Properties

Label 27.16.a.c.1.4
Level $27$
Weight $16$
Character 27.1
Self dual yes
Analytic conductor $38.527$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [27,16,Mod(1,27)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("27.1"); S:= CuspForms(chi, 16); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 16, names="a")
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 27.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,273] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.5272463770\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 3470x^{3} - 72162x^{2} - 343807x + 342288 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{14}\cdot 5\cdot 71 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(68.7647\) of defining polynomial
Character \(\chi\) \(=\) 27.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+225.004 q^{2} +17858.9 q^{4} +338163. q^{5} +626121. q^{7} -3.35462e6 q^{8} +7.60882e7 q^{10} +5.98997e7 q^{11} +1.31085e8 q^{13} +1.40880e8 q^{14} -1.34000e9 q^{16} -9.05163e8 q^{17} +3.66261e9 q^{19} +6.03922e9 q^{20} +1.34777e10 q^{22} -2.86522e10 q^{23} +8.38370e10 q^{25} +2.94948e10 q^{26} +1.11818e10 q^{28} +1.63064e11 q^{29} -1.17149e10 q^{31} -1.91582e11 q^{32} -2.03665e11 q^{34} +2.11731e11 q^{35} +6.27662e11 q^{37} +8.24102e11 q^{38} -1.13441e12 q^{40} +5.13971e11 q^{41} +3.28498e11 q^{43} +1.06974e12 q^{44} -6.44687e12 q^{46} +1.43735e12 q^{47} -4.35553e12 q^{49} +1.88637e13 q^{50} +2.34104e12 q^{52} -2.56371e12 q^{53} +2.02559e13 q^{55} -2.10040e12 q^{56} +3.66900e13 q^{58} +2.85622e13 q^{59} -1.68793e13 q^{61} -2.63589e12 q^{62} +8.02439e11 q^{64} +4.43283e13 q^{65} -4.75907e13 q^{67} -1.61652e13 q^{68} +4.76404e13 q^{70} -1.04997e14 q^{71} -8.48244e13 q^{73} +1.41227e14 q^{74} +6.54101e13 q^{76} +3.75044e13 q^{77} -2.07977e14 q^{79} -4.53140e14 q^{80} +1.15646e14 q^{82} -3.60410e14 q^{83} -3.06093e14 q^{85} +7.39134e13 q^{86} -2.00940e14 q^{88} -3.31163e14 q^{89} +8.20753e13 q^{91} -5.11696e14 q^{92} +3.23410e14 q^{94} +1.23856e15 q^{95} +1.15557e15 q^{97} -9.80013e14 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 273 q^{2} + 95405 q^{4} - 16725 q^{5} + 2153539 q^{7} + 13315731 q^{8} - 30467925 q^{10} + 115943493 q^{11} + 65408428 q^{13} + 885109227 q^{14} + 1597063649 q^{16} + 1975444272 q^{17} - 263500334 q^{19}+ \cdots - 930960542438550 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 225.004 1.24298 0.621492 0.783420i \(-0.286527\pi\)
0.621492 + 0.783420i \(0.286527\pi\)
\(3\) 0 0
\(4\) 17858.9 0.545010
\(5\) 338163. 1.93576 0.967880 0.251411i \(-0.0808947\pi\)
0.967880 + 0.251411i \(0.0808947\pi\)
\(6\) 0 0
\(7\) 626121. 0.287358 0.143679 0.989624i \(-0.454107\pi\)
0.143679 + 0.989624i \(0.454107\pi\)
\(8\) −3.35462e6 −0.565546
\(9\) 0 0
\(10\) 7.60882e7 2.40612
\(11\) 5.98997e7 0.926785 0.463393 0.886153i \(-0.346632\pi\)
0.463393 + 0.886153i \(0.346632\pi\)
\(12\) 0 0
\(13\) 1.31085e8 0.579401 0.289700 0.957117i \(-0.406444\pi\)
0.289700 + 0.957117i \(0.406444\pi\)
\(14\) 1.40880e8 0.357181
\(15\) 0 0
\(16\) −1.34000e9 −1.24797
\(17\) −9.05163e8 −0.535007 −0.267504 0.963557i \(-0.586199\pi\)
−0.267504 + 0.963557i \(0.586199\pi\)
\(18\) 0 0
\(19\) 3.66261e9 0.940023 0.470012 0.882660i \(-0.344250\pi\)
0.470012 + 0.882660i \(0.344250\pi\)
\(20\) 6.03922e9 1.05501
\(21\) 0 0
\(22\) 1.34777e10 1.15198
\(23\) −2.86522e10 −1.75469 −0.877343 0.479863i \(-0.840686\pi\)
−0.877343 + 0.479863i \(0.840686\pi\)
\(24\) 0 0
\(25\) 8.38370e10 2.74717
\(26\) 2.94948e10 0.720186
\(27\) 0 0
\(28\) 1.11818e10 0.156613
\(29\) 1.63064e11 1.75538 0.877692 0.479225i \(-0.159082\pi\)
0.877692 + 0.479225i \(0.159082\pi\)
\(30\) 0 0
\(31\) −1.17149e10 −0.0764759 −0.0382380 0.999269i \(-0.512174\pi\)
−0.0382380 + 0.999269i \(0.512174\pi\)
\(32\) −1.91582e11 −0.985666
\(33\) 0 0
\(34\) −2.03665e11 −0.665006
\(35\) 2.11731e11 0.556256
\(36\) 0 0
\(37\) 6.27662e11 1.08696 0.543479 0.839423i \(-0.317107\pi\)
0.543479 + 0.839423i \(0.317107\pi\)
\(38\) 8.24102e11 1.16843
\(39\) 0 0
\(40\) −1.13441e12 −1.09476
\(41\) 5.13971e11 0.412154 0.206077 0.978536i \(-0.433930\pi\)
0.206077 + 0.978536i \(0.433930\pi\)
\(42\) 0 0
\(43\) 3.28498e11 0.184297 0.0921487 0.995745i \(-0.470626\pi\)
0.0921487 + 0.995745i \(0.470626\pi\)
\(44\) 1.06974e12 0.505107
\(45\) 0 0
\(46\) −6.44687e12 −2.18105
\(47\) 1.43735e12 0.413837 0.206918 0.978358i \(-0.433657\pi\)
0.206918 + 0.978358i \(0.433657\pi\)
\(48\) 0 0
\(49\) −4.35553e12 −0.917426
\(50\) 1.88637e13 3.41469
\(51\) 0 0
\(52\) 2.34104e12 0.315779
\(53\) −2.56371e12 −0.299778 −0.149889 0.988703i \(-0.547892\pi\)
−0.149889 + 0.988703i \(0.547892\pi\)
\(54\) 0 0
\(55\) 2.02559e13 1.79403
\(56\) −2.10040e12 −0.162514
\(57\) 0 0
\(58\) 3.66900e13 2.18191
\(59\) 2.85622e13 1.49418 0.747088 0.664725i \(-0.231451\pi\)
