\(880\) −3.10652e21 −0.256245
\(881\) −3.76635e21 −0.308036 −0.154018 0.988068i \(-0.549221\pi\)
−0.154018 + 0.988068i \(0.549221\pi\)
\(882\) 0 0
\(883\) 3.49878e21 0.281327 0.140663 0.990057i \(-0.455076\pi\)
0.140663 + 0.990057i \(0.455076\pi\)
\(884\) 2.21472e21 0.176574
\(885\) 0 0
\(886\) 1.41680e22 1.11060
\(887\) 1.55181e22 1.20618 0.603089 0.797674i \(-0.293936\pi\)
0.603089 + 0.797674i \(0.293936\pi\)
\(888\) 0 0
\(889\) 1.05178e22 0.803824
\(890\) 2.08385e21 0.157922
\(891\) 0 0
\(892\) −4.51670e20 −0.0336577
\(893\) −2.55369e21 −0.188704
\(894\) 0 0
\(895\) 2.82775e21 0.205479
\(896\) 1.87691e22 1.35249
\(897\) 0 0
\(898\) 1.52219e22 1.07869
\(899\) 2.27193e21 0.159661
\(900\) 0 0
\(901\) 9.97120e21 0.689146
\(902\) 1.70335e22 1.16750
\(903\) 0 0
\(904\) −7.17314e21 −0.483555
\(905\) 1.67363e21 0.111891
\(906\) 0 0
\(907\) −1.55853e22 −1.02485 −0.512425 0.858732i \(-0.671253\pi\)
−0.512425 + 0.858732i \(0.671253\pi\)
\(908\) −2.71834e21 −0.177280
\(909\) 0 0
\(910\) −3.26103e21 −0.209191
\(911\) −1.12565e22 −0.716167 −0.358083 0.933690i \(-0.616570\pi\)
−0.358083 + 0.933690i \(0.616570\pi\)
\(912\) 0 0
\(913\) 3.30642e22 2.06932
\(914\) −1.37666e22 −0.854533
\(915\) 0 0
\(916\) 1.67977e21 0.102573
\(917\) 1.22915e22 0.744448
\(918\) 0 0
\(919\) −1.18424e22 −0.705624 −0.352812 0.935694i \(-0.614774\pi\)
−0.352812 + 0.935694i \(0.614774\pi\)
\(920\) 3.25682e21 0.192480
\(921\) 0 0
\(922\) 2.10429e22 1.22355
\(923\) −1.18265e22 −0.682094
\(924\) 0 0
\(925\) −8.19660e21 −0.465126
\(926\) −1.78062e21 −0.100228
\(927\) 0 0
\(928\) 3.89355e21 0.215643
\(929\) 1.03209e22 0.567020 0.283510 0.958969i \(-0.408501\pi\)
0.283510 + 0.958969i \(0.408501\pi\)
\(930\) 0 0
\(931\) −1.69608e22 −0.916903
\(932\) −2.62205e21 −0.140612
\(933\) 0 0
\(934\) 9.31430e21 0.491529
\(935\) −9.85410e21 −0.515858
\(936\) 0 0
\(937\) 2.45364e22 1.26405 0.632023 0.774949i \(-0.282225\pi\)
0.632023 + 0.774949i \(0.282225\pi\)
\(938\) −2.90825e22 −1.48631
\(939\) 0 0
\(940\) 1.73935e20 0.00874839
\(941\) 1.56936e22 0.783069 0.391534 0.920163i \(-0.371944\pi\)
0.391534 + 0.920163i \(0.371944\pi\)
\(942\) 0 0
\(943\) −1.55421e22 −0.763261
\(944\) 1.74293e21 0.0849162
\(945\) 0 0
\(946\) 3.71430e22 1.78112
\(947\) −3.40234e22 −1.61865 −0.809326 0.587360i \(-0.800167\pi\)
−0.809326 + 0.587360i \(0.800167\pi\)
\(948\) 0 0
\(949\) −1.65259e22 −0.773871
\(950\) −8.53271e21 −0.396424
\(951\) 0 0
\(952\) 6.99592e22 3.19940
\(953\) −1.40772e22 −0.638735 −0.319367 0.947631i \(-0.603470\pi\)
−0.319367 + 0.947631i \(0.603470\pi\)
\(954\) 0 0
\(955\) 4.56820e21 0.204042
\(956\) 1.01011e21 0.0447644
\(957\) 0 0
\(958\) −2.94038e22 −1.28281
\(959\) 1.99231e22 0.862416
\(960\) 0 0
\(961\) −2.26388e22 −0.964779
\(962\) −8.46368e21 −0.357887
\(963\) 0 0
\(964\) −8.56546e20 −0.0356593
\(965\) −4.13602e21 −0.170855
\(966\) 0 0
\(967\) −1.37191e22 −0.557989 −0.278995 0.960293i \(-0.590001\pi\)
−0.278995 + 0.960293i \(0.590001\pi\)
\(968\) 6.72817e22 2.71539
\(969\) 0 0
\(970\) 5.24026e21 0.208240
\(971\) 2.19551e22 0.865749 0.432874 0.901454i \(-0.357499\pi\)
0.432874 + 0.901454i \(0.357499\pi\)
\(972\) 0 0
\(973\) −1.94176e22 −0.753964
\(974\) −4.26560e22 −1.64357
\(975\) 0 0
\(976\) −3.08584e22 −1.17084
\(977\) −3.50788e22 −1.32079 −0.660397 0.750917i \(-0.729612\pi\)
−0.660397 + 0.750917i \(0.729612\pi\)
\(978\) 0 0
\(979\) −5.45158e22 −2.02140
\(980\) 1.15522e21 0.0425079
\(981\) 0 0
\(982\) −6.64506e21 −0.240803
\(983\) 3.62351e22 1.30310 0.651551 0.758605i \(-0.274119\pi\)
0.651551 + 0.758605i \(0.274119\pi\)
\(984\) 0 0
\(985\) 1.37919e20 0.00488486
\(986\) −3.89655e22 −1.36963
\(987\) 0 0
\(988\) 1.28814e21 0.0445951
\(989\) −3.38909e22 −1.16442
\(990\) 0 0
\(991\) 4.96008e22 1.67856 0.839279 0.543701i \(-0.182977\pi\)
0.839279 + 0.543701i \(0.182977\pi\)
\(992\) 1.41639e21 0.0475713
\(993\) 0 0
\(994\) −4.22609e22 −1.39811
\(995\) −5.11719e21 −0.168019
\(996\) 0 0
\(997\) 2.15470e21 0.0696904 0.0348452 0.999393i \(-0.488906\pi\)
0.0348452 + 0.999393i \(0.488906\pi\)
\(998\) 3.60565e22 1.15746
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.16.a.d.1.2 6
3.2 odd 2 inner 27.16.a.d.1.5 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.16.a.d.1.2 6 1.1 even 1 trivial
27.16.a.d.1.5 yes 6 3.2 odd 2 inner