Properties

Label 27.14.a.e.1.3
Level $27$
Weight $14$
Character 27.1
Self dual yes
Analytic conductor $28.952$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [27,14,Mod(1,27)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("27.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 27.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,117,0,8101] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.9523508170\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2080x^{2} - 9500x + 13552 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{8}\cdot 13 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-5.80055\) of defining polynomial
Character \(\chi\) \(=\) 27.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+47.4017 q^{2} -5945.08 q^{4} +47381.4 q^{5} +480775. q^{7} -670121. q^{8} +2.24596e6 q^{10} -6.25107e6 q^{11} -1.57296e7 q^{13} +2.27895e7 q^{14} +1.69373e7 q^{16} +7.30512e7 q^{17} +3.94294e8 q^{19} -2.81687e8 q^{20} -2.96311e8 q^{22} +1.15508e9 q^{23} +1.02430e9 q^{25} -7.45607e8 q^{26} -2.85825e9 q^{28} +1.59461e9 q^{29} -2.33526e8 q^{31} +6.29249e9 q^{32} +3.46275e9 q^{34} +2.27798e10 q^{35} +2.58983e9 q^{37} +1.86902e10 q^{38} -3.17513e10 q^{40} -1.93740e10 q^{41} -2.37958e10 q^{43} +3.71631e10 q^{44} +5.47528e10 q^{46} +1.24721e11 q^{47} +1.34256e11 q^{49} +4.85533e10 q^{50} +9.35135e10 q^{52} +1.30481e11 q^{53} -2.96184e11 q^{55} -3.22178e11 q^{56} +7.55872e10 q^{58} -1.55509e11 q^{59} -2.96704e11 q^{61} -1.10695e10 q^{62} +1.59524e11 q^{64} -7.45289e11 q^{65} -4.11869e11 q^{67} -4.34296e11 q^{68} +1.07980e12 q^{70} -6.51745e11 q^{71} -1.66606e11 q^{73} +1.22762e11 q^{74} -2.34411e12 q^{76} -3.00536e12 q^{77} +1.70061e12 q^{79} +8.02512e11 q^{80} -9.18357e11 q^{82} +3.41254e12 q^{83} +3.46127e12 q^{85} -1.12796e12 q^{86} +4.18897e12 q^{88} -1.30542e12 q^{89} -7.56238e12 q^{91} -6.86706e12 q^{92} +5.91196e12 q^{94} +1.86822e13 q^{95} +2.94200e12 q^{97} +6.36395e12 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 117 q^{2} + 8101 q^{4} + 11412 q^{5} + 54572 q^{7} + 615375 q^{8} + 969579 q^{10} + 4927212 q^{11} + 12107576 q^{13} + 2015487 q^{14} + 56856625 q^{16} - 34729992 q^{17} + 269848016 q^{19} + 179564463 q^{20}+ \cdots + 3817815378498 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 47.4017 0.523719 0.261860 0.965106i \(-0.415664\pi\)
0.261860 + 0.965106i \(0.415664\pi\)
\(3\) 0 0
\(4\) −5945.08 −0.725718
\(5\) 47381.4 1.35614 0.678068 0.734999i \(-0.262818\pi\)