0.747088 + 0.664725i \(0.231451\pi\)
\(60\) 0 0
\(61\) −1.68793e13 −0.687670 −0.343835 0.939030i \(-0.611726\pi\)
−0.343835 + 0.939030i \(0.611726\pi\)
\(62\) −2.63589e12 −0.0950584
\(63\) 0 0
\(64\) 8.02439e11 0.0228067
\(65\) 4.43283e13 1.12158
\(66\) 0 0
\(67\) −4.75907e13 −0.959316 −0.479658 0.877456i \(-0.659239\pi\)
−0.479658 + 0.877456i \(0.659239\pi\)
\(68\) −1.61652e13 −0.291584
\(69\) 0 0
\(70\) 4.76404e13 0.691417
\(71\) −1.04997e14 −1.37006 −0.685029 0.728515i \(-0.740211\pi\)
−0.685029 + 0.728515i \(0.740211\pi\)
\(72\) 0 0
\(73\) −8.48244e13 −0.898668 −0.449334 0.893364i \(-0.648339\pi\)
−0.449334 + 0.893364i \(0.648339\pi\)
\(74\) 1.41227e14 1.35107
\(75\) 0 0
\(76\) 6.54101e13 0.512322
\(77\) 3.75044e13 0.266319
\(78\) 0 0
\(79\) −2.07977e14 −1.21846 −0.609232 0.792992i \(-0.708522\pi\)
−0.609232 + 0.792992i \(0.708522\pi\)
\(80\) −4.53140e14 −2.41578
\(81\) 0 0
\(82\) 1.15646e14 0.512301
\(83\) −3.60410e14 −1.45784 −0.728922 0.684597i \(-0.759978\pi\)
−0.728922 + 0.684597i \(0.759978\pi\)
\(84\) 0 0
\(85\) −3.06093e14 −1.03565
\(86\) 7.39134e13 0.229079
\(87\) 0 0
\(88\) −2.00940e14 −0.524140
\(89\) −3.31163e14 −0.793629 −0.396814 0.917899i \(-0.629884\pi\)
−0.396814 + 0.917899i \(0.629884\pi\)
\(90\) 0 0
\(91\) 8.20753e13 0.166495
\(92\) −5.11696e14 −0.956321
\(93\) 0 0
\(94\) 3.23410e14 0.514393
\(95\) 1.23856e15 1.81966
\(96\) 0 0
\(97\) 1.15557e15 1.45214 0.726069 0.687622i \(-0.241345\pi\)
0.726069 + 0.687622i \(0.241345\pi\)
\(98\) −9.80013e14 −1.14035
\(99\) 0 0
\(100\) 1.49723e15 1.49723
\(101\) −8.00845e14 −0.743256 −0.371628 0.928382i \(-0.621200\pi\)
−0.371628 + 0.928382i \(0.621200\pi\)
\(102\) 0 0
\(103\) 8.15198e14 0.653106 0.326553 0.945179i \(-0.394113\pi\)
0.326553 + 0.945179i \(0.394113\pi\)
\(104\) −4.39741e14 −0.327678
\(105\) 0 0
\(106\) −5.76845e14 −0.372619
\(107\) 1.29732e15 0.781032 0.390516 0.920596i \(-0.372297\pi\)
0.390516 + 0.920596i \(0.372297\pi\)
\(108\) 0 0
\(109\) −1.88622e15 −0.988313 −0.494157 0.869373i \(-0.664523\pi\)
−0.494157 + 0.869373i \(0.664523\pi\)
\(110\) 4.55766e15 2.22996
\(111\) 0 0
\(112\) −8.39003e14 −0.358615
\(113\) −2.50679e15 −1.00237 −0.501186 0.865339i \(-0.667103\pi\)
−0.501186 + 0.865339i \(0.667103\pi\)
\(114\) 0 0
\(115\) −9.68913e15 −3.39665
\(116\) 2.91213e15 0.956701
\(117\) 0 0
\(118\) 6.42661e15 1.85724
\(119\) −5.66741e14 −0.153739
\(120\) 0 0
\(121\) −5.89280e14 −0.141069
\(122\) −3.79791e15 −0.854763
\(123\) 0 0
\(124\) −2.09214e14 −0.0416801
\(125\) 1.80307e16 3.38210
\(126\) 0 0
\(127\) −3.35126e15 −0.558059 −0.279030 0.960283i \(-0.590013\pi\)
−0.279030 + 0.960283i \(0.590013\pi\)
\(128\) 6.45831e15 1.01401
\(129\) 0 0
\(130\) 9.97405e15 1.39411
\(131\) −2.20452e14 −0.0290924 −0.0145462 0.999894i \(-0.504630\pi\)
−0.0145462 + 0.999894i \(0.504630\pi\)
\(132\) 0 0
\(133\) 2.29324e15 0.270123
\(134\) −1.07081e16 −1.19241
\(135\) 0 0
\(136\) 3.03647e15 0.302571
\(137\) −1.42851e16 −1.34735 −0.673674 0.739029i \(-0.735285\pi\)
−0.673674 + 0.739029i \(0.735285\pi\)
\(138\) 0 0
\(139\) −1.32392e16 −1.12009 −0.560043 0.828463i \(-0.689215\pi\)
−0.560043 + 0.828463i \(0.689215\pi\)
\(140\) 3.78128e15 0.303165
\(141\) 0 0
\(142\) −2.36248e16 −1.70296
\(143\) 7.85197e15 0.536980
\(144\) 0 0
\(145\) 5.51422e16 3.39800
\(146\) −1.90858e16 −1.11703
\(147\) 0 0
\(148\) 1.12093e16 0.592402
\(149\) 2.69433e14 0.0135380 0.00676898 0.999977i \(-0.497845\pi\)
0.00676898 + 0.999977i \(0.497845\pi\)
\(150\) 0 0
\(151\) −5.52936e15 −0.251390 −0.125695 0.992069i \(-0.540116\pi\)
−0.125695 + 0.992069i \(0.540116\pi\)
\(152\) −1.22866e16 −0.531626
\(153\) 0 0
\(154\) 8.43865e15 0.331030
\(155\) −3.96154e15 −0.148039
\(156\) 0 0
\(157\) 3.21545e16 1.09142 0.545712 0.837973i \(-0.316259\pi\)
0.545712 + 0.837973i \(0.316259\pi\)
\(158\) −4.67958e16 −1.51453
\(159\) 0 0
\(160\) −6.47860e16 −1.90801
\(161\) −1.79398e16 −0.504223
\(162\) 0 0
\(163\) −2.62998e16 −0.673823 −0.336912 0.941536i \(-0.609382\pi\)
−0.336912 + 0.941536i \(0.609382\pi\)
\(164\) 9.17894e15 0.224628
\(165\) 0 0
\(166\) −8.10937e16 −1.81208
\(167\) 4.18840e16 0.894695 0.447347 0.894360i \(-0.352369\pi\)
0.447347 + 0.894360i \(0.352369\pi\)
\(168\) 0 0
\(169\) −3.40025e16 −0.664295
\(170\) −6.88722e16 −1.28729
\(171\) 0 0
\(172\) 5.86660e15 0.100444
\(173\) 5.00325e16 0.820174 0.410087 0.912046i \(-0.365498\pi\)
0.410087 + 0.912046i \(0.365498\pi\)
\(174\) 0 0
\(175\) 5.24921e16 0.789420
\(176\) −8.02657e16 −1.15660
\(177\) 0 0
\(178\) −7.45132e16 −0.986468
\(179\) −3.46993e16 −0.440477 −0.220238 0.975446i \(-0.570684\pi\)
−0.220238 + 0.975446i \(0.570684\pi\)
\(180\) 0 0
\(181\) 1.03066e17 1.20372 0.601862 0.798600i \(-0.294426\pi\)
0.601862 + 0.798600i \(0.294426\pi\)
\(182\) 1.84673e16 0.206951
\(183\) 0 0
