Properties

Label 27.16.a.c.1.5
Level $27$
Weight $16$
Character 27.1
Self dual yes
Analytic conductor $38.527$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [27,16,Mod(1,27)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("27.1"); S:= CuspForms(chi, 16); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 16, names="a")
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 27.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,273] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.5272463770\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 3470x^{3} - 72162x^{2} - 343807x + 342288 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{14}\cdot 5\cdot 71 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.841091\) of defining polynomial
Character \(\chi\) \(=\) 27.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+342.118 q^{2} +84276.6 q^{4} -267526. q^{5} +2.26179e6 q^{7} +1.76220e7 q^{8} -9.15253e7 q^{10} +6.31585e7 q^{11} +2.11169e7 q^{13} +7.73799e8 q^{14} +3.26722e9 q^{16} +2.97747e9 q^{17} -8.21682e8 q^{19} -2.25462e10 q^{20} +2.16077e10 q^{22} +7.25431e9 q^{23} +4.10525e10 q^{25} +7.22448e9 q^{26} +1.90616e11 q^{28} +1.08710e11 q^{29} -2.13478e11 q^{31} +5.40338e11 q^{32} +1.01865e12 q^{34} -6.05087e11 q^{35} -6.01338e11 q^{37} -2.81112e11 q^{38} -4.71434e12 q^{40} -2.96711e11 q^{41} -7.47193e11 q^{43} +5.32278e12 q^{44} +2.48183e12 q^{46} +2.99462e12 q^{47} +3.68134e11 q^{49} +1.40448e13 q^{50} +1.77966e12 q^{52} -6.43802e12 q^{53} -1.68965e13 q^{55} +3.98573e13 q^{56} +3.71918e13 q^{58} -1.71672e13 q^{59} +1.10169e13 q^{61} -7.30348e13 q^{62} +7.77987e13 q^{64} -5.64933e12 q^{65} +8.02005e13 q^{67} +2.50931e14 q^{68} -2.07011e14 q^{70} +4.45943e13 q^{71} -1.21952e14 q^{73} -2.05728e14 q^{74} -6.92485e13 q^{76} +1.42851e14 q^{77} -2.36661e13 q^{79} -8.74067e14 q^{80} -1.01510e14 q^{82} +1.36525e14 q^{83} -7.96551e14 q^{85} -2.55628e14 q^{86} +1.11298e15 q^{88} -7.14258e14 q^{89} +4.77621e13 q^{91} +6.11368e14 q^{92} +1.02451e15 q^{94} +2.19821e14 q^{95} -4.61589e14 q^{97} +1.25945e14 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 273 q^{2} + 95405 q^{4} - 16725 q^{5} + 2153539 q^{7} + 13315731 q^{8} - 30467925 q^{10} + 115943493 q^{11} + 65408428 q^{13} + 885109227 q^{14} + 1597063649 q^{16} + 1975444272 q^{17} - 263500334 q^{19}+ \cdots - 930960542438550 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 342.118 1.88995 0.944976 0.327140i \(-0.106085\pi\)
0.944976 + 0.327140i \(0.106085\pi\)
\(3\) 0 0
\(4\) 84276.6 2.57192
\(5\) −267526. −1.53141 −0.765704 0.643194i \(-0.777609\pi\)
−0.765704 + 0.643194i \(0.777609\pi\)
\(6\) 0 0
\(7\) 2.26179e6 1.03805 0.519024 0.854760i \(-0.326296\pi\)
0.519024 + 0.854760i \(0.326296\pi\)
\(8\) 1.76220e7 2.97085
\(9\) 0 0
\(10\) −9.15253e7 −2.89429
\(11\) 6.31585e7 0.977208 0.488604 0.872506i \(-0.337506\pi\)
0.488604 + 0.872506i \(0.337506\pi\)
\(12\) 0 0
\(13\) 2.11169e7 0.0933374 0.0466687 0.998910i \(-0.485139\pi\)
0.0466687 + 0.998910i \(0.485139\pi\)
\(14\) 7.73799e8 1.96186
\(15\) 0 0
\(16\) 3.26722e9 3.04284
\(17\) 2.97747e9 1.75987 0.879935 0.475093i \(-0.157586\pi\)
0.879935 + 0.475093i \(0.157586\pi\)
\(18\) 0 0
\(19\) −8.21682e8 −0.210888 −0.105444 0.994425i \(-0.533626\pi\)
−0.105444 + 0.994425i \(0.533626\pi\)
\(20\) −2.25462e10 −3.93865
\(21\) 0 0
\(22\) 2.16077e10 1.84688
\(23\) 7.25431e9 0.444260 0.222130 0.975017i \(-0.428699\pi\)
0.222130 + 0.975017i \(0.428699\pi\)
\(24\) 0 0
\(25\) 4.10525e10 1.34521
\(26\) 7.22448e9 0.176403
\(27\) 0 0
\(28\) 1.90616e11 2.66977
\(29\) 1.08710e11 1.17027 0.585135 0.810936i \(-0.301041\pi\)
0.585135 + 0.810936i \(0.301041\pi\)
\(30\) 0 0
\(31\) −2.13478e11 −1.39361 −0.696805 0.717260i \(-0.745396\pi\)
−0.696805 + 0.717260i \(0.745396\pi\)
\(32\) 5.40338e11 2.77997
\(33\) 0 0
\(34\) 1.01865e12 3.32607
\(35\) −6.05087e11 −1.58967
\(36\) 0 0
\(37\) −6.01338e11 −1.04137 −0.520686 0.853748i \(-0.674324\pi\)
−0.520686 + 0.853748i \(0.674324\pi\)
\(38\) −2.81112e11 −0.398568
\(39\) 0 0
\(40\) −4.71434e12 −4.54958
\(41\) −2.96711e11 −0.237933 −0.118966 0.992898i \(-0.537958\pi\)
−0.118966 + 0.992898i \(0.537958\pi\)
\(42\) 0 0
\(43\) −7.47193e11 −0.419198 −0.209599 0.977787i \(-0.567216\pi\)
−0.209599 + 0.977787i \(0.567216\pi\)
\(44\) 5.32278e12 2.51330
\(45\) 0 0
\(46\) 2.48183e12 0.839630
\(47\) 2.99462e12 0.862200 0.431100 0.902304i \(-0.358126\pi\)
0.431100 + 0.902304i \(0.358126\pi\)
\(48\) 0 0
\(49\) 3.68134e11 0.0775418
\(50\) 1.40448e13 2.54238
\(51\) 0 0
\(52\) 1.77966e12 0.240056
\(53\) −6.43802e12 −0.752806 −0.376403 0.926456i \(-0.622839\pi\)
−0.376403 + 0.926456i \(0.622839\pi\)
\(54\) 0 0
\(55\) −1.68965e13 −1.49650
\(56\) 3.98573e13 3.08388
\(57\) 0 0
\(58\) 3.71918e13 2.21175