0.678068 + 0.734999i \(0.262818\pi\)
\(6\) 0 0
\(7\) 480775. 1.54456 0.772280 0.635282i \(-0.219116\pi\)
0.772280 + 0.635282i \(0.219116\pi\)
\(8\) −670121. −0.903792
\(9\) 0 0
\(10\) 2.24596e6 0.710234
\(11\) −6.25107e6 −1.06390 −0.531951 0.846775i \(-0.678541\pi\)
−0.531951 + 0.846775i \(0.678541\pi\)
\(12\) 0 0
\(13\) −1.57296e7 −0.903826 −0.451913 0.892062i \(-0.649258\pi\)
−0.451913 + 0.892062i \(0.649258\pi\)
\(14\) 2.27895e7 0.808916
\(15\) 0 0
\(16\) 1.69373e7 0.252385
\(17\) 7.30512e7 0.734023 0.367011 0.930216i \(-0.380381\pi\)
0.367011 + 0.930216i \(0.380381\pi\)
\(18\) 0 0
\(19\) 3.94294e8 1.92274 0.961372 0.275253i \(-0.0887616\pi\)
0.961372 + 0.275253i \(0.0887616\pi\)
\(20\) −2.81687e8 −0.984172
\(21\) 0 0
\(22\) −2.96311e8 −0.557186
\(23\) 1.15508e9 1.62698 0.813490 0.581579i \(-0.197565\pi\)
0.813490 + 0.581579i \(0.197565\pi\)
\(24\) 0 0
\(25\) 1.02430e9 0.839103
\(26\) −7.45607e8 −0.473351
\(27\) 0 0
\(28\) −2.85825e9 −1.12092
\(29\) 1.59461e9 0.497815 0.248907 0.968527i \(-0.419928\pi\)
0.248907 + 0.968527i \(0.419928\pi\)
\(30\) 0 0
\(31\) −2.33526e8 −0.0472590 −0.0236295 0.999721i \(-0.507522\pi\)
−0.0236295 + 0.999721i \(0.507522\pi\)
\(32\) 6.29249e9 1.03597
\(33\) 0 0
\(34\) 3.46275e9 0.384422
\(35\) 2.27798e10 2.09463
\(36\) 0 0
\(37\) 2.58983e9 0.165943 0.0829716 0.996552i \(-0.473559\pi\)
0.0829716 + 0.996552i \(0.473559\pi\)
\(38\) 1.86902e10 1.00698
\(39\) 0 0
\(40\) −3.17513e10 −1.22566
\(41\) −1.93740e10 −0.636976 −0.318488 0.947927i \(-0.603175\pi\)
−0.318488 + 0.947927i \(0.603175\pi\)
\(42\) 0 0
\(43\) −2.37958e10 −0.574058 −0.287029 0.957922i \(-0.592668\pi\)
−0.287029 + 0.957922i \(0.592668\pi\)
\(44\) 3.71631e10 0.772093
\(45\) 0 0
\(46\) 5.47528e10 0.852081
\(47\) 1.24721e11 1.68773 0.843863 0.536558i \(-0.180276\pi\)
0.843863 + 0.536558i \(0.180276\pi\)
\(48\) 0 0
\(49\) 1.34256e11 1.38567
\(50\) 4.85533e10 0.439455
\(51\) 0 0
\(52\) 9.35135e10 0.655923
\(53\) 1.30481e11 0.808641 0.404320 0.914617i \(-0.367508\pi\)
0.404320 + 0.914617i \(0.367508\pi\)
\(54\) 0 0
\(55\) −2.96184e11 −1.44280
\(56\) −3.22178e11 −1.39596
\(57\) 0 0
\(58\) 7.55872e10 0.260715
\(59\) −1.55509e11 −0.479974 −0.239987 0.970776i \(-0.577143\pi\)
−0.239987 + 0.970776i \(0.577143\pi\)
\(60\) 0 0
\(61\) −2.96704e11 −0.737360 −0.368680 0.929556i \(-0.620190\pi\)
−0.368680 + 0.929556i \(0.620190\pi\)
\(62\) −1.10695e10 −0.0247504
\(63\) 0 0
\(64\) 1.59524e11 0.290173
\(65\) −7.45289e11 −1.22571
\(66\) 0 0