\(184\) 9.61172e16 0.992356
\(185\) 2.12252e17 2.10409
\(186\) 0 0
\(187\) −5.42189e16 −0.495837
\(188\) 2.56695e16 0.225545
\(189\) 0 0
\(190\) 2.78681e17 2.26181
\(191\) 1.48673e17 1.16006 0.580031 0.814594i \(-0.303040\pi\)
0.580031 + 0.814594i \(0.303040\pi\)
\(192\) 0 0
\(193\) 1.26887e17 0.915669 0.457834 0.889037i \(-0.348625\pi\)
0.457834 + 0.889037i \(0.348625\pi\)
\(194\) 2.60008e17 1.80498
\(195\) 0 0
\(196\) −7.77849e16 −0.500006
\(197\) −8.38907e16 −0.519060 −0.259530 0.965735i \(-0.583568\pi\)
−0.259530 + 0.965735i \(0.583568\pi\)
\(198\) 0 0
\(199\) −1.72506e17 −0.989480 −0.494740 0.869041i \(-0.664737\pi\)
−0.494740 + 0.869041i \(0.664737\pi\)
\(200\) −2.81241e17 −1.55365
\(201\) 0 0
\(202\) −1.80193e17 −0.923855
\(203\) 1.02098e17 0.504423
\(204\) 0 0
\(205\) 1.73806e17 0.797831
\(206\) 1.83423e17 0.811801
\(207\) 0 0
\(208\) −1.75655e17 −0.723077
\(209\) 2.19389e17 0.871200
\(210\) 0 0
\(211\) −3.34019e17 −1.23496 −0.617479 0.786587i \(-0.711846\pi\)
−0.617479 + 0.786587i \(0.711846\pi\)
\(212\) −4.57849e16 −0.163382
\(213\) 0 0
\(214\) 2.91903e17 0.970811
\(215\) 1.11086e17 0.356756
\(216\) 0 0
\(217\) −7.33493e15 −0.0219760
\(218\) −4.24408e17 −1.22846
\(219\) 0 0
\(220\) 3.61747e17 0.977766
\(221\) −1.18654e17 −0.309984
\(222\) 0 0
\(223\) −4.22651e16 −0.103204 −0.0516018 0.998668i \(-0.516433\pi\)
−0.0516018 + 0.998668i \(0.516433\pi\)
\(224\) −1.19954e17 −0.283239
\(225\) 0 0
\(226\) −5.64038e17 −1.24593
\(227\) 4.59947e17 0.982911 0.491456 0.870903i \(-0.336465\pi\)
0.491456 + 0.870903i \(0.336465\pi\)
\(228\) 0 0
\(229\) −4.27605e17 −0.855611 −0.427806 0.903871i \(-0.640713\pi\)
−0.427806 + 0.903871i \(0.640713\pi\)
\(230\) −2.18010e18 −4.22199
\(231\) 0 0
\(232\) −5.47016e17 −0.992750
\(233\) 1.04449e18 1.83541 0.917705 0.397263i \(-0.130040\pi\)
0.917705 + 0.397263i \(0.130040\pi\)
\(234\) 0 0
\(235\) 4.86060e17 0.801089
\(236\) 5.10089e17 0.814340
\(237\) 0 0
\(238\) −1.27519e17 −0.191095
\(239\) −1.50944e17 −0.219196 −0.109598 0.993976i \(-0.534956\pi\)
−0.109598 + 0.993976i \(0.534956\pi\)
\(240\) 0 0
\(241\) 8.22907e16 0.112259 0.0561297 0.998423i \(-0.482124\pi\)
0.0561297 + 0.998423i \(0.482124\pi\)
\(242\) −1.32590e17 −0.175346
\(243\) 0 0
\(244\) −3.01445e17 −0.374787
\(245\) −1.47288e18 −1.77592
\(246\) 0 0
\(247\) 4.80115e17 0.544650
\(248\) 3.92989e16 0.0432507
\(249\) 0 0
\(250\) 4.05697e18 4.20390
\(251\) −1.34443e18 −1.35203 −0.676013 0.736890i \(-0.736294\pi\)
−0.676013 + 0.736890i \(0.736294\pi\)
\(252\) 0 0
\(253\) −1.71626e18 −1.62622
\(254\) −7.54048e17 −0.693659
\(255\) 0 0
\(256\) 1.42685e18 1.23760
\(257\) 9.49432e17 0.799771 0.399885 0.916565i \(-0.369050\pi\)
0.399885 + 0.916565i \(0.369050\pi\)
\(258\) 0 0
\(259\) 3.92992e17 0.312346
\(260\) 7.91653e17 0.611273
\(261\) 0 0
\(262\) −4.96026e16 −0.0361614
\(263\) −6.09598e16 −0.0431892 −0.0215946 0.999767i \(-0.506874\pi\)
−0.0215946 + 0.999767i \(0.506874\pi\)
\(264\) 0 0
\(265\) −8.66952e17 −0.580298
\(266\) 5.15988e17 0.335759
\(267\) 0 0
\(268\) −8.49917e17 −0.522836
\(269\) 2.05359e18 1.22849 0.614246 0.789114i \(-0.289460\pi\)
0.614246 + 0.789114i \(0.289460\pi\)
\(270\) 0 0
\(271\) −1.31009e18 −0.741364 −0.370682 0.928760i \(-0.620876\pi\)
−0.370682 + 0.928760i \(0.620876\pi\)
\(272\) 1.21292e18 0.667675
\(273\) 0 0
\(274\) −3.21421e18 −1.67473
\(275\) 5.02180e18 2.54604
\(276\) 0 0
\(277\) −2.38123e18 −1.14341 −0.571707 0.820458i \(-0.693719\pi\)
−0.571707 + 0.820458i \(0.693719\pi\)
\(278\) −2.97888e18 −1.39225
\(279\) 0 0
\(280\) −7.10277e17 −0.314588
\(281\) −2.97286e18 −1.28197 −0.640984 0.767554i \(-0.721474\pi\)
−0.640984 + 0.767554i \(0.721474\pi\)
\(282\) 0 0
\(283\) 9.79557e17 0.400527 0.200263 0.979742i \(-0.435820\pi\)
0.200263 + 0.979742i \(0.435820\pi\)
\(284\) −1.87513e18 −0.746695
\(285\) 0 0
\(286\) 1.76673e18 0.667458
\(287\) 3.21808e17 0.118436
\(288\) 0 0
\(289\) −2.04310e18 −0.713767
\(290\) 1.24072e19 4.22366
\(291\) 0 0
\(292\) −1.51487e18 −0.489783
\(293\) 2.17680e18 0.685981 0.342991 0.939339i \(-0.388560\pi\)
0.342991 + 0.939339i \(0.388560\pi\)
\(294\) 0 0
\(295\) 9.65869e18 2.89237
\(296\) −2.10556e18 −0.614725
\(297\) 0 0
\(298\) 6.06235e16 0.0168275
\(299\) −3.75589e18 −1.01667
\(300\) 0 0
\(301\) 2.05680e17 0.0529593
\(302\) −1.24413e18 −0.312474
\(303\) 0 0
\(304\) −4.90790e18 −1.17312
\(305\) −5.70795e18 −1.33116
\(306\) 0 0
\(307\) 3.35005e18 0.743898 0.371949 0.928253i \(-0.378690\pi\)
0.371949 + 0.928253i \(0.378690\pi\)
\(308\) 6.69787e17 0.145146
\(309\) 0 0
\(310\) −8.91363e17 −0.184010
\(311\) −1.34255e18 −0.270537 −0.135268 0.990809i \(-0.543190\pi\)
−0.135268 + 0.990809i \(0.543190\pi\)
\(312\) 0 0
\(313\) 1.14612e18 0.220113 0.110057 0.993925i \(-0.464897\pi\)
0.110057 + 0.993925i \(0.464897\pi\)