\(59\) −1.71672e13 −0.898069 −0.449034 0.893514i \(-0.648232\pi\)
−0.449034 + 0.893514i \(0.648232\pi\)
\(60\) 0 0
\(61\) 1.10169e13 0.448833 0.224417 0.974493i \(-0.427952\pi\)
0.224417 + 0.974493i \(0.427952\pi\)
\(62\) −7.30348e13 −2.63386
\(63\) 0 0
\(64\) 7.77987e13 2.21117
\(65\) −5.64933e12 −0.142938
\(66\) 0 0
\(67\) 8.02005e13 1.61665 0.808325 0.588736i \(-0.200374\pi\)
0.808325 + 0.588736i \(0.200374\pi\)
\(68\) 2.50931e14 4.52624
\(69\) 0 0
\(70\) −2.07011e14 −3.00440
\(71\) 4.45943e13 0.581891 0.290946 0.956740i \(-0.406030\pi\)
0.290946 + 0.956740i \(0.406030\pi\)
\(72\) 0 0
\(73\) −1.21952e14 −1.29202 −0.646010 0.763329i \(-0.723563\pi\)
−0.646010 + 0.763329i \(0.723563\pi\)
\(74\) −2.05728e14 −1.96814
\(75\) 0 0
\(76\) −6.92485e13 −0.542386
\(77\) 1.42851e14 1.01439
\(78\) 0 0
\(79\) −2.36661e13 −0.138651 −0.0693256 0.997594i \(-0.522085\pi\)
−0.0693256 + 0.997594i \(0.522085\pi\)
\(80\) −8.74067e14 −4.65983
\(81\) 0 0
\(82\) −1.01510e14 −0.449682
\(83\) 1.36525e14 0.552240 0.276120 0.961123i \(-0.410951\pi\)
0.276120 + 0.961123i \(0.410951\pi\)
\(84\) 0 0
\(85\) −7.96551e14 −2.69508
\(86\) −2.55628e14 −0.792264
\(87\) 0 0
\(88\) 1.11298e15 2.90313
\(89\) −7.14258e14 −1.71171 −0.855854 0.517217i \(-0.826968\pi\)
−0.855854 + 0.517217i \(0.826968\pi\)
\(90\) 0 0
\(91\) 4.77621e13 0.0968886
\(92\) 6.11368e14 1.14260
\(93\) 0 0
\(94\) 1.02451e15 1.62952
\(95\) 2.19821e14 0.322955
\(96\) 0 0
\(97\) −4.61589e14 −0.580053 −0.290027 0.957019i \(-0.593664\pi\)
−0.290027 + 0.957019i \(0.593664\pi\)
\(98\) 1.25945e14 0.146550
\(99\) 0 0
\(100\) 3.45976e15 3.45976
\(101\) 4.74964e14 0.440809 0.220405 0.975409i \(-0.429262\pi\)
0.220405 + 0.975409i \(0.429262\pi\)
\(102\) 0 0
\(103\) −2.42447e15 −1.94240 −0.971198 0.238272i \(-0.923419\pi\)
−0.971198 + 0.238272i \(0.923419\pi\)
\(104\) 3.72123e14 0.277291
\(105\) 0 0
\(106\) −2.20256e15 −1.42277
\(107\) 3.30056e14 0.198705 0.0993526 0.995052i \(-0.468323\pi\)
0.0993526 + 0.995052i \(0.468323\pi\)
\(108\) 0 0
\(109\) −1.53691e15 −0.805285 −0.402643 0.915357i \(-0.631908\pi\)
−0.402643 + 0.915357i \(0.631908\pi\)
\(110\) −5.78061e15 −2.82832
\(111\) 0 0
\(112\) 7.38977e15 3.15861
\(113\) −1.04775e15 −0.418956 −0.209478 0.977813i \(-0.567176\pi\)
−0.209478 + 0.977813i \(0.567176\pi\)
\(114\) 0 0
\(115\) −1.94072e15 −0.680343
\(116\) 9.16174e15 3.00984
\(117\) 0 0
\(118\) −5.87321e15 −1.69731
\(119\) 6.73442e15 1.82683
\(120\) 0 0
\(121\) −1.88249e14 −0.0450653
\(122\) 3.76907e15 0.848274
\(123\) 0 0
\(124\) −1.79912e16 −3.58425
\(125\) −2.81836e15 −0.528655
\(126\) 0 0
\(127\) 5.91825e14 0.0985520 0.0492760 0.998785i \(-0.484309\pi\)
0.0492760 + 0.998785i \(0.484309\pi\)
\(128\) 8.91054e15 1.39904
\(129\) 0 0
\(130\) −1.93274e15 −0.270145
\(131\) −5.91456e15 −0.780526 −0.390263 0.920703i \(-0.627616\pi\)
−0.390263 + 0.920703i \(0.627616\pi\)
\(132\) 0 0
\(133\) −1.85847e15 −0.218912
\(134\) 2.74380e16 3.05539
\(135\) 0 0
\(136\) 5.24690e16 5.22831
\(137\) −9.76125e15 −0.920664 −0.460332 0.887747i \(-0.652270\pi\)
−0.460332 + 0.887747i \(0.652270\pi\)
\(138\) 0 0
\(139\) 1.45594e16 1.23177 0.615887 0.787834i \(-0.288798\pi\)
0.615887 + 0.787834i \(0.288798\pi\)
\(140\) −5.09947e16 −4.08851
\(141\) 0 0
\(142\) 1.52565e16 1.09975
\(143\) 1.33371e15 0.0912100
\(144\) 0 0
\(145\) −2.90828e16 −1.79216
\(146\) −4.17221e16 −2.44185
\(147\) 0 0
\(148\) −5.06787e16 −2.67832
\(149\) 3.05473e16 1.53488 0.767442 0.641119i \(-0.221529\pi\)
0.767442 + 0.641119i \(0.221529\pi\)
\(150\) 0 0
\(151\) 3.84044e16 1.74604 0.873019 0.487686i \(-0.162159\pi\)
0.873019 + 0.487686i \(0.162159\pi\)
\(152\) −1.44797e16 −0.626515
\(153\) 0 0
\(154\) 4.88720e16 1.91714
\(155\) 5.71110e16 2.13419
\(156\) 0 0
\(157\) −2.70042e15 −0.0916607 −0.0458304 0.998949i \(-0.514593\pi\)
−0.0458304 + 0.998949i \(0.514593\pi\)
\(158\) −8.09660e15 −0.262044
\(159\) 0 0
\(160\) −1.44554e17 −4.25727
\(161\) 1.64077e16 0.461163
\(162\) 0 0
\(163\) 1.64078e16 0.420381 0.210191 0.977660i \(-0.432592\pi\)
0.210191 + 0.977660i \(0.432592\pi\)
\(164\) −2.50058e16 −0.611944
\(165\) 0 0
\(166\) 4.67077e16 1.04371
\(167\) −8.89147e15 −0.189933 −0.0949664 0.995480i \(-0.530274\pi\)
−0.0949664 + 0.995480i \(0.530274\pi\)
\(168\) 0 0
\(169\) −5.07400e16 −0.991288
\(170\) −2.72514e17 −5.09357
\(171\) 0 0
\(172\) −6.29708e16 −1.07814
\(173\) −2.94391e16 −0.482591 −0.241295 0.970452i \(-0.577572\pi\)
−0.241295 + 0.970452i \(0.577572\pi\)
\(174\) 0 0
\(175\) 9.28522e16 1.39639
\(176\) 2.06353e17 2.97349
\(177\) 0 0
\(178\) −2.44360e17 −3.23505
\(179\) −2.47532e16 −0.314220 −0.157110 0.987581i \(-0.550218\pi\)
−0.157110 + 0.987581i \(0.550218\pi\)
\(180\) 0 0
\(181\) 1.40133e17 1.63663 0.818317 0.574767i \(-0.194907\pi\)
0.818317 + 0.574767i \(0.194907\pi\)