\(67\) −4.11869e11 −0.556254 −0.278127 0.960544i \(-0.589714\pi\)
−0.278127 + 0.960544i \(0.589714\pi\)
\(68\) −4.34296e11 −0.532694
\(69\) 0 0
\(70\) 1.07980e12 1.09700
\(71\) −6.51745e11 −0.603807 −0.301904 0.953338i \(-0.597622\pi\)
−0.301904 + 0.953338i \(0.597622\pi\)
\(72\) 0 0
\(73\) −1.66606e11 −0.128852 −0.0644262 0.997922i \(-0.520522\pi\)
−0.0644262 + 0.997922i \(0.520522\pi\)
\(74\) 1.22762e11 0.0869077
\(75\) 0 0
\(76\) −2.34411e12 −1.39537
\(77\) −3.00536e12 −1.64326
\(78\) 0 0
\(79\) 1.70061e12 0.787099 0.393550 0.919303i \(-0.371247\pi\)
0.393550 + 0.919303i \(0.371247\pi\)
\(80\) 8.02512e11 0.342268
\(81\) 0 0
\(82\) −9.18357e11 −0.333597
\(83\) 3.41254e12 1.14570 0.572850 0.819661i \(-0.305838\pi\)
0.572850 + 0.819661i \(0.305838\pi\)
\(84\) 0 0
\(85\) 3.46127e12 0.995434
\(86\) −1.12796e12 −0.300645
\(87\) 0 0
\(88\) 4.18897e12 0.961546
\(89\) −1.30542e12 −0.278430 −0.139215 0.990262i \(-0.544458\pi\)
−0.139215 + 0.990262i \(0.544458\pi\)
\(90\) 0 0
\(91\) −7.56238e12 −1.39601
\(92\) −6.86706e12 −1.18073
\(93\) 0 0
\(94\) 5.91196e12 0.883895
\(95\) 1.86822e13 2.60750
\(96\) 0 0
\(97\) 2.94200e12 0.358613 0.179307 0.983793i \(-0.442615\pi\)
0.179307 + 0.983793i \(0.442615\pi\)
\(98\) 6.36395e12 0.725700
\(99\) 0 0
\(100\) −6.08953e12 −0.608953
\(101\) 1.60988e13 1.50905 0.754527 0.656269i \(-0.227866\pi\)
0.754527 + 0.656269i \(0.227866\pi\)
\(102\) 0 0
\(103\) −2.21067e13 −1.82424 −0.912118 0.409927i \(-0.865554\pi\)
−0.912118 + 0.409927i \(0.865554\pi\)
\(104\) 1.05407e13 0.816870
\(105\) 0 0
\(106\) 6.18504e12 0.423501
\(107\) −8.42298e12 −0.542589 −0.271295 0.962496i \(-0.587452\pi\)
−0.271295 + 0.962496i \(0.587452\pi\)
\(108\) 0 0
\(109\) −1.32059e13 −0.754217 −0.377108 0.926169i \(-0.623082\pi\)
−0.377108 + 0.926169i \(0.623082\pi\)
\(110\) −1.40396e13 −0.755619
\(111\) 0 0
\(112\) 8.14303e12 0.389824
\(113\) −1.15824e13 −0.523346 −0.261673 0.965157i \(-0.584274\pi\)
−0.261673 + 0.965157i \(0.584274\pi\)
\(114\) 0 0
\(115\) 5.47295e13 2.20641
\(116\) −9.48010e12 −0.361273
\(117\) 0 0
\(118\) −7.37139e12 −0.251372
\(119\) 3.51212e13 1.13374
\(120\) 0 0
\(121\) 4.55310e12 0.131887
\(122\) −1.40643e13 −0.386169
\(123\) 0 0
\(124\) 1.38833e12 0.0342967
\(125\) −9.30604e12 −0.218197
\(126\) 0 0
\(127\) −8.93913e13 −1.89048 −0.945238 0.326382i \(-0.894171\pi\)
−0.945238 + 0.326382i \(0.894171\pi\)
\(128\) −4.39863e13 −0.884002
\(129\) 0 0
\(130\) −3.53279e13 −0.641928
\(131\) −4.38769e13 −0.758530 −0.379265 0.925288i \(-0.623823\pi\)