\(314\) 7.23489e18 1.35662
\(315\) 0 0
\(316\) −3.71424e18 −0.664075
\(317\) −9.70031e17 −0.169372 −0.0846859 0.996408i \(-0.526989\pi\)
−0.0846859 + 0.996408i \(0.526989\pi\)
\(318\) 0 0
\(319\) 9.76746e18 1.62686
\(320\) 2.71355e17 0.0441483
\(321\) 0 0
\(322\) −4.03652e18 −0.626741
\(323\) −3.31526e18 −0.502919
\(324\) 0 0
\(325\) 1.09898e19 1.59171
\(326\) −5.91757e18 −0.837552
\(327\) 0 0
\(328\) −1.72417e18 −0.233092
\(329\) 8.99956e17 0.118919
\(330\) 0 0
\(331\) −1.40805e19 −1.77790 −0.888952 0.458000i \(-0.848566\pi\)
−0.888952 + 0.458000i \(0.848566\pi\)
\(332\) −6.43651e18 −0.794538
\(333\) 0 0
\(334\) 9.42408e18 1.11209
\(335\) −1.60935e19 −1.85701
\(336\) 0 0
\(337\) 1.64277e18 0.181281 0.0906404 0.995884i \(-0.471109\pi\)
0.0906404 + 0.995884i \(0.471109\pi\)
\(338\) −7.65071e18 −0.825708
\(339\) 0 0
\(340\) −5.46648e18 −0.564437
\(341\) −7.01717e17 −0.0708768
\(342\) 0 0
\(343\) −5.69964e18 −0.550987
\(344\) −1.10198e18 −0.104229
\(345\) 0 0
\(346\) 1.12575e19 1.01946
\(347\) 5.79681e18 0.513710 0.256855 0.966450i \(-0.417314\pi\)
0.256855 + 0.966450i \(0.417314\pi\)
\(348\) 0 0
\(349\) −2.17877e18 −0.184935 −0.0924677 0.995716i \(-0.529475\pi\)
−0.0924677 + 0.995716i \(0.529475\pi\)
\(350\) 1.18109e19 0.981237
\(351\) 0 0
\(352\) −1.14757e19 −0.913501
\(353\) −4.24598e18 −0.330878 −0.165439 0.986220i \(-0.552904\pi\)
−0.165439 + 0.986220i \(0.552904\pi\)
\(354\) 0 0
\(355\) −3.55061e19 −2.65211
\(356\) −5.91421e18 −0.432535
\(357\) 0 0
\(358\) −7.80749e18 −0.547505
\(359\) −3.84070e18 −0.263756 −0.131878 0.991266i \(-0.542101\pi\)
−0.131878 + 0.991266i \(0.542101\pi\)
\(360\) 0 0
\(361\) −1.76642e18 −0.116356
\(362\) 2.31903e19 1.49621
\(363\) 0 0
\(364\) 1.46577e18 0.0907416
\(365\) −2.86845e19 −1.73961
\(366\) 0 0
\(367\) −1.60333e19 −0.933316 −0.466658 0.884438i \(-0.654542\pi\)
−0.466658 + 0.884438i \(0.654542\pi\)
\(368\) 3.83940e19 2.18980
\(369\) 0 0
\(370\) 4.77576e19 2.61535
\(371\) −1.60519e18 −0.0861435
\(372\) 0 0
\(373\) 1.86268e19 0.960113 0.480057 0.877237i \(-0.340616\pi\)
0.480057 + 0.877237i \(0.340616\pi\)
\(374\) −1.21995e19 −0.616318
\(375\) 0 0
\(376\) −4.82176e18 −0.234044
\(377\) 2.13753e19 1.01707
\(378\) 0 0
\(379\) 2.06427e19 0.943999 0.472000 0.881599i \(-0.343532\pi\)
0.472000 + 0.881599i \(0.343532\pi\)
\(380\) 2.21193e19 0.991732
\(381\) 0 0
\(382\) 3.34520e19 1.44194
\(383\) 1.29313e19 0.546576 0.273288 0.961932i \(-0.411889\pi\)
0.273288 + 0.961932i \(0.411889\pi\)
\(384\) 0 0
\(385\) 1.26826e19 0.515530
\(386\) 2.85502e19 1.13816
\(387\) 0 0
\(388\) 2.06372e19 0.791429
\(389\) 2.53083e19 0.952009 0.476005 0.879443i \(-0.342085\pi\)
0.476005 + 0.879443i \(0.342085\pi\)
\(390\) 0 0
\(391\) 2.59349e19 0.938770
\(392\) 1.46111e19 0.518846
\(393\) 0 0
\(394\) −1.88758e19 −0.645183
\(395\) −7.03304e19 −2.35866
\(396\) 0 0
\(397\) −2.82018e19 −0.910641 −0.455321 0.890328i \(-0.650475\pi\)
−0.455321 + 0.890328i \(0.650475\pi\)
\(398\) −3.88146e19 −1.22991
\(399\) 0 0
\(400\) −1.12342e20 −3.42840
\(401\) 1.86496e19 0.558582 0.279291 0.960207i \(-0.409901\pi\)
0.279291 + 0.960207i \(0.409901\pi\)
\(402\) 0 0
\(403\) −1.53565e18 −0.0443102
\(404\) −1.43022e19 −0.405081
\(405\) 0 0
\(406\) 2.29724e19 0.626990
\(407\) 3.75967e19 1.00738
\(408\) 0 0
\(409\) 4.72343e19 1.21992 0.609961 0.792431i \(-0.291185\pi\)
0.609961 + 0.792431i \(0.291185\pi\)
\(410\) 3.91071e19 0.991692
\(411\) 0 0
\(412\) 1.45585e19 0.355949
\(413\) 1.78834e19 0.429363
\(414\) 0 0
\(415\) −1.21877e20 −2.82204
\(416\) −2.51136e19 −0.571096
\(417\) 0 0
\(418\) 4.93634e19 1.08289
\(419\) 7.96907e19 1.71713 0.858563 0.512708i \(-0.171358\pi\)
0.858563 + 0.512708i \(0.171358\pi\)
\(420\) 0 0
\(421\) −2.96485e19 −0.616435 −0.308218 0.951316i \(-0.599733\pi\)
−0.308218 + 0.951316i \(0.599733\pi\)
\(422\) −7.51556e19 −1.53503
\(423\) 0 0
\(424\) 8.60025e18 0.169538
\(425\) −7.58861e19 −1.46976
\(426\) 0 0
\(427\) −1.05685e19 −0.197607
\(428\) 2.31687e19 0.425670
\(429\) 0 0
\(430\) 2.49948e19 0.443442
\(431\) −5.84458e19 −1.01900 −0.509499 0.860471i \(-0.670169\pi\)
−0.509499 + 0.860471i \(0.670169\pi\)
\(432\) 0 0
\(433\) 6.25471e19 1.05329 0.526645 0.850085i \(-0.323450\pi\)
0.526645 + 0.850085i \(0.323450\pi\)
\(434\) −1.65039e18 −0.0273158
\(435\) 0 0
\(436\) −3.36858e19 −0.538640
\(437\) −1.04942e20 −1.64945
\(438\) 0 0
\(439\) 1.17832e19 0.178970 0.0894851 0.995988i \(-0.471478\pi\)
0.0894851 + 0.995988i \(0.471478\pi\)
\(440\) −6.79507e19 −1.01461
\(441\) 0 0
\(442\) −2.66976e19 −0.385305
\(443\) −2.22694e18 −0.0315996 −0.0157998 0.999875i \(-0.505029\pi\)
−0.0157998 + 0.999875i \(0.505029\pi\)
\(444\) 0 0
\(445\) −1.11987e20 −1.53628
\(446\) −9.50981e18 −0.128280
\(447\) 0 0
\(448\) 5.02424e17 0.00655368
\(449\) 7.64814e19 0.981088 0.490544 0.871416i \(-0.336798\pi\)