\(182\) 1.63403e16 0.183115
\(183\) 0 0
\(184\) 1.27835e17 1.31983
\(185\) 1.60873e17 1.59476
\(186\) 0 0
\(187\) 1.88053e17 1.71976
\(188\) 2.52377e17 2.21751
\(189\) 0 0
\(190\) 7.52047e16 0.610370
\(191\) −1.10161e17 −0.859563 −0.429782 0.902933i \(-0.641409\pi\)
−0.429782 + 0.902933i \(0.641409\pi\)
\(192\) 0 0
\(193\) −1.39680e17 −1.00799 −0.503993 0.863708i \(-0.668136\pi\)
−0.503993 + 0.863708i \(0.668136\pi\)
\(194\) −1.57918e17 −1.09627
\(195\) 0 0
\(196\) 3.10251e16 0.199431
\(197\) 2.11422e17 1.30814 0.654068 0.756435i \(-0.273061\pi\)
0.654068 + 0.756435i \(0.273061\pi\)
\(198\) 0 0
\(199\) 1.36285e17 0.781720 0.390860 0.920450i \(-0.372178\pi\)
0.390860 + 0.920450i \(0.372178\pi\)
\(200\) 7.23427e17 3.99641
\(201\) 0 0
\(202\) 1.62494e17 0.833108
\(203\) 2.45880e17 1.21480
\(204\) 0 0
\(205\) 7.93778e16 0.364372
\(206\) −8.29455e17 −3.67104
\(207\) 0 0
\(208\) 6.89938e16 0.284011
\(209\) −5.18962e16 −0.206081
\(210\) 0 0
\(211\) −1.97728e17 −0.731055 −0.365528 0.930801i \(-0.619111\pi\)
−0.365528 + 0.930801i \(0.619111\pi\)
\(212\) −5.42574e17 −1.93615
\(213\) 0 0
\(214\) 1.12918e17 0.375543
\(215\) 1.99893e17 0.641963
\(216\) 0 0
\(217\) −4.82844e17 −1.44663
\(218\) −5.25804e17 −1.52195
\(219\) 0 0
\(220\) −1.42398e18 −3.84888
\(221\) 6.28751e16 0.164262
\(222\) 0 0
\(223\) −4.17003e17 −1.01825 −0.509123 0.860694i \(-0.670030\pi\)
−0.509123 + 0.860694i \(0.670030\pi\)
\(224\) 1.22213e18 2.88574
\(225\) 0 0
\(226\) −3.58453e17 −0.791806
\(227\) −1.68451e17 −0.359980 −0.179990 0.983668i \(-0.557607\pi\)
−0.179990 + 0.983668i \(0.557607\pi\)
\(228\) 0 0
\(229\) 3.24883e16 0.0650071 0.0325036 0.999472i \(-0.489652\pi\)
0.0325036 + 0.999472i \(0.489652\pi\)
\(230\) −6.63953e17 −1.28582
\(231\) 0 0
\(232\) 1.91569e18 3.47669
\(233\) 7.09468e17 1.24670 0.623352 0.781941i \(-0.285770\pi\)
0.623352 + 0.781941i \(0.285770\pi\)
\(234\) 0 0
\(235\) −8.01139e17 −1.32038
\(236\) −1.44679e18 −2.30976
\(237\) 0 0
\(238\) 2.30396e18 3.45262
\(239\) 8.34668e17 1.21208 0.606038 0.795436i \(-0.292758\pi\)
0.606038 + 0.795436i \(0.292758\pi\)
\(240\) 0 0
\(241\) −3.88898e17 −0.530527 −0.265264 0.964176i \(-0.585459\pi\)
−0.265264 + 0.964176i \(0.585459\pi\)
\(242\) −6.44032e16 −0.0851711
\(243\) 0 0
\(244\) 9.28466e17 1.15436
\(245\) −9.84854e16 −0.118748
\(246\) 0 0
\(247\) −1.73514e16 −0.0196837
\(248\) −3.76192e18 −4.14020
\(249\) 0 0
\(250\) −9.64213e17 −0.999132
\(251\) −4.39686e17 −0.442171 −0.221085 0.975254i \(-0.570960\pi\)
−0.221085 + 0.975254i \(0.570960\pi\)
\(252\) 0 0
\(253\) 4.58171e17 0.434134
\(254\) 2.02474e17 0.186259
\(255\) 0 0
\(256\) 4.99146e17 0.432940
\(257\) 1.31961e18 1.11160 0.555798 0.831318i \(-0.312413\pi\)
0.555798 + 0.831318i \(0.312413\pi\)
\(258\) 0 0
\(259\) −1.36010e18 −1.08099
\(260\) −4.76106e17 −0.367624
\(261\) 0 0
\(262\) −2.02347e18 −1.47516
\(263\) 1.49133e17 0.105659 0.0528295 0.998604i \(-0.483176\pi\)
0.0528295 + 0.998604i \(0.483176\pi\)
\(264\) 0 0
\(265\) 1.72234e18 1.15285
\(266\) −6.35816e17 −0.413732
\(267\) 0 0
\(268\) 6.75902e18 4.15789
\(269\) −2.00604e18 −1.20004 −0.600021 0.799984i \(-0.704841\pi\)
−0.600021 + 0.799984i \(0.704841\pi\)
\(270\) 0 0
\(271\) −4.00215e17 −0.226477 −0.113238 0.993568i \(-0.536122\pi\)
−0.113238 + 0.993568i \(0.536122\pi\)
\(272\) 9.72807e18 5.35500
\(273\) 0 0
\(274\) −3.33950e18 −1.74001
\(275\) 2.59282e18 1.31455
\(276\) 0 0
\(277\) −1.13848e17 −0.0546671 −0.0273335 0.999626i \(-0.508702\pi\)
−0.0273335 + 0.999626i \(0.508702\pi\)
\(278\) 4.98102e18 2.32799
\(279\) 0 0
\(280\) −1.06628e19 −4.72267
\(281\) −4.35169e18 −1.87655 −0.938277 0.345885i \(-0.887579\pi\)
−0.938277 + 0.345885i \(0.887579\pi\)
\(282\) 0 0
\(283\) −2.59033e18 −1.05915 −0.529574 0.848264i \(-0.677648\pi\)
−0.529574 + 0.848264i \(0.677648\pi\)
\(284\) 3.75825e18 1.49658
\(285\) 0 0
\(286\) 4.56288e17 0.172383
\(287\) −6.71098e17 −0.246986
\(288\) 0 0
\(289\) 6.00292e18 2.09714
\(290\) −9.94976e18 −3.38710
\(291\) 0 0
\(292\) −1.02777e19 −3.32297
\(293\) 2.81651e18 0.887574 0.443787 0.896132i \(-0.353635\pi\)
0.443787 + 0.896132i \(0.353635\pi\)
\(294\) 0 0
\(295\) 4.59267e18 1.37531
\(296\) −1.05968e19 −3.09376
\(297\) 0 0
\(298\) 1.04508e19 2.90085
\(299\) 1.53189e17 0.0414661
\(300\) 0 0
\(301\) −1.68999e18 −0.435147
\(302\) 1.31388e19 3.29993
\(303\) 0 0
\(304\) −2.68462e18 −0.641698
\(305\) −2.94730e18 −0.687347
\(306\) 0 0
\(307\) −2.47472e18 −0.549526 −0.274763 0.961512i \(-0.588599\pi\)
−0.274763 + 0.961512i \(0.588599\pi\)
\(308\) 1.20390e19 2.60892
\(309\) 0 0
\(310\) 1.95387e19 4.03351
\(311\) −1.67434e18 −0.337396 −0.168698 0.985668i \(-0.553956\pi\)
−0.168698 + 0.985668i \(0.553956\pi\)
\(312\) 0 0
\(313\) −4.86543e18 −0.934413 −0.467206 0.884148i \(-0.654739\pi\)