−0.379265 + 0.925288i \(0.623823\pi\)
\(132\) 0 0
\(133\) 1.89567e14 2.96979
\(134\) −1.95233e13 −0.291321
\(135\) 0 0
\(136\) −4.89532e13 −0.663404
\(137\) −6.39026e13 −0.825724 −0.412862 0.910794i \(-0.635471\pi\)
−0.412862 + 0.910794i \(0.635471\pi\)
\(138\) 0 0
\(139\) −1.89128e13 −0.222413 −0.111206 0.993797i \(-0.535471\pi\)
−0.111206 + 0.993797i \(0.535471\pi\)
\(140\) −1.35428e14 −1.52011
\(141\) 0 0
\(142\) −3.08938e13 −0.316225
\(143\) 9.83265e13 0.961582
\(144\) 0 0
\(145\) 7.55550e13 0.675104
\(146\) −7.89740e12 −0.0674824
\(147\) 0 0
\(148\) −1.53967e13 −0.120428
\(149\) 2.29030e14 1.71468 0.857338 0.514753i \(-0.172117\pi\)
0.857338 + 0.514753i \(0.172117\pi\)
\(150\) 0 0
\(151\) −1.99588e14 −1.37020 −0.685100 0.728449i \(-0.740242\pi\)
−0.685100 + 0.728449i \(0.740242\pi\)
\(152\) −2.64224e14 −1.73776
\(153\) 0 0
\(154\) −1.42459e14 −0.860607
\(155\) −1.10648e13 −0.0640895
\(156\) 0 0
\(157\) −1.70891e13 −0.0910692 −0.0455346 0.998963i \(-0.514499\pi\)
−0.0455346 + 0.998963i \(0.514499\pi\)
\(158\) 8.06119e13 0.412219
\(159\) 0 0
\(160\) 2.98147e14 1.40492
\(161\) 5.55335e14 2.51297
\(162\) 0 0
\(163\) −8.40458e13 −0.350992 −0.175496 0.984480i \(-0.556153\pi\)
−0.175496 + 0.984480i \(0.556153\pi\)
\(164\) 1.15180e14 0.462265
\(165\) 0 0
\(166\) 1.61760e14 0.600025
\(167\) −1.36056e14 −0.485356 −0.242678 0.970107i \(-0.578026\pi\)
−0.242678 + 0.970107i \(0.578026\pi\)
\(168\) 0 0
\(169\) −5.54562e13 −0.183099
\(170\) 1.64070e14 0.521328
\(171\) 0 0
\(172\) 1.41468e14 0.416604
\(173\) 4.60417e14 1.30573 0.652863 0.757476i \(-0.273568\pi\)
0.652863 + 0.757476i \(0.273568\pi\)
\(174\) 0 0
\(175\) 4.92456e14 1.29605
\(176\) −1.05876e14 −0.268513
\(177\) 0 0
\(178\) −6.18792e13 −0.145819
\(179\) −4.60935e13 −0.104736 −0.0523679 0.998628i \(-0.516677\pi\)
−0.0523679 + 0.998628i \(0.516677\pi\)
\(180\) 0 0
\(181\) 2.12381e13 0.0448956 0.0224478 0.999748i \(-0.492854\pi\)
0.0224478 + 0.999748i \(0.492854\pi\)
\(182\) −3.58469e14 −0.731119
\(183\) 0 0
\(184\) −7.74045e14 −1.47045
\(185\) 1.22710e14 0.225042
\(186\) 0 0
\(187\) −4.56648e14 −0.780928
\(188\) −7.41474e14 −1.22481
\(189\) 0 0
\(190\) 8.85567e14 1.36560
\(191\) 7.26194e14 1.08227 0.541135 0.840936i \(-0.317995\pi\)
0.541135 + 0.840936i \(0.317995\pi\)
\(192\) 0 0
\(193\) −8.27726e14 −1.15283 −0.576413 0.817158i \(-0.695548\pi\)
−0.576413 + 0.817158i \(0.695548\pi\)
\(194\) 1.39456e14 0.187813
\(195\) 0 0
\(196\) −7.98163e14 −1.00560