0.490544 + 0.871416i \(0.336798\pi\)
\(450\) 0 0
\(451\) 3.07867e19 0.381978
\(452\) −4.47684e19 −0.546303
\(453\) 0 0
\(454\) 1.03490e20 1.22174
\(455\) 2.77549e19 0.322295
\(456\) 0 0
\(457\) 5.42282e19 0.609332 0.304666 0.952459i \(-0.401455\pi\)
0.304666 + 0.952459i \(0.401455\pi\)
\(458\) −9.62129e19 −1.06351
\(459\) 0 0
\(460\) −1.73037e20 −1.85121
\(461\) 1.29183e20 1.35972 0.679859 0.733342i \(-0.262041\pi\)
0.679859 + 0.733342i \(0.262041\pi\)
\(462\) 0 0
\(463\) 9.06888e19 0.924052 0.462026 0.886866i \(-0.347123\pi\)
0.462026 + 0.886866i \(0.347123\pi\)
\(464\) −2.18506e20 −2.19067
\(465\) 0 0
\(466\) 2.35014e20 2.28138
\(467\) 6.21059e19 0.593275 0.296638 0.954990i \(-0.404135\pi\)
0.296638 + 0.954990i \(0.404135\pi\)
\(468\) 0 0
\(469\) −2.97976e19 −0.275667
\(470\) 1.09366e20 0.995741
\(471\) 0 0
\(472\) −9.58152e19 −0.845025
\(473\) 1.96769e19 0.170804
\(474\) 0 0
\(475\) 3.07062e20 2.58240
\(476\) −1.01214e19 −0.0837890
\(477\) 0 0
\(478\) −3.39630e19 −0.272457
\(479\) −5.08603e19 −0.401663 −0.200832 0.979626i \(-0.564364\pi\)
−0.200832 + 0.979626i \(0.564364\pi\)
\(480\) 0 0
\(481\) 8.22773e19 0.629784
\(482\) 1.85158e19 0.139537
\(483\) 0 0
\(484\) −1.05239e19 −0.0768839
\(485\) 3.90771e20 2.81099
\(486\) 0 0
\(487\) −4.66077e19 −0.325080 −0.162540 0.986702i \(-0.551969\pi\)
−0.162540 + 0.986702i \(0.551969\pi\)
\(488\) 5.66235e19 0.388909
\(489\) 0 0
\(490\) −3.31405e20 −2.20744
\(491\) −4.08772e19 −0.268145 −0.134073 0.990972i \(-0.542806\pi\)
−0.134073 + 0.990972i \(0.542806\pi\)
\(492\) 0 0
\(493\) −1.47599e20 −0.939143
\(494\) 1.08028e20 0.676992
\(495\) 0 0
\(496\) 1.56980e19 0.0954400
\(497\) −6.57408e19 −0.393697
\(498\) 0 0
\(499\) 9.22038e19 0.535790 0.267895 0.963448i \(-0.413672\pi\)
0.267895 + 0.963448i \(0.413672\pi\)
\(500\) 3.22007e20 1.84328
\(501\) 0 0
\(502\) −3.02502e20 −1.68055
\(503\) −8.69650e19 −0.475976 −0.237988 0.971268i \(-0.576488\pi\)
−0.237988 + 0.971268i \(0.576488\pi\)
\(504\) 0 0
\(505\) −2.70817e20 −1.43877
\(506\) −3.86165e20 −2.02136
\(507\) 0 0
\(508\) −5.98497e19 −0.304148
\(509\) −1.28666e20 −0.644290 −0.322145 0.946690i \(-0.604404\pi\)
−0.322145 + 0.946690i \(0.604404\pi\)
\(510\) 0 0
\(511\) −5.31104e19 −0.258239
\(512\) 1.09422e20 0.524299
\(513\) 0 0
\(514\) 2.13626e20 0.994102
\(515\) 2.75670e20 1.26426
\(516\) 0 0
\(517\) 8.60969e19 0.383538
\(518\) 8.84249e19 0.388241
\(519\) 0 0
\(520\) −1.48704e20 −0.634306
\(521\) 3.32471e20 1.39788 0.698942 0.715178i \(-0.253654\pi\)
0.698942 + 0.715178i \(0.253654\pi\)
\(522\) 0 0
\(523\) 2.81814e18 0.0115133 0.00575665 0.999983i \(-0.498168\pi\)
0.00575665 + 0.999983i \(0.498168\pi\)
\(524\) −3.93702e18 −0.0158556
\(525\) 0 0
\(526\) −1.37162e19 −0.0536835
\(527\) 1.06039e19 0.0409152
\(528\) 0 0
\(529\) 5.54315e20 2.07892
\(530\) −1.95068e20 −0.721301
\(531\) 0 0
\(532\) 4.09546e19 0.147220
\(533\) 6.73740e19 0.238802
\(534\) 0 0
\(535\) 4.38706e20 1.51189
\(536\) 1.59649e20 0.542537
\(537\) 0 0
\(538\) 4.62067e20 1.52700
\(539\) −2.60895e20 −0.850257
\(540\) 0 0
\(541\) −5.67492e20 −1.79879 −0.899394 0.437139i \(-0.855992\pi\)
−0.899394 + 0.437139i \(0.855992\pi\)
\(542\) −2.94776e20 −0.921503
\(543\) 0 0
\(544\) 1.73413e20 0.527339
\(545\) −6.37852e20 −1.91314
\(546\) 0 0
\(547\) −5.68054e20 −1.65762 −0.828809 0.559532i \(-0.810981\pi\)
−0.828809 + 0.559532i \(0.810981\pi\)
\(548\) −2.55116e20 −0.734317
\(549\) 0 0
\(550\) 1.12993e21 3.16468
\(551\) 5.97238e20 1.65010
\(552\) 0 0
\(553\) −1.30219e20 −0.350135
\(554\) −5.35787e20 −1.42125
\(555\) 0 0
\(556\) −2.36438e20 −0.610458
\(557\) 6.55817e19 0.167059 0.0835293 0.996505i \(-0.473381\pi\)
0.0835293 + 0.996505i \(0.473381\pi\)
\(558\) 0 0
\(559\) 4.30613e19 0.106782
\(560\) −2.83720e20 −0.694193
\(561\) 0 0
\(562\) −6.68906e20 −1.59347
\(563\) 1.55041e20 0.364447 0.182224 0.983257i \(-0.441671\pi\)
0.182224 + 0.983257i \(0.441671\pi\)
\(564\) 0 0
\(565\) −8.47704e20 −1.94035
\(566\) 2.20404e20 0.497848
\(567\) 0 0
\(568\) 3.52225e20 0.774831
\(569\) 4.88149e20 1.05977 0.529884 0.848070i \(-0.322235\pi\)
0.529884 + 0.848070i \(0.322235\pi\)
\(570\) 0 0
\(571\) 2.11425e19 0.0447081 0.0223540 0.999750i \(-0.492884\pi\)
0.0223540 + 0.999750i \(0.492884\pi\)
\(572\) 1.40227e20 0.292659
\(573\) 0 0
\(574\) 7.24081e19 0.147214
\(575\) −2.40211e21 −4.82042
\(576\) 0 0
\(577\) −9.69561e19 −0.189564 −0.0947821 0.995498i \(-0.530215\pi\)
−0.0947821 + 0.995498i \(0.530215\pi\)
\(578\) −4.59707e20 −0.887201
\(579\) 0 0
\(580\) 9.84777e20 1.85194
\(581\) −2.25660e20 −0.418923
\(582\) 0 0
\(583\) −1.53565e20 −0.277830
\(584\) 2.84553e20 0.508238
\(585\) 0 0
\(586\) 4.89790e20 0.852664
\(587\) −6.70360e20 −1.15218 −0.576092 0.817385i \(-0.695423\pi\)
−0.576092 + 0.817385i \(0.695423\pi\)
\(588\) 0 0