−0.467206 + 0.884148i \(0.654739\pi\)
\(314\) −9.23860e17 −0.173234
\(315\) 0 0
\(316\) −1.99450e18 −0.356600
\(317\) 2.16540e18 0.378088 0.189044 0.981969i \(-0.439461\pi\)
0.189044 + 0.981969i \(0.439461\pi\)
\(318\) 0 0
\(319\) 6.86599e18 1.14360
\(320\) −2.08132e19 −3.38621
\(321\) 0 0
\(322\) 5.61337e18 0.871575
\(323\) −2.44653e18 −0.371135
\(324\) 0 0
\(325\) 8.66903e17 0.125558
\(326\) 5.61340e18 0.794501
\(327\) 0 0
\(328\) −5.22864e18 −0.706862
\(329\) 6.77321e18 0.895004
\(330\) 0 0
\(331\) 9.68114e18 1.22241 0.611204 0.791473i \(-0.290685\pi\)
0.611204 + 0.791473i \(0.290685\pi\)
\(332\) 1.15059e19 1.42031
\(333\) 0 0
\(334\) −3.04193e18 −0.358964
\(335\) −2.14557e19 −2.47575
\(336\) 0 0
\(337\) 1.55152e19 1.71211 0.856057 0.516881i \(-0.172907\pi\)
0.856057 + 0.516881i \(0.172907\pi\)
\(338\) −1.73590e19 −1.87349
\(339\) 0 0
\(340\) −6.71306e19 −6.93152
\(341\) −1.34830e19 −1.36185
\(342\) 0 0
\(343\) −9.90535e18 −0.957555
\(344\) −1.31670e19 −1.24537
\(345\) 0 0
\(346\) −1.00716e19 −0.912074
\(347\) 3.82882e18 0.339308 0.169654 0.985504i \(-0.445735\pi\)
0.169654 + 0.985504i \(0.445735\pi\)
\(348\) 0 0
\(349\) 1.06883e19 0.907227 0.453614 0.891198i \(-0.350135\pi\)
0.453614 + 0.891198i \(0.350135\pi\)
\(350\) 3.17664e19 2.63911
\(351\) 0 0
\(352\) 3.41269e19 2.71661
\(353\) −1.41220e19 −1.10049 −0.550246 0.835002i \(-0.685466\pi\)
−0.550246 + 0.835002i \(0.685466\pi\)
\(354\) 0 0
\(355\) −1.19301e19 −0.891112
\(356\) −6.01952e19 −4.40237
\(357\) 0 0
\(358\) −8.46852e18 −0.593861
\(359\) 1.73731e19 1.19308 0.596539 0.802584i \(-0.296542\pi\)
0.596539 + 0.802584i \(0.296542\pi\)
\(360\) 0 0
\(361\) −1.45060e19 −0.955526
\(362\) 4.79420e19 3.09316
\(363\) 0 0
\(364\) 4.02523e18 0.249190
\(365\) 3.26254e19 1.97861
\(366\) 0 0
\(367\) 3.08931e18 0.179832 0.0899158 0.995949i \(-0.471340\pi\)
0.0899158 + 0.995949i \(0.471340\pi\)
\(368\) 2.37014e19 1.35181
\(369\) 0 0
\(370\) 5.50377e19 3.01403
\(371\) −1.45614e19 −0.781448
\(372\) 0 0
\(373\) −2.56873e19 −1.32404 −0.662022 0.749485i \(-0.730301\pi\)
−0.662022 + 0.749485i \(0.730301\pi\)
\(374\) 6.43362e19 3.25026
\(375\) 0 0
\(376\) 5.27712e19 2.56146
\(377\) 2.29563e18 0.109230
\(378\) 0 0
\(379\) 1.09687e19 0.501603 0.250801 0.968039i \(-0.419306\pi\)
0.250801 + 0.968039i \(0.419306\pi\)
\(380\) 1.85258e19 0.830614
\(381\) 0 0
\(382\) −3.76881e19 −1.62453
\(383\) −4.05439e19 −1.71370 −0.856849 0.515567i \(-0.827581\pi\)
−0.856849 + 0.515567i \(0.827581\pi\)
\(384\) 0 0
\(385\) −3.82164e19 −1.55344
\(386\) −4.77871e19 −1.90505
\(387\) 0 0
\(388\) −3.89012e19 −1.49185
\(389\) −3.73547e19 −1.40515 −0.702576 0.711608i \(-0.747967\pi\)
−0.702576 + 0.711608i \(0.747967\pi\)
\(390\) 0 0
\(391\) 2.15995e19 0.781840
\(392\) 6.48726e18 0.230365
\(393\) 0 0
\(394\) 7.23312e19 2.47231
\(395\) 6.33130e18 0.212332
\(396\) 0 0
\(397\) −1.08495e19 −0.350333 −0.175166 0.984539i \(-0.556046\pi\)
−0.175166 + 0.984539i \(0.556046\pi\)
\(398\) 4.66256e19 1.47741
\(399\) 0 0
\(400\) 1.34128e20 4.09325
\(401\) 7.51940e18 0.225217 0.112608 0.993639i \(-0.464079\pi\)
0.112608 + 0.993639i \(0.464079\pi\)
\(402\) 0 0
\(403\) −4.50801e18 −0.130076
\(404\) 4.00283e19 1.13372
\(405\) 0 0
\(406\) 8.41200e19 2.29590
\(407\) −3.79796e19 −1.01764
\(408\) 0 0
\(409\) −5.13896e19 −1.32724 −0.663621 0.748069i \(-0.730981\pi\)
−0.663621 + 0.748069i \(0.730981\pi\)
\(410\) 2.71566e19 0.688646
\(411\) 0 0
\(412\) −2.04326e20 −4.99568
\(413\) −3.88286e19 −0.932238
\(414\) 0 0
\(415\) −3.65241e19 −0.845704
\(416\) 1.14103e19 0.259475
\(417\) 0 0
\(418\) −1.77546e19 −0.389484
\(419\) 3.43832e19 0.740867 0.370434 0.928859i \(-0.379209\pi\)
0.370434 + 0.928859i \(0.379209\pi\)
\(420\) 0 0
\(421\) −6.51594e19 −1.35476 −0.677378 0.735635i \(-0.736884\pi\)
−0.677378 + 0.735635i \(0.736884\pi\)
\(422\) −6.76463e19 −1.38166
\(423\) 0 0
\(424\) −1.13451e20 −2.23647
\(425\) 1.22233e20 2.36739
\(426\) 0 0
\(427\) 2.49179e19 0.465910
\(428\) 2.78160e19 0.511053
\(429\) 0 0
\(430\) 6.83871e19 1.21328
\(431\) 6.34723e19 1.10664 0.553318 0.832970i \(-0.313361\pi\)
0.553318 + 0.832970i \(0.313361\pi\)
\(432\) 0 0
\(433\) −2.16773e19 −0.365044 −0.182522 0.983202i \(-0.558426\pi\)
−0.182522 + 0.983202i \(0.558426\pi\)
\(434\) −1.65189e20 −2.73407
\(435\) 0 0
\(436\) −1.29525e20 −2.07113
\(437\) −5.96073e18 −0.0936891
\(438\) 0 0
\(439\) 1.00725e20 1.52986 0.764931 0.644113i \(-0.222773\pi\)
0.764931 + 0.644113i \(0.222773\pi\)
\(440\) −2.97751e20 −4.44588
\(441\) 0 0
\(442\) 2.15107e19 0.310447
\(443\) 1.00834e20 1.43079 0.715397 0.698718i \(-0.246246\pi\)
0.715397 + 0.698718i \(0.246246\pi\)
\(444\) 0 0
\(445\) 1.91082e20 2.62132
\(446\) −1.42664e20 −1.92444
\(447\) 0 0
\(448\) 1.75964e20 2.29530
\(449\) −1.32180e20 −1.69558 −0.847791 0.530331i \(-0.822068\pi\)