\(197\) −2.07518e14 −0.252944 −0.126472 0.991970i \(-0.540365\pi\)
−0.126472 + 0.991970i \(0.540365\pi\)
\(198\) 0 0
\(199\) 1.14891e15 1.31142 0.655710 0.755013i \(-0.272370\pi\)
0.655710 + 0.755013i \(0.272370\pi\)
\(200\) −6.86403e14 −0.758375
\(201\) 0 0
\(202\) 7.63110e14 0.790320
\(203\) 7.66650e14 0.768905
\(204\) 0 0
\(205\) −9.17966e14 −0.863826
\(206\) −1.04789e15 −0.955388
\(207\) 0 0
\(208\) −2.66416e14 −0.228112
\(209\) −2.46476e15 −2.04561
\(210\) 0 0
\(211\) 9.94611e14 0.775921 0.387960 0.921676i \(-0.373180\pi\)
0.387960 + 0.921676i \(0.373180\pi\)
\(212\) −7.75723e14 −0.586845
\(213\) 0 0
\(214\) −3.99263e14 −0.284164
\(215\) −1.12748e15 −0.778500
\(216\) 0 0
\(217\) −1.12274e14 −0.0729943
\(218\) −6.25982e14 −0.394998
\(219\) 0 0
\(220\) 1.76084e15 1.04706
\(221\) −1.14906e15 −0.663428
\(222\) 0 0
\(223\) −2.41276e15 −1.31381 −0.656905 0.753973i \(-0.728135\pi\)
−0.656905 + 0.753973i \(0.728135\pi\)
\(224\) 3.02527e15 1.60012
\(225\) 0 0
\(226\) −5.49026e14 −0.274087
\(227\) 3.06024e15 1.48452 0.742261 0.670111i \(-0.233753\pi\)
0.742261 + 0.670111i \(0.233753\pi\)
\(228\) 0 0
\(229\) −3.23848e14 −0.148392 −0.0741960 0.997244i \(-0.523639\pi\)
−0.0741960 + 0.997244i \(0.523639\pi\)
\(230\) 2.59427e15 1.15554
\(231\) 0 0
\(232\) −1.06858e15 −0.449921
\(233\) −1.42436e15 −0.583183 −0.291592 0.956543i \(-0.594185\pi\)
−0.291592 + 0.956543i \(0.594185\pi\)
\(234\) 0 0
\(235\) 5.90944e15 2.28879
\(236\) 9.24514e14 0.348326
\(237\) 0 0
\(238\) 1.66480e15 0.593763
\(239\) −4.22145e15 −1.46513 −0.732564 0.680699i \(-0.761676\pi\)
−0.732564 + 0.680699i \(0.761676\pi\)
\(240\) 0 0
\(241\) 1.09833e15 0.361095 0.180548 0.983566i \(-0.442213\pi\)
0.180548 + 0.983566i \(0.442213\pi\)
\(242\) 2.15825e14 0.0690718
\(243\) 0 0
\(244\) 1.76393e15 0.535115
\(245\) 6.36124e15 1.87915
\(246\) 0 0
\(247\) −6.20206e15 −1.73782
\(248\) 1.56491e14 0.0427123
\(249\) 0 0
\(250\) −4.41122e14 −0.114274
\(251\) 7.33521e15 1.85154 0.925771 0.378084i \(-0.123417\pi\)
0.925771 + 0.378084i \(0.123417\pi\)
\(252\) 0 0
\(253\) −7.22050e15 −1.73095
\(254\) −4.23730e15 −0.990079
\(255\) 0 0
\(256\) −3.39185e15 −0.753141
\(257\) 1.31250e15 0.284141 0.142070 0.989857i \(-0.454624\pi\)
0.142070 + 0.989857i \(0.454624\pi\)
\(258\) 0 0
\(259\) 1.24513e15 0.256309
\(260\) 4.43080e15 0.889520
\(261\) 0 0
\(262\) −2.07984e15 −0.397257
\(263\) −6.36587e15 −1.18617 −0.593083 0.805141i \(-0.702090\pi\)
−0.593083 + 0.805141i \(0.702090\pi\)