\(589\) −4.29070e19 −0.0718892
\(590\) 2.17325e21 3.59517
\(591\) 0 0
\(592\) −8.41068e20 −1.35650
\(593\) 9.09711e20 1.44875 0.724375 0.689406i \(-0.242129\pi\)
0.724375 + 0.689406i \(0.242129\pi\)
\(594\) 0 0
\(595\) −1.91651e20 −0.297601
\(596\) 4.81177e18 0.00737832
\(597\) 0 0
\(598\) −8.45090e20 −1.26370
\(599\) 5.15025e20 0.760549 0.380274 0.924874i \(-0.375830\pi\)
0.380274 + 0.924874i \(0.375830\pi\)
\(600\) 0 0
\(601\) 6.88926e20 0.992234 0.496117 0.868256i \(-0.334759\pi\)
0.496117 + 0.868256i \(0.334759\pi\)
\(602\) 4.62787e19 0.0658276
\(603\) 0 0
\(604\) −9.87482e19 −0.137010
\(605\) −1.99273e20 −0.273076
\(606\) 0 0
\(607\) −1.37057e21 −1.83226 −0.916128 0.400885i \(-0.868703\pi\)
−0.916128 + 0.400885i \(0.868703\pi\)
\(608\) −7.01690e20 −0.926549
\(609\) 0 0
\(610\) −1.28431e21 −1.65462
\(611\) 1.88416e20 0.239777
\(612\) 0 0
\(613\) 3.73313e20 0.463575 0.231787 0.972766i \(-0.425543\pi\)
0.231787 + 0.972766i \(0.425543\pi\)
\(614\) 7.53775e20 0.924654
\(615\) 0 0
\(616\) −1.25813e20 −0.150616
\(617\) 6.54641e20 0.774221 0.387110 0.922033i \(-0.373473\pi\)
0.387110 + 0.922033i \(0.373473\pi\)
\(618\) 0 0
\(619\) 2.49440e20 0.287930 0.143965 0.989583i \(-0.454015\pi\)
0.143965 + 0.989583i \(0.454015\pi\)
\(620\) −7.07487e19 −0.0806827
\(621\) 0 0
\(622\) −3.02079e20 −0.336273
\(623\) −2.07348e20 −0.228055
\(624\) 0 0
\(625\) 3.53881e21 3.79977
\(626\) 2.57881e20 0.273598
\(627\) 0 0
\(628\) 5.74242e20 0.594837
\(629\) −5.68136e20 −0.581531
\(630\) 0 0
\(631\) −4.10195e20 −0.409987 −0.204993 0.978763i \(-0.565717\pi\)
−0.204993 + 0.978763i \(0.565717\pi\)
\(632\) 6.97684e20 0.689098
\(633\) 0 0
\(634\) −2.18261e20 −0.210527
\(635\) −1.13327e21 −1.08027
\(636\) 0 0
\(637\) −5.70947e20 −0.531557
\(638\) 2.19772e21 2.02217
\(639\) 0 0
\(640\) 2.18396e21 1.96289
\(641\) 1.62071e20 0.143969 0.0719846 0.997406i \(-0.477067\pi\)
0.0719846 + 0.997406i \(0.477067\pi\)
\(642\) 0 0
\(643\) 1.31227e21 1.13878 0.569392 0.822066i \(-0.307179\pi\)
0.569392 + 0.822066i \(0.307179\pi\)
\(644\) −3.20384e20 −0.274806
\(645\) 0 0
\(646\) −7.45947e20 −0.625121
\(647\) 2.02095e21 1.67407 0.837034 0.547150i \(-0.184287\pi\)
0.837034 + 0.547150i \(0.184287\pi\)
\(648\) 0 0
\(649\) 1.71087e21 1.38478
\(650\) 2.47275e21 1.97847
\(651\) 0 0
\(652\) −4.69686e20 −0.367240
\(653\) −5.85047e20 −0.452212 −0.226106 0.974103i \(-0.572600\pi\)
−0.226106 + 0.974103i \(0.572600\pi\)
\(654\) 0 0
\(655\) −7.45488e19 −0.0563159
\(656\) −6.88722e20 −0.514357
\(657\) 0 0
\(658\) 2.02494e20 0.147815
\(659\) −2.12486e21 −1.53352 −0.766761 0.641933i \(-0.778133\pi\)
−0.766761 + 0.641933i \(0.778133\pi\)
\(660\) 0 0
\(661\) −9.22767e20 −0.651000 −0.325500 0.945542i \(-0.605533\pi\)
−0.325500 + 0.945542i \(0.605533\pi\)
\(662\) −3.16817e21 −2.20991
\(663\) 0 0
\(664\) 1.20904e21 0.824477
\(665\) 7.75489e20 0.522893
\(666\) 0 0
\(667\) −4.67214e21 −3.08015
\(668\) 7.48002e20 0.487617
\(669\) 0 0
\(670\) −3.62109e21 −2.30823
\(671\) −1.01106e21 −0.637322
\(672\) 0 0
\(673\) 2.24077e21 1.38129 0.690644 0.723194i \(-0.257327\pi\)
0.690644 + 0.723194i \(0.257327\pi\)
\(674\) 3.69629e20 0.225329
\(675\) 0 0
\(676\) −6.07247e20 −0.362047
\(677\) −2.92445e20 −0.172437 −0.0862184 0.996276i \(-0.527478\pi\)
−0.0862184 + 0.996276i \(0.527478\pi\)
\(678\) 0 0
\(679\) 7.23526e20 0.417283
\(680\) 1.02682e21 0.585705
\(681\) 0 0
\(682\) −1.57889e20 −0.0880987
\(683\) −7.11906e20 −0.392887 −0.196443 0.980515i \(-0.562939\pi\)
−0.196443 + 0.980515i \(0.562939\pi\)
\(684\) 0 0
\(685\) −4.83071e21 −2.60814
\(686\) −1.28244e21 −0.684868
\(687\) 0 0
\(688\) −4.40188e20 −0.229998
\(689\) −3.36065e20 −0.173692
\(690\) 0 0
\(691\) 1.66163e21 0.840327 0.420163 0.907448i \(-0.361973\pi\)
0.420163 + 0.907448i \(0.361973\pi\)
\(692\) 8.93524e20 0.447003
\(693\) 0 0
\(694\) 1.30431e21 0.638533
\(695\) −4.47702e21 −2.16822
\(696\) 0 0
\(697\) −4.65227e20 −0.220505
\(698\) −4.90232e20 −0.229872
\(699\) 0 0
\(700\) 9.37449e20 0.430242
\(701\) 6.27673e20 0.285002 0.142501 0.989795i \(-0.454486\pi\)
0.142501 + 0.989795i \(0.454486\pi\)
\(702\) 0 0
\(703\) 2.29888e21 1.02177
\(704\) 4.80658e19 0.0211369
\(705\) 0 0
\(706\) −9.55363e20 −0.411276
\(707\) −5.01426e20 −0.213580
\(708\) 0 0
\(709\) 9.17275e20 0.382519 0.191259 0.981540i \(-0.438743\pi\)
0.191259 + 0.981540i \(0.438743\pi\)
\(710\) −7.98903e21 −3.29653
\(711\) 0 0
\(712\) 1.11093e21 0.448833
\(713\) 3.35657e20 0.134191
\(714\) 0 0
\(715\) 2.65525e21 1.03947
\(716\) −6.19690e20 −0.240064
\(717\) 0 0
\(718\) −8.64173e20 −0.327844
\(719\) 3.88381e20 0.145811 0.0729057 0.997339i \(-0.476773\pi\)
0.0729057 + 0.997339i \(0.476773\pi\)
\(720\) 0 0
\(721\) 5.10413e20 0.187675
\(722\) −3.97451e20 −0.144629
\(723\) 0 0
\(724\) 1.84065e21 0.656041
\(725\) 1.36708e22 4.82234
\(726\) 0 0