−0.847791 + 0.530331i \(0.822068\pi\)
\(450\) 0 0
\(451\) −1.87398e19 −0.232510
\(452\) −8.83006e19 −1.07752
\(453\) 0 0
\(454\) −5.76300e19 −0.680346
\(455\) −1.27776e19 −0.148376
\(456\) 0 0
\(457\) 4.41888e19 0.496525 0.248263 0.968693i \(-0.420140\pi\)
0.248263 + 0.968693i \(0.420140\pi\)
\(458\) 1.11148e19 0.122860
\(459\) 0 0
\(460\) −1.63557e20 −1.74979
\(461\) 1.25702e20 1.32308 0.661539 0.749911i \(-0.269904\pi\)
0.661539 + 0.749911i \(0.269904\pi\)
\(462\) 0 0
\(463\) 2.69447e19 0.274547 0.137273 0.990533i \(-0.456166\pi\)
0.137273 + 0.990533i \(0.456166\pi\)
\(464\) 3.55181e20 3.56094
\(465\) 0 0
\(466\) 2.42722e20 2.35621
\(467\) 1.11580e20 1.06588 0.532942 0.846152i \(-0.321086\pi\)
0.532942 + 0.846152i \(0.321086\pi\)
\(468\) 0 0
\(469\) 1.81397e20 1.67816
\(470\) −2.74084e20 −2.49545
\(471\) 0 0
\(472\) −3.02521e20 −2.66802
\(473\) −4.71916e19 −0.409644
\(474\) 0 0
\(475\) −3.37321e19 −0.283688
\(476\) 5.67554e20 4.69845
\(477\) 0 0
\(478\) 2.85555e20 2.29076
\(479\) −1.46973e20 −1.16071 −0.580353 0.814365i \(-0.697085\pi\)
−0.580353 + 0.814365i \(0.697085\pi\)
\(480\) 0 0
\(481\) −1.26984e19 −0.0971990
\(482\) −1.33049e20 −1.00267
\(483\) 0 0
\(484\) −1.58650e19 −0.115904
\(485\) 1.23487e20 0.888298
\(486\) 0 0
\(487\) −2.67872e20 −1.86836 −0.934178 0.356806i \(-0.883866\pi\)
−0.934178 + 0.356806i \(0.883866\pi\)
\(488\) 1.94140e20 1.33342
\(489\) 0 0
\(490\) −3.36936e19 −0.224428
\(491\) −2.42923e20 −1.59352 −0.796759 0.604298i \(-0.793454\pi\)
−0.796759 + 0.604298i \(0.793454\pi\)
\(492\) 0 0
\(493\) 3.23682e20 2.05952
\(494\) −5.93622e18 −0.0372013
\(495\) 0 0
\(496\) −6.97482e20 −4.24053
\(497\) 1.00863e20 0.604030
\(498\) 0 0
\(499\) −1.84613e19 −0.107277 −0.0536387 0.998560i \(-0.517082\pi\)
−0.0536387 + 0.998560i \(0.517082\pi\)
\(500\) −2.37522e20 −1.35966
\(501\) 0 0
\(502\) −1.50425e20 −0.835682
\(503\) 6.79894e19 0.372119 0.186059 0.982538i \(-0.440428\pi\)
0.186059 + 0.982538i \(0.440428\pi\)
\(504\) 0 0
\(505\) −1.27065e20 −0.675058
\(506\) 1.56749e20 0.820493
\(507\) 0 0
\(508\) 4.98770e19 0.253468
\(509\) 2.02967e20 1.01635 0.508175 0.861254i \(-0.330320\pi\)
0.508175 + 0.861254i \(0.330320\pi\)
\(510\) 0 0
\(511\) −2.75831e20 −1.34118
\(512\) −1.21214e20 −0.580801
\(513\) 0 0
\(514\) 4.51461e20 2.10086
\(515\) 6.48609e20 2.97460
\(516\) 0 0
\(517\) 1.89136e20 0.842549
\(518\) −4.65315e20 −2.04302
\(519\) 0 0
\(520\) −9.95524e19 −0.424646
\(521\) 6.67657e18 0.0280718 0.0140359 0.999901i \(-0.495532\pi\)
0.0140359 + 0.999901i \(0.495532\pi\)
\(522\) 0 0
\(523\) 3.75218e20 1.53293 0.766463 0.642289i \(-0.222015\pi\)
0.766463 + 0.642289i \(0.222015\pi\)
\(524\) −4.98458e20 −2.00745
\(525\) 0 0
\(526\) 5.10211e19 0.199690
\(527\) −6.35626e20 −2.45257
\(528\) 0 0
\(529\) −2.14010e20 −0.802633
\(530\) 5.89242e20 2.17884
\(531\) 0 0
\(532\) −1.56626e20 −0.563022
\(533\) −6.26562e18 −0.0222080
\(534\) 0 0
\(535\) −8.82985e19 −0.304299
\(536\) 1.41329e21 4.80282
\(537\) 0 0
\(538\) −6.86300e20 −2.26802
\(539\) 2.32508e19 0.0757744
\(540\) 0 0
\(541\) −4.47985e20 −1.41999 −0.709993 0.704209i \(-0.751302\pi\)
−0.709993 + 0.704209i \(0.751302\pi\)
\(542\) −1.36921e20 −0.428030
\(543\) 0 0
\(544\) 1.60884e21 4.89239
\(545\) 4.11163e20 1.23322
\(546\) 0 0
\(547\) 6.31361e19 0.184235 0.0921177 0.995748i \(-0.470636\pi\)
0.0921177 + 0.995748i \(0.470636\pi\)
\(548\) −8.22645e20 −2.36787
\(549\) 0 0
\(550\) 8.87048e20 2.48443
\(551\) −8.93253e19 −0.246796
\(552\) 0 0
\(553\) −5.35278e19 −0.143927
\(554\) −3.89493e19 −0.103318
\(555\) 0 0
\(556\) 1.22701e21 3.16802
\(557\) −1.38388e20 −0.352521 −0.176260 0.984344i \(-0.556400\pi\)
−0.176260 + 0.984344i \(0.556400\pi\)
\(558\) 0 0
\(559\) −1.57784e19 −0.0391269
\(560\) −1.97696e21 −4.83712
\(561\) 0 0
\(562\) −1.48879e21 −3.54660
\(563\) −8.29296e20 −1.94938 −0.974690 0.223559i \(-0.928233\pi\)
−0.974690 + 0.223559i \(0.928233\pi\)
\(564\) 0 0
\(565\) 2.80300e20 0.641592
\(566\) −8.86197e20 −2.00174
\(567\) 0 0
\(568\) 7.85841e20 1.72871
\(569\) 5.56188e19 0.120748 0.0603739 0.998176i \(-0.480771\pi\)
0.0603739 + 0.998176i \(0.480771\pi\)
\(570\) 0 0
\(571\) 3.85265e20 0.814682 0.407341 0.913276i \(-0.366456\pi\)
0.407341 + 0.913276i \(0.366456\pi\)
\(572\) 1.12401e20 0.234585
\(573\) 0 0
\(574\) −2.29594e20 −0.466791
\(575\) 2.97808e20 0.597622
\(576\) 0 0
\(577\) −8.58771e20 −1.67903 −0.839515 0.543336i \(-0.817161\pi\)
−0.839515 + 0.543336i \(0.817161\pi\)
\(578\) 2.05370e21 3.96350
\(579\) 0 0
\(580\) −2.45100e21 −4.60929
\(581\) 3.08792e20 0.573251
\(582\) 0 0
\(583\) −4.06616e20 −0.735648
\(584\) −2.14905e21 −3.83839
\(585\) 0 0
\(586\) 9.63580e20 1.67747
\(587\) −5.92204e20 −1.01786 −0.508928 0.860809i \(-0.669958\pi\)
−0.508928 + 0.860809i \(0.669958\pi\)