\(264\) 0 0
\(265\) 6.18240e15 1.09663
\(266\) 8.98577e15 1.55534
\(267\) 0 0
\(268\) 2.44860e15 0.403684
\(269\) −6.30700e15 −1.01492 −0.507461 0.861675i \(-0.669416\pi\)
−0.507461 + 0.861675i \(0.669416\pi\)
\(270\) 0 0
\(271\) 4.75698e15 0.729510 0.364755 0.931104i \(-0.381153\pi\)
0.364755 + 0.931104i \(0.381153\pi\)
\(272\) 1.23729e15 0.185256
\(273\) 0 0
\(274\) −3.02909e15 −0.432447
\(275\) −6.40294e15 −0.892724
\(276\) 0 0
\(277\) 1.25033e16 1.66306 0.831529 0.555482i \(-0.187466\pi\)
0.831529 + 0.555482i \(0.187466\pi\)
\(278\) −8.96499e14 −0.116482
\(279\) 0 0
\(280\) −1.52652e16 −1.89311
\(281\) −1.03066e15 −0.124889 −0.0624446 0.998048i \(-0.519890\pi\)
−0.0624446 + 0.998048i \(0.519890\pi\)
\(282\) 0 0
\(283\) 7.60681e15 0.880219 0.440109 0.897944i \(-0.354940\pi\)
0.440109 + 0.897944i \(0.354940\pi\)
\(284\) 3.87468e15 0.438194
\(285\) 0 0
\(286\) 4.66084e15 0.503599
\(287\) −9.31452e15 −0.983848
\(288\) 0 0
\(289\) −4.56810e15 −0.461211
\(290\) 3.58143e15 0.353565
\(291\) 0 0
\(292\) 9.90487e14 0.0935105
\(293\) −1.08336e16 −1.00031 −0.500154 0.865937i \(-0.666723\pi\)
−0.500154 + 0.865937i \(0.666723\pi\)
\(294\) 0 0
\(295\) −7.36824e15 −0.650910
\(296\) −1.73550e15 −0.149978
\(297\) 0 0
\(298\) 1.08564e16 0.898009
\(299\) −1.81689e16 −1.47051
\(300\) 0 0
\(301\) −1.14404e16 −0.886667
\(302\) −9.46080e15 −0.717600
\(303\) 0 0
\(304\) 6.67826e15 0.485272
\(305\) −1.40583e16 −0.999959
\(306\) 0 0
\(307\) −1.39379e16 −0.950166 −0.475083 0.879941i \(-0.657582\pi\)
−0.475083 + 0.879941i \(0.657582\pi\)
\(308\) 1.78671e16 1.19254
\(309\) 0 0
\(310\) −5.24489e14 −0.0335649
\(311\) −1.10565e16 −0.692908 −0.346454 0.938067i \(-0.612614\pi\)
−0.346454 + 0.938067i \(0.612614\pi\)
\(312\) 0 0
\(313\) 1.81823e16 1.09298 0.546488 0.837467i \(-0.315964\pi\)
0.546488 + 0.837467i \(0.315964\pi\)
\(314\) −8.10052e14 −0.0476947
\(315\) 0 0
\(316\) −1.01103e16 −0.571212
\(317\) 1.09738e16 0.607394 0.303697 0.952769i \(-0.401779\pi\)
0.303697 + 0.952769i \(0.401779\pi\)
\(318\) 0 0
\(319\) −9.96802e15 −0.529626
\(320\) 7.55848e15 0.393513
\(321\) 0 0
\(322\) 2.63238e16 1.31609
\(323\) 2.88036e16 1.41134
\(324\) 0 0
\(325\) −1.61117e16 −0.758403
\(326\) −3.98391e15 −0.183821
\(327\) 0 0
\(328\) 1.29829e16 0.575694
\(329\) 5.99626e16 2.60680
\(330\) 0 0
\(331\) −2.14295e16 −0.895632 −0.447816 0.894126i \(-0.647798\pi\)
−0.447816 + 0.894126i \(0.647798\pi\)
\(332\) −2.02879e16 −0.831455
\(333\) 0 0
\(334\) −6.44927e15 −0.254190