\(727\) 3.48981e20 0.120585 0.0602926 0.998181i \(-0.480797\pi\)
0.0602926 + 0.998181i \(0.480797\pi\)
\(728\) −2.75331e20 −0.0941607
\(729\) 0 0
\(730\) −6.45414e21 −2.16230
\(731\) −2.97344e20 −0.0986005
\(732\) 0 0
\(733\) −2.99287e21 −0.972317 −0.486159 0.873871i \(-0.661602\pi\)
−0.486159 + 0.873871i \(0.661602\pi\)
\(734\) −3.60757e21 −1.16010
\(735\) 0 0
\(736\) 5.48925e21 1.72954
\(737\) −2.85067e21 −0.889080
\(738\) 0 0
\(739\) 2.27132e21 0.694137 0.347069 0.937840i \(-0.387177\pi\)
0.347069 + 0.937840i \(0.387177\pi\)
\(740\) 3.79059e21 1.14675
\(741\) 0 0
\(742\) −3.61175e20 −0.107075
\(743\) −1.24464e21 −0.365282 −0.182641 0.983180i \(-0.558465\pi\)
−0.182641 + 0.983180i \(0.558465\pi\)
\(744\) 0 0
\(745\) 9.11123e19 0.0262063
\(746\) 4.19111e21 1.19341
\(747\) 0 0
\(748\) −9.68289e20 −0.270236
\(749\) 8.12280e20 0.224436
\(750\) 0 0
\(751\) 5.58741e21 1.51325 0.756625 0.653849i \(-0.226847\pi\)
0.756625 + 0.653849i \(0.226847\pi\)
\(752\) −1.92605e21 −0.516458
\(753\) 0 0
\(754\) 4.80952e21 1.26420
\(755\) −1.86983e21 −0.486631
\(756\) 0 0
\(757\) −5.61350e21 −1.43224 −0.716118 0.697979i \(-0.754083\pi\)
−0.716118 + 0.697979i \(0.754083\pi\)
\(758\) 4.64468e21 1.17338
\(759\) 0 0
\(760\) −4.15490e21 −1.02910
\(761\) −1.63802e21 −0.401729 −0.200864 0.979619i \(-0.564375\pi\)
−0.200864 + 0.979619i \(0.564375\pi\)
\(762\) 0 0
\(763\) −1.18100e21 −0.284000
\(764\) 2.65513e21 0.632245
\(765\) 0 0
\(766\) 2.90959e21 0.679385
\(767\) 3.74409e21 0.865727
\(768\) 0 0
\(769\) 4.65164e20 0.105477 0.0527386 0.998608i \(-0.483205\pi\)
0.0527386 + 0.998608i \(0.483205\pi\)
\(770\) 2.85364e21 0.640795
\(771\) 0 0
\(772\) 2.26607e21 0.499048
\(773\) −1.70986e21 −0.372918 −0.186459 0.982463i \(-0.559701\pi\)
−0.186459 + 0.982463i \(0.559701\pi\)
\(774\) 0 0
\(775\) −9.82139e20 −0.210092
\(776\) −3.87649e21 −0.821251
\(777\) 0 0
\(778\) 5.69448e21 1.18333
\(779\) 1.88247e21 0.387434
\(780\) 0 0
\(781\) −6.28928e21 −1.26975
\(782\) 5.83547e21 1.16688
\(783\) 0 0
\(784\) 5.83642e21 1.14492
\(785\) 1.08735e22 2.11274
\(786\) 0 0
\(787\) −8.35194e21 −1.59212 −0.796062 0.605215i \(-0.793087\pi\)
−0.796062 + 0.605215i \(0.793087\pi\)
\(788\) −1.49819e21 −0.282893
\(789\) 0 0
\(790\) −1.58246e22 −2.93177
\(791\) −1.56955e21 −0.288040
\(792\) 0 0
\(793\) −2.21263e21 −0.398437
\(794\) −6.34551e21 −1.13191
\(795\) 0 0
\(796\) −3.08077e21 −0.539276
\(797\) 9.77322e21 1.69473 0.847364 0.531012i \(-0.178188\pi\)
0.847364 + 0.531012i \(0.178188\pi\)
\(798\) 0 0
\(799\) −1.30104e21 −0.221406
\(800\) −1.60617e22 −2.70779
\(801\) 0 0
\(802\) 4.19624e21 0.694308
\(803\) −5.08095e21 −0.832873
\(804\) 0 0
\(805\) −6.06657e21 −0.976055
\(806\) −3.45527e20 −0.0550769
\(807\) 0 0
\(808\) 2.68653e21 0.420345
\(809\) 1.08324e22 1.67924 0.839620 0.543174i \(-0.182778\pi\)
0.839620 + 0.543174i \(0.182778\pi\)
\(810\) 0 0
\(811\) −6.79008e21 −1.03328 −0.516641 0.856202i \(-0.672818\pi\)
−0.516641 + 0.856202i \(0.672818\pi\)
\(812\) 1.82335e21 0.274916
\(813\) 0 0
\(814\) 8.45942e21 1.25215
\(815\) −8.89365e21 −1.30436
\(816\) 0 0
\(817\) 1.20316e21 0.173244
\(818\) 1.06279e22 1.51634
\(819\) 0 0
\(820\) 3.10398e21 0.434826
\(821\) 5.96458e21 0.827954 0.413977 0.910287i \(-0.364139\pi\)
0.413977 + 0.910287i \(0.364139\pi\)
\(822\) 0 0
\(823\) 3.81758e21 0.520343 0.260171 0.965562i \(-0.416221\pi\)
0.260171 + 0.965562i \(0.416221\pi\)
\(824\) −2.73468e21 −0.369362
\(825\) 0 0
\(826\) 4.02384e21 0.533691
\(827\) −3.40375e20 −0.0447369 −0.0223685 0.999750i \(-0.507121\pi\)
−0.0223685 + 0.999750i \(0.507121\pi\)
\(828\) 0 0
\(829\) 7.04924e21 0.909879 0.454939 0.890522i \(-0.349661\pi\)
0.454939 + 0.890522i \(0.349661\pi\)
\(830\) −2.74229e22 −3.50774
\(831\) 0 0
\(832\) 1.05188e20 0.0132142
\(833\) 3.94247e21 0.490829
\(834\) 0 0
\(835\) 1.41637e22 1.73192
\(836\) 3.91804e21 0.474812
\(837\) 0 0
\(838\) 1.79307e22 2.13436
\(839\) −1.16619e22 −1.37580 −0.687898 0.725808i \(-0.741466\pi\)
−0.687898 + 0.725808i \(0.741466\pi\)
\(840\) 0 0
\(841\) 1.79606e22 2.08137
\(842\) −6.67104e21 −0.766219
\(843\) 0 0
\(844\) −5.96520e21 −0.673064
\(845\) −1.14984e22 −1.28592
\(846\) 0 0
\(847\) −3.68960e20 −0.0405372
\(848\) 3.43537e21 0.374115
\(849\) 0 0
\(850\) −1.70747e22 −1.82688
\(851\) −1.79839e22 −1.90727
\(852\) 0 0
\(853\) −1.44889e22 −1.50979 −0.754897 0.655843i \(-0.772313\pi\)
−0.754897 + 0.655843i \(0.772313\pi\)
\(854\) −2.37795e21 −0.245623
\(855\) 0 0
\(856\) −4.35201e21 −0.441710
\(857\) 8.36197e20 0.0841303 0.0420652 0.999115i \(-0.486606\pi\)
0.0420652 + 0.999115i \(0.486606\pi\)
\(858\) 0 0
\(859\) −2.41500e21 −0.238763 −0.119382 0.992848i \(-0.538091\pi\)
−0.119382 + 0.992848i \(0.538091\pi\)
\(860\) 1.98387e21 0.194435
\(861\) 0 0
\(862\) −1.31505e22 −1.26660