\(588\) 0 0
\(589\) 1.75411e20 0.293896
\(590\) 1.57124e21 2.59927
\(591\) 0 0
\(592\) −1.96471e21 −3.16873
\(593\) 4.12318e20 0.656631 0.328316 0.944568i \(-0.393519\pi\)
0.328316 + 0.944568i \(0.393519\pi\)
\(594\) 0 0
\(595\) −1.80163e21 −2.79762
\(596\) 2.57442e21 3.94759
\(597\) 0 0
\(598\) 5.24086e19 0.0783689
\(599\) −2.48379e19 −0.0366787 −0.0183394 0.999832i \(-0.505838\pi\)
−0.0183394 + 0.999832i \(0.505838\pi\)
\(600\) 0 0
\(601\) 2.06154e20 0.296915 0.148458 0.988919i \(-0.452569\pi\)
0.148458 + 0.988919i \(0.452569\pi\)
\(602\) −5.78177e20 −0.822407
\(603\) 0 0
\(604\) 3.23659e21 4.49066
\(605\) 5.03614e19 0.0690133
\(606\) 0 0
\(607\) 9.06191e20 1.21145 0.605724 0.795675i \(-0.292884\pi\)
0.605724 + 0.795675i \(0.292884\pi\)
\(608\) −4.43986e20 −0.586262
\(609\) 0 0
\(610\) −1.00832e21 −1.29905
\(611\) 6.32373e19 0.0804756
\(612\) 0 0
\(613\) −5.48960e20 −0.681690 −0.340845 0.940120i \(-0.610713\pi\)
−0.340845 + 0.940120i \(0.610713\pi\)
\(614\) −8.46646e20 −1.03858
\(615\) 0 0
\(616\) 2.51733e21 3.01359
\(617\) −3.07414e20 −0.363567 −0.181784 0.983339i \(-0.558187\pi\)
−0.181784 + 0.983339i \(0.558187\pi\)
\(618\) 0 0
\(619\) 2.80264e20 0.323510 0.161755 0.986831i \(-0.448285\pi\)
0.161755 + 0.986831i \(0.448285\pi\)
\(620\) 4.81312e21 5.48895
\(621\) 0 0
\(622\) −5.72820e20 −0.637662
\(623\) −1.61550e21 −1.77683
\(624\) 0 0
\(625\) −4.98837e20 −0.535623
\(626\) −1.66455e21 −1.76599
\(627\) 0 0
\(628\) −2.27582e20 −0.235744
\(629\) −1.79047e21 −1.83268
\(630\) 0 0
\(631\) 1.45234e21 1.45161 0.725803 0.687903i \(-0.241468\pi\)
0.725803 + 0.687903i \(0.241468\pi\)
\(632\) −4.17044e20 −0.411912
\(633\) 0 0
\(634\) 7.40820e20 0.714568
\(635\) −1.58329e20 −0.150923
\(636\) 0 0
\(637\) 7.77387e18 0.00723755
\(638\) 2.34898e21 2.16134
\(639\) 0 0
\(640\) −2.38380e21 −2.14250
\(641\) 1.55508e20 0.138139 0.0690696 0.997612i \(-0.477997\pi\)
0.0690696 + 0.997612i \(0.477997\pi\)
\(642\) 0 0
\(643\) 1.36048e21 1.18062 0.590310 0.807176i \(-0.299005\pi\)
0.590310 + 0.807176i \(0.299005\pi\)
\(644\) 1.38279e21 1.18607
\(645\) 0 0
\(646\) −8.37003e20 −0.701428
\(647\) −4.49528e20 −0.372370 −0.186185 0.982515i \(-0.559612\pi\)
−0.186185 + 0.982515i \(0.559612\pi\)
\(648\) 0 0
\(649\) −1.08426e21 −0.877600
\(650\) 2.96583e20 0.237299
\(651\) 0 0
\(652\) 1.38279e21 1.08119
\(653\) 2.16710e20 0.167506 0.0837531 0.996487i \(-0.473309\pi\)
0.0837531 + 0.996487i \(0.473309\pi\)
\(654\) 0 0
\(655\) 1.58230e21 1.19530
\(656\) −9.69421e20 −0.723991
\(657\) 0 0
\(658\) 2.31723e21 1.69152
\(659\) 5.81906e20 0.419964 0.209982 0.977705i \(-0.432659\pi\)
0.209982 + 0.977705i \(0.432659\pi\)
\(660\) 0 0
\(661\) 1.80020e21 1.27002 0.635009 0.772505i \(-0.280996\pi\)
0.635009 + 0.772505i \(0.280996\pi\)
\(662\) 3.31209e21 2.31029
\(663\) 0 0
\(664\) 2.40585e21 1.64062
\(665\) 4.97189e20 0.335243
\(666\) 0 0
\(667\) 7.88619e20 0.519904
\(668\) −7.49343e20 −0.488491
\(669\) 0 0
\(670\) −7.34038e21 −4.67905
\(671\) 6.95811e20 0.438603
\(672\) 0 0
\(673\) −2.41671e20 −0.148975 −0.0744873 0.997222i \(-0.523732\pi\)
−0.0744873 + 0.997222i \(0.523732\pi\)
\(674\) 5.30802e21 3.23581
\(675\) 0 0
\(676\) −4.27619e21 −2.54951
\(677\) 2.85210e21 1.68170 0.840851 0.541267i \(-0.182055\pi\)
0.840851 + 0.541267i \(0.182055\pi\)
\(678\) 0 0
\(679\) −1.04402e21 −0.602122
\(680\) −1.40368e22 −8.00667
\(681\) 0 0
\(682\) −4.61277e21 −2.57382
\(683\) −2.69275e21 −1.48607 −0.743037 0.669250i \(-0.766615\pi\)
−0.743037 + 0.669250i \(0.766615\pi\)
\(684\) 0 0
\(685\) 2.61139e21 1.40991
\(686\) −3.38880e21 −1.80973
\(687\) 0 0
\(688\) −2.44125e21 −1.27555
\(689\) −1.35951e20 −0.0702650
\(690\) 0 0
\(691\) 3.91482e20 0.197982 0.0989911 0.995088i \(-0.468438\pi\)
0.0989911 + 0.995088i \(0.468438\pi\)
\(692\) −2.48103e21 −1.24118
\(693\) 0 0
\(694\) 1.30991e21 0.641276
\(695\) −3.89500e21 −1.88635
\(696\) 0 0
\(697\) −8.83448e20 −0.418731
\(698\) 3.65664e21 1.71462
\(699\) 0 0
\(700\) 7.82526e21 3.59140
\(701\) 7.18120e20 0.326071 0.163035 0.986620i \(-0.447872\pi\)
0.163035 + 0.986620i \(0.447872\pi\)
\(702\) 0 0
\(703\) 4.94108e20 0.219613
\(704\) 4.91365e21 2.16077
\(705\) 0 0
\(706\) −4.83140e21 −2.07988
\(707\) 1.07427e21 0.457581
\(708\) 0 0
\(709\) 4.44129e21 1.85209 0.926047 0.377409i \(-0.123185\pi\)
0.926047 + 0.377409i \(0.123185\pi\)
\(710\) −4.08151e21 −1.68416
\(711\) 0 0
\(712\) −1.25866e22 −5.08522
\(713\) −1.54864e21 −0.619125
\(714\) 0 0
\(715\) −3.56803e20 −0.139680
\(716\) −2.08612e21 −0.808149
\(717\) 0 0
\(718\) 5.94364e21 2.25486
\(719\) 1.63687e21 0.614536 0.307268 0.951623i \(-0.400585\pi\)
0.307268 + 0.951623i \(0.400585\pi\)
\(720\) 0 0
\(721\) −5.48365e21 −2.01630
\(722\) −4.96275e21 −1.80590
\(723\) 0 0
\(724\) 1.18099e22 4.20929
\(725\) 4.46283e21 1.57426