\(335\) −1.95150e16 −0.754356
\(336\) 0 0
\(337\) −1.47789e16 −0.549602 −0.274801 0.961501i \(-0.588612\pi\)
−0.274801 + 0.961501i \(0.588612\pi\)
\(338\) −2.62872e15 −0.0958926
\(339\) 0 0
\(340\) −2.05775e16 −0.722405
\(341\) 1.45979e15 0.0502789
\(342\) 0 0
\(343\) 1.79651e16 0.595686
\(344\) 1.59461e16 0.518829
\(345\) 0 0
\(346\) 2.18245e16 0.683833
\(347\) −5.99115e15 −0.184234 −0.0921168 0.995748i \(-0.529363\pi\)
−0.0921168 + 0.995748i \(0.529363\pi\)
\(348\) 0 0
\(349\) 5.41396e16 1.60380 0.801900 0.597459i \(-0.203823\pi\)
0.801900 + 0.597459i \(0.203823\pi\)
\(350\) 2.33432e16 0.678764
\(351\) 0 0
\(352\) −3.93347e16 −1.10217
\(353\) 1.22511e16 0.337008 0.168504 0.985701i \(-0.446106\pi\)
0.168504 + 0.985701i \(0.446106\pi\)
\(354\) 0 0
\(355\) −3.08806e16 −0.818844
\(356\) 7.76084e15 0.202062
\(357\) 0 0
\(358\) −2.18491e15 −0.0548522
\(359\) 2.85295e16 0.703365 0.351683 0.936119i \(-0.385610\pi\)
0.351683 + 0.936119i \(0.385610\pi\)
\(360\) 0 0
\(361\) 1.13415e17 2.69694
\(362\) 1.00672e15 0.0235127
\(363\) 0 0
\(364\) 4.49590e16 1.01311
\(365\) −7.89403e15 −0.174741
\(366\) 0 0
\(367\) −3.02329e16 −0.645878 −0.322939 0.946420i \(-0.604671\pi\)
−0.322939 + 0.946420i \(0.604671\pi\)
\(368\) 1.95640e16 0.410626
\(369\) 0 0
\(370\) 5.81664e15 0.117859
\(371\) 6.27323e16 1.24899
\(372\) 0 0
\(373\) −6.45406e16 −1.24087 −0.620434 0.784259i \(-0.713044\pi\)
−0.620434 + 0.784259i \(0.713044\pi\)
\(374\) −2.16459e16 −0.408987
\(375\) 0 0
\(376\) −8.35779e16 −1.52535
\(377\) −2.50825e16 −0.449938
\(378\) 0 0
\(379\) 3.08975e16 0.535511 0.267755 0.963487i \(-0.413718\pi\)
0.267755 + 0.963487i \(0.413718\pi\)
\(380\) −1.11067e17 −1.89231
\(381\) 0 0
\(382\) 3.44228e16 0.566806
\(383\) −7.84138e16 −1.26941 −0.634703 0.772756i \(-0.718877\pi\)
−0.634703 + 0.772756i \(0.718877\pi\)
\(384\) 0 0
\(385\) −1.42398e17 −2.22848
\(386\) −3.92356e16 −0.603758
\(387\) 0 0
\(388\) −1.74904e16 −0.260252
\(389\) −2.94320e16 −0.430672 −0.215336 0.976540i \(-0.569085\pi\)
−0.215336 + 0.976540i \(0.569085\pi\)
\(390\) 0 0
\(391\) 8.43802e16 1.19424
\(392\) −8.99677e16 −1.25235
\(393\) 0 0
\(394\) −9.83667e15 −0.132472
\(395\) 8.05775e16 1.06741
\(396\) 0 0
\(397\) −3.94887e16 −0.506214 −0.253107 0.967438i \(-0.581452\pi\)
−0.253107 + 0.967438i \(0.581452\pi\)
\(398\) 5.44603e16 0.686816
\(399\) 0 0
\(400\) 1.73488e16 0.211777
\(401\) 2.71623e16 0.326233 0.163117 0.986607i \(-0.447845\pi\)
0.163117 + 0.986607i \(0.447845\pi\)
\(402\) 0 0