\(863\) 1.69939e22 1.62260 0.811300 0.584631i \(-0.198761\pi\)
0.811300 + 0.584631i \(0.198761\pi\)
\(864\) 0 0
\(865\) 1.69192e22 1.58766
\(866\) 1.40734e22 1.30922
\(867\) 0 0
\(868\) −1.30994e20 −0.0119771
\(869\) −1.24578e22 −1.12926
\(870\) 0 0
\(871\) −6.23845e21 −0.555828
\(872\) 6.32756e21 0.558937
\(873\) 0 0
\(874\) −2.36124e22 −2.05024
\(875\) 1.12894e22 0.971873
\(876\) 0 0
\(877\) 1.53851e22 1.30197 0.650987 0.759088i \(-0.274355\pi\)
0.650987 + 0.759088i \(0.274355\pi\)
\(878\) 2.65128e21 0.222457
\(879\) 0 0
\(880\) −2.71429e22 −2.23891
\(881\) 6.57993e21 0.538148 0.269074 0.963120i \(-0.413282\pi\)
0.269074 + 0.963120i \(0.413282\pi\)
\(882\) 0 0
\(883\) 2.13856e22 1.71956 0.859779 0.510666i \(-0.170601\pi\)
0.859779 + 0.510666i \(0.170601\pi\)
\(884\) −2.11902e21 −0.168944
\(885\) 0 0
\(886\) −5.01071e20 −0.0392777
\(887\) −1.81183e22 −1.40828 −0.704141 0.710060i \(-0.748668\pi\)
−0.704141 + 0.710060i \(0.748668\pi\)
\(888\) 0 0
\(889\) −2.09829e21 −0.160363
\(890\) −2.51976e22 −1.90957
\(891\) 0 0
\(892\) −7.54806e20 −0.0562470
\(893\) 5.26446e21 0.389016
\(894\) 0 0
\(895\) −1.17340e22 −0.852657
\(896\) 4.04368e21 0.291385
\(897\) 0 0
\(898\) 1.72086e22 1.21948
\(899\) −1.91027e21 −0.134245
\(900\) 0 0
\(901\) 2.32057e21 0.160383
\(902\) 6.92713e21 0.474793
\(903\) 0 0
\(904\) 8.40931e21 0.566888
\(905\) 3.48532e22 2.33012
\(906\) 0 0
\(907\) −1.36542e22 −0.897865 −0.448933 0.893566i \(-0.648196\pi\)
−0.448933 + 0.893566i \(0.648196\pi\)
\(908\) 8.21414e21 0.535696
\(909\) 0 0
\(910\) 6.24496e21 0.400608
\(911\) −3.43297e21 −0.218415 −0.109207 0.994019i \(-0.534831\pi\)
−0.109207 + 0.994019i \(0.534831\pi\)
\(912\) 0 0
\(913\) −2.15884e22 −1.35111
\(914\) 1.22016e22 0.757390
\(915\) 0 0
\(916\) −7.63654e21 −0.466316
\(917\) −1.38030e20 −0.00835992
\(918\) 0 0
\(919\) −2.48854e22 −1.48279 −0.741393 0.671071i \(-0.765834\pi\)
−0.741393 + 0.671071i \(0.765834\pi\)
\(920\) 3.25033e22 1.92096
\(921\) 0 0
\(922\) 2.90668e22 1.69011
\(923\) −1.37636e22 −0.793813
\(924\) 0 0
\(925\) 5.26212e22 2.98606
\(926\) 2.04054e22 1.14858
\(927\) 0 0
\(928\) −3.12401e22 −1.73022
\(929\) −2.33577e22 −1.28325 −0.641626 0.767017i \(-0.721740\pi\)
−0.641626 + 0.767017i \(0.721740\pi\)
\(930\) 0 0
\(931\) −1.59526e22 −0.862401
\(932\) 1.86533e22 1.00032
\(933\) 0 0
\(934\) 1.39741e22 0.737432
\(935\) −1.83349e22 −0.959822
\(936\) 0 0
\(937\) 4.75651e21 0.245042 0.122521 0.992466i \(-0.460902\pi\)
0.122521 + 0.992466i \(0.460902\pi\)
\(938\) −6.70458e21 −0.342649
\(939\) 0 0
\(940\) 8.68048e21 0.436601
\(941\) 3.10932e22 1.55147 0.775735 0.631059i \(-0.217379\pi\)
0.775735 + 0.631059i \(0.217379\pi\)
\(942\) 0 0
\(943\) −1.47264e22 −0.723201
\(944\) −3.82734e22 −1.86469
\(945\) 0 0
\(946\) 4.42739e21 0.212307
\(947\) −3.43792e22 −1.63557 −0.817787 0.575521i \(-0.804799\pi\)
−0.817787 + 0.575521i \(0.804799\pi\)
\(948\) 0 0
\(949\) −1.11192e22 −0.520689
\(950\) 6.90902e22 3.20989
\(951\) 0 0
\(952\) 1.90120e21 0.0869462
\(953\) −5.10344e21 −0.231561 −0.115781 0.993275i \(-0.536937\pi\)
−0.115781 + 0.993275i \(0.536937\pi\)
\(954\) 0 0
\(955\) 5.02757e22 2.24560
\(956\) −2.69569e21 −0.119464
\(957\) 0 0
\(958\) −1.14438e22 −0.499261
\(959\) −8.94421e21 −0.387171
\(960\) 0 0
\(961\) −2.33280e22 −0.994151
\(962\) 1.85127e22 0.782812
\(963\) 0 0
\(964\) 1.46962e21 0.0611825
\(965\) 4.29087e22 1.77252
\(966\) 0 0
\(967\) 1.73952e22 0.707506 0.353753 0.935339i \(-0.384905\pi\)
0.353753 + 0.935339i \(0.384905\pi\)
\(968\) 1.97681e21 0.0797809
\(969\) 0 0
\(970\) 8.79252e22 3.49402
\(971\) −1.01158e22 −0.398891 −0.199445 0.979909i \(-0.563914\pi\)
−0.199445 + 0.979909i \(0.563914\pi\)
\(972\) 0 0
\(973\) −8.28935e21 −0.321865
\(974\) −1.04869e22 −0.404069
\(975\) 0 0
\(976\) 2.26183e22 0.858194
\(977\) −3.41880e22 −1.28725 −0.643627 0.765339i \(-0.722571\pi\)
−0.643627 + 0.765339i \(0.722571\pi\)
\(978\) 0 0
\(979\) −1.98366e22 −0.735524
\(980\) −2.63040e22 −0.967891
\(981\) 0 0
\(982\) −9.19754e21 −0.333300
\(983\) 8.96590e21 0.322435 0.161218 0.986919i \(-0.448458\pi\)
0.161218 + 0.986919i \(0.448458\pi\)
\(984\) 0 0
\(985\) −2.83688e22 −1.00478
\(986\) −3.32104e22 −1.16734
\(987\) 0 0
\(988\) 8.57431e21 0.296840
\(989\) −9.41220e21 −0.323384
\(990\) 0 0
\(991\) −3.60018e22 −1.21835 −0.609174 0.793036i \(-0.708499\pi\)
−0.609174 + 0.793036i \(0.708499\pi\)
\(992\) 2.24436e21 0.0753797
\(993\) 0 0
\(994\) −1.47920e22 −0.489359
\(995\) −5.83353e22 −1.91540
\(996\) 0 0
\(997\) 2.32465e22 0.751872 0.375936 0.926646i \(-0.377321\pi\)
0.375936 + 0.926646i \(0.377321\pi\)
\(998\) 2.07462e22 0.665979
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.16.a.c.1.4 yes 5
3.2 odd 2 27.16.a.b.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.16.a.b.1.2 5 3.2 odd 2
27.16.a.c.1.4 yes 5 1.1 even 1 trivial