\(726\) 0 0
\(727\) −3.83870e21 −1.32641 −0.663203 0.748440i \(-0.730803\pi\)
−0.663203 + 0.748440i \(0.730803\pi\)
\(728\) 8.41663e20 0.287841
\(729\) 0 0
\(730\) 1.11617e22 3.73947
\(731\) −2.22475e21 −0.737734
\(732\) 0 0
\(733\) 4.44283e21 1.44338 0.721689 0.692217i \(-0.243366\pi\)
0.721689 + 0.692217i \(0.243366\pi\)
\(734\) 1.05691e21 0.339873
\(735\) 0 0
\(736\) 3.91978e21 1.23503
\(737\) 5.06535e21 1.57980
\(738\) 0 0
\(739\) −6.10620e21 −1.86611 −0.933056 0.359732i \(-0.882868\pi\)
−0.933056 + 0.359732i \(0.882868\pi\)
\(740\) 1.35579e22 4.10160
\(741\) 0 0
\(742\) −4.98173e21 −1.47690
\(743\) 3.14913e21 0.924220 0.462110 0.886823i \(-0.347093\pi\)
0.462110 + 0.886823i \(0.347093\pi\)
\(744\) 0 0
\(745\) −8.17218e21 −2.35053
\(746\) −8.78808e21 −2.50238
\(747\) 0 0
\(748\) 1.58484e22 4.42308
\(749\) 7.46517e20 0.206265
\(750\) 0 0
\(751\) 4.62975e21 1.25389 0.626944 0.779065i \(-0.284306\pi\)
0.626944 + 0.779065i \(0.284306\pi\)
\(752\) 9.78410e21 2.62354
\(753\) 0 0
\(754\) 7.85376e20 0.206439
\(755\) −1.02742e22 −2.67389
\(756\) 0 0
\(757\) 2.12624e21 0.542493 0.271246 0.962510i \(-0.412564\pi\)
0.271246 + 0.962510i \(0.412564\pi\)
\(758\) 3.75258e21 0.948005
\(759\) 0 0
\(760\) 3.87369e21 0.959450
\(761\) 5.97478e21 1.46533 0.732667 0.680587i \(-0.238275\pi\)
0.732667 + 0.680587i \(0.238275\pi\)
\(762\) 0 0
\(763\) −3.47617e21 −0.835924
\(764\) −9.28399e21 −2.21072
\(765\) 0 0
\(766\) −1.38708e22 −3.23881
\(767\) −3.62519e20 −0.0838234
\(768\) 0 0
\(769\) 1.20804e21 0.273926 0.136963 0.990576i \(-0.456266\pi\)
0.136963 + 0.990576i \(0.456266\pi\)
\(770\) −1.30745e22 −2.93593
\(771\) 0 0
\(772\) −1.17718e22 −2.59246
\(773\) 5.61608e21 1.22486 0.612430 0.790524i \(-0.290192\pi\)
0.612430 + 0.790524i \(0.290192\pi\)
\(774\) 0 0
\(775\) −8.76383e21 −1.87470
\(776\) −8.13413e21 −1.72325
\(777\) 0 0
\(778\) −1.27797e22 −2.65567
\(779\) 2.43802e20 0.0501772
\(780\) 0 0
\(781\) 2.81651e21 0.568628
\(782\) 7.38957e21 1.47764
\(783\) 0 0
\(784\) 1.20278e21 0.235947
\(785\) 7.22431e20 0.140370
\(786\) 0 0
\(787\) −3.95370e21 −0.753692 −0.376846 0.926276i \(-0.622991\pi\)
−0.376846 + 0.926276i \(0.622991\pi\)
\(788\) 1.78179e22 3.36442
\(789\) 0 0
\(790\) 2.16605e21 0.401296
\(791\) −2.36979e21 −0.434896
\(792\) 0 0
\(793\) 2.32643e20 0.0418930
\(794\) −3.71181e21 −0.662112
\(795\) 0 0
\(796\) 1.14857e22 2.01052
\(797\) 2.43101e21 0.421550 0.210775 0.977535i \(-0.432401\pi\)
0.210775 + 0.977535i \(0.432401\pi\)
\(798\) 0 0
\(799\) 8.91640e21 1.51736
\(800\) 2.21822e22 3.73964
\(801\) 0 0
\(802\) 2.57252e21 0.425649
\(803\) −7.70234e21 −1.26257
\(804\) 0 0
\(805\) −4.38949e21 −0.706228
\(806\) −1.54227e21 −0.245837
\(807\) 0 0
\(808\) 8.36982e21 1.30958
\(809\) 8.93451e21 1.38502 0.692511 0.721407i \(-0.256504\pi\)
0.692511 + 0.721407i \(0.256504\pi\)
\(810\) 0 0
\(811\) 4.25917e21 0.648140 0.324070 0.946033i \(-0.394949\pi\)
0.324070 + 0.946033i \(0.394949\pi\)
\(812\) 2.07219e22 3.12435
\(813\) 0 0
\(814\) −1.29935e22 −1.92328
\(815\) −4.38951e21 −0.643775
\(816\) 0 0
\(817\) 6.13955e20 0.0884038
\(818\) −1.75813e22 −2.50842
\(819\) 0 0
\(820\) 6.68969e21 0.937135
\(821\) −2.11501e21 −0.293589 −0.146794 0.989167i \(-0.546896\pi\)
−0.146794 + 0.989167i \(0.546896\pi\)
\(822\) 0 0
\(823\) −9.06755e21 −1.23592 −0.617961 0.786209i \(-0.712041\pi\)
−0.617961 + 0.786209i \(0.712041\pi\)
\(824\) −4.27240e22 −5.77056
\(825\) 0 0
\(826\) −1.32840e22 −1.76188
\(827\) 1.78356e21 0.234421 0.117210 0.993107i \(-0.462605\pi\)
0.117210 + 0.993107i \(0.462605\pi\)
\(828\) 0 0
\(829\) 9.78631e21 1.26316 0.631582 0.775309i \(-0.282406\pi\)
0.631582 + 0.775309i \(0.282406\pi\)
\(830\) −1.24955e22 −1.59834
\(831\) 0 0
\(832\) 1.64287e21 0.206385
\(833\) 1.09611e21 0.136463
\(834\) 0 0
\(835\) 2.37870e21 0.290865
\(836\) −4.37363e21 −0.530024
\(837\) 0 0
\(838\) 1.17631e22 1.40020
\(839\) 1.42376e22 1.67966 0.839831 0.542848i \(-0.182654\pi\)
0.839831 + 0.542848i \(0.182654\pi\)
\(840\) 0 0
\(841\) 3.18876e21 0.369532
\(842\) −2.22922e22 −2.56042
\(843\) 0 0
\(844\) −1.66639e22 −1.88021
\(845\) 1.35743e22 1.51807
\(846\) 0 0
\(847\) −4.25779e20 −0.0467799
\(848\) −2.10344e22 −2.29067
\(849\) 0 0
\(850\) 4.18180e22 4.47426
\(851\) −4.36229e21 −0.462640
\(852\) 0 0
\(853\) −3.21853e21 −0.335382 −0.167691 0.985840i \(-0.553631\pi\)
−0.167691 + 0.985840i \(0.553631\pi\)
\(854\) 8.52485e21 0.880548
\(855\) 0 0
\(856\) 5.81624e21 0.590323
\(857\) 6.54708e21 0.658706 0.329353 0.944207i \(-0.393169\pi\)
0.329353 + 0.944207i \(0.393169\pi\)
\(858\) 0 0
\(859\) 6.45559e21 0.638244 0.319122 0.947714i \(-0.396612\pi\)
0.319122 + 0.947714i \(0.396612\pi\)
\(860\) 1.68463e22 1.65108
\(861\) 0 0
\(862\) 2.17150e22 2.09149
\(863\) −8.19889e21 −0.782842 −0.391421 0.920212i \(-0.628016\pi\)
−0.391421 + 0.920212i \(0.628016\pi\)
\(864\) 0 0
\(865\) 7.87573e21 0.739043
\(866\) −7.41619e21 −0.689916
\(867\) 0 0
\(868\) −4.06924e22 −3.72062
\(869\) −1.49472e21 −0.135491
\(870\) 0 0
\(871\) 1.69359e21 0.150894
\(872\) −2.70834e22 −2.39238
\(873\) 0 0
\(874\) −2.03927e21 −0.177068
\(875\) −6.37455e21 −0.548769
\(876\) 0 0
\(877\) −6.54760e21 −0.554096 −0.277048 0.960856i \(-0.589356\pi\)
−0.277048 + 0.960856i \(0.589356\pi\)
\(878\) 3.44597e22 2.89136
\(879\) 0 0
\(880\) −5.52048e22 −4.55362
\(881\) 1.09863e22 0.898527 0.449263 0.893399i \(-0.351687\pi\)
0.449263 + 0.893399i \(0.351687\pi\)
\(882\) 0 0
\(883\) 7.48310e21 0.601695 0.300847 0.953672i \(-0.402731\pi\)
0.300847 + 0.953672i \(0.402731\pi\)
\(884\) 5.29890e21 0.422468
\(885\) 0 0
\(886\) 3.44970e22 2.70413
\(887\) −5.52940e21 −0.429784 −0.214892 0.976638i \(-0.568940\pi\)
−0.214892 + 0.976638i \(0.568940\pi\)
\(888\) 0 0
\(889\) 1.33858e21 0.102302
\(890\) 6.53727e22 4.95417
\(891\) 0 0
\(892\) −3.51436e22 −2.61884
\(893\) −2.46063e21 −0.181828
\(894\) 0 0
\(895\) 6.62213e21 0.481199
\(896\) 2.01538e22 1.45227
\(897\) 0 0
\(898\) −4.52212e22 −3.20457
\(899\) −2.32073e22 −1.63090
\(900\) 0 0
\(901\) −1.91690e22 −1.32484
\(902\) −6.41123e21 −0.439432
\(903\) 0 0
\(904\) −1.84634e22 −1.24465
\(905\) −3.74892e22 −2.50635
\(906\) 0 0
\(907\) 2.91236e22 1.91510 0.957549 0.288270i \(-0.0930801\pi\)
0.957549 + 0.288270i \(0.0930801\pi\)
\(908\) −1.41964e22 −0.925840
\(909\) 0 0
\(910\) −4.37144e21 −0.280423
\(911\) 9.29157e21 0.591155 0.295577 0.955319i \(-0.404488\pi\)
0.295577 + 0.955319i \(0.404488\pi\)
\(912\) 0 0
\(913\) 8.62274e21 0.539653
\(914\) 1.51178e22 0.938408
\(915\) 0 0
\(916\) 2.73800e21 0.167193
\(917\) −1.33775e22 −0.810223
\(918\) 0 0
\(919\) 7.85960e21 0.468311 0.234155 0.972199i \(-0.424768\pi\)
0.234155 + 0.972199i \(0.424768\pi\)
\(920\) −3.41993e22 −2.02120
\(921\) 0 0
\(922\) 4.30049e22 2.50055
\(923\) 9.41695e20 0.0543122
\(924\) 0 0
\(925\) −2.46864e22 −1.40086
\(926\) 9.21828e21 0.518880
\(927\) 0 0
\(928\) 5.87403e22 3.25332
\(929\) 2.86294e22 1.57288 0.786439 0.617668i \(-0.211922\pi\)
0.786439 + 0.617668i \(0.211922\pi\)
\(930\) 0 0
\(931\) −3.02489e20 −0.0163526
\(932\) 5.97915e22 3.20642
\(933\) 0 0
\(934\) 3.81735e22 2.01447
\(935\) −5.03090e22 −2.63365
\(936\) 0 0
\(937\) −1.16685e22 −0.601132 −0.300566 0.953761i \(-0.597176\pi\)
−0.300566 + 0.953761i \(0.597176\pi\)
\(938\) 6.20590e22 3.17164
\(939\) 0 0
\(940\) −6.75172e22 −3.39591
\(941\) 1.21221e22 0.604859 0.302430 0.953172i \(-0.402202\pi\)
0.302430 + 0.953172i \(0.402202\pi\)
\(942\) 0 0
\(943\) −2.15243e21 −0.105704
\(944\) −5.60891e22 −2.73268
\(945\) 0 0
\(946\) −1.61451e22 −0.774206
\(947\) 2.10131e21 0.0999692 0.0499846 0.998750i \(-0.484083\pi\)
0.0499846 + 0.998750i \(0.484083\pi\)
\(948\) 0 0
\(949\) −2.57526e21 −0.120594
\(950\) −1.15403e22 −0.536157
\(951\) 0 0
\(952\) 1.18674e23 5.42723
\(953\) 3.46487e22 1.57214 0.786069 0.618139i \(-0.212113\pi\)
0.786069 + 0.618139i \(0.212113\pi\)
\(954\) 0 0
\(955\) 2.94709e22 1.31634
\(956\) 7.03430e22 3.11736
\(957\) 0 0
\(958\) −5.02822e22 −2.19368
\(959\) −2.20779e22 −0.955693
\(960\) 0 0
\(961\) 2.21078e22 0.942150
\(962\) −4.34435e21 −0.183701
\(963\) 0 0
\(964\) −3.27750e22 −1.36447
\(965\) 3.73680e22 1.54364
\(966\) 0 0
\(967\) 1.55510e22 0.632498 0.316249 0.948676i \(-0.397576\pi\)
0.316249 + 0.948676i \(0.397576\pi\)
\(968\) −3.31732e21 −0.133882
\(969\) 0 0
\(970\) 4.22471e22 1.67884
\(971\) 2.17968e22 0.859505 0.429752 0.902947i \(-0.358601\pi\)
0.429752 + 0.902947i \(0.358601\pi\)
\(972\) 0 0
\(973\) 3.29302e22 1.27864
\(974\) −9.16437e22 −3.53110
\(975\) 0 0
\(976\) 3.59946e22 1.36573
\(977\) −3.15962e22 −1.18967 −0.594833 0.803849i \(-0.702782\pi\)
−0.594833 + 0.803849i \(0.702782\pi\)
\(978\) 0 0
\(979\) −4.51115e22 −1.67270
\(980\) −8.30001e21 −0.305410
\(981\) 0 0
\(982\) −8.31081e22 −3.01167
\(983\) −3.14050e22 −1.12940 −0.564700 0.825296i \(-0.691008\pi\)
−0.564700 + 0.825296i \(0.691008\pi\)
\(984\) 0 0
\(985\) −5.65608e22 −2.00329
\(986\) 1.10737e23 3.89240
\(987\) 0 0
\(988\) −1.46232e21 −0.0506249
\(989\) −5.42037e21 −0.186233
\(990\) 0 0
\(991\) −2.12502e22 −0.719137 −0.359568 0.933119i \(-0.617076\pi\)
−0.359568 + 0.933119i \(0.617076\pi\)
\(992\) −1.15350e23 −3.87420
\(993\) 0 0
\(994\) 3.45070e22 1.14159
\(995\) −3.64599e22 −1.19713
\(996\) 0 0
\(997\) −3.98547e22 −1.28904 −0.644518 0.764589i \(-0.722942\pi\)
−0.644518 + 0.764589i \(0.722942\pi\)
\(998\) −6.31594e21 −0.202749
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.16.a.c.1.5 yes 5
3.2 odd 2 27.16.a.b.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.16.a.b.1.1 5 3.2 odd 2
27.16.a.c.1.5 yes 5 1.1 even 1 trivial