\(403\) 3.67326e15 0.0427139
\(404\) −9.57087e16 −1.09515
\(405\) 0 0
\(406\) 3.63405e16 0.402690
\(407\) −1.61892e16 −0.176547
\(408\) 0 0
\(409\) 6.86344e16 0.725004 0.362502 0.931983i \(-0.381923\pi\)
0.362502 + 0.931983i \(0.381923\pi\)
\(410\) −4.35131e16 −0.452402
\(411\) 0 0
\(412\) 1.31426e17 1.32388
\(413\) −7.47649e16 −0.741349
\(414\) 0 0
\(415\) 1.61691e17 1.55372
\(416\) −9.89780e16 −0.936337
\(417\) 0 0
\(418\) −1.16833e17 −1.07133
\(419\) 1.20340e17 1.08647 0.543237 0.839579i \(-0.317198\pi\)
0.543237 + 0.839579i \(0.317198\pi\)
\(420\) 0 0
\(421\) −1.94529e17 −1.70275 −0.851373 0.524561i \(-0.824229\pi\)
−0.851373 + 0.524561i \(0.824229\pi\)
\(422\) 4.71462e16 0.406365
\(423\) 0 0
\(424\) −8.74384e16 −0.730843
\(425\) 7.48261e16 0.615921
\(426\) 0 0
\(427\) −1.42648e17 −1.13890
\(428\) 5.00753e16 0.393767
\(429\) 0 0
\(430\) −5.34444e16 −0.407715
\(431\) −1.46134e17 −1.09812 −0.549059 0.835784i \(-0.685014\pi\)
−0.549059 + 0.835784i \(0.685014\pi\)
\(432\) 0 0
\(433\) 2.42578e17 1.76880 0.884401 0.466727i \(-0.154567\pi\)
0.884401 + 0.466727i \(0.154567\pi\)
\(434\) −5.32195e15 −0.0382285
\(435\) 0 0
\(436\) 7.85102e16 0.547349
\(437\) 4.55442e17 3.12827
\(438\) 0 0
\(439\) 1.23684e17 0.824697 0.412349 0.911026i \(-0.364709\pi\)
0.412349 + 0.911026i \(0.364709\pi\)
\(440\) 1.98479e17 1.30399
\(441\) 0 0
\(442\) −5.44675e16 −0.347450
\(443\) −1.35638e16 −0.0852622 −0.0426311 0.999091i \(-0.513574\pi\)
−0.0426311 + 0.999091i \(0.513574\pi\)
\(444\) 0 0
\(445\) −6.18528e16 −0.377589
\(446\) −1.14369e17 −0.688068
\(447\) 0 0
\(448\) 7.66952e16 0.448189
\(449\) 8.80752e15 0.0507286 0.0253643 0.999678i \(-0.491925\pi\)
0.0253643 + 0.999678i \(0.491925\pi\)
\(450\) 0 0
\(451\) 1.21108e17 0.677680
\(452\) 6.88584e16 0.379802
\(453\) 0 0
\(454\) 1.45060e17 0.777473
\(455\) −3.58316e17 −1.89318
\(456\) 0 0
\(457\) −1.03296e17 −0.530430 −0.265215 0.964189i \(-0.585443\pi\)
−0.265215 + 0.964189i \(0.585443\pi\)
\(458\) −1.53509e16 −0.0777158
\(459\) 0 0
\(460\) −3.25371e17 −1.60123
\(461\) 1.99772e17 0.969344 0.484672 0.874696i \(-0.338939\pi\)
0.484672 + 0.874696i \(0.338939\pi\)
\(462\) 0 0
\(463\) −9.36783e16 −0.441939 −0.220970 0.975281i \(-0.570922\pi\)
−0.220970 + 0.975281i \(0.570922\pi\)
\(464\) 2.70084e16 0.125641
\(465\) 0 0
\(466\) −6.75168e16 −0.305424
\(467\) 2.49900e17 1.11482 0.557412 0.830236i \(-0.311795\pi\)
0.557412 + 0.830236i \(0.311795\pi\)
\(468\) 0 0
\(469\) −1.98017e17 −0.859168
\(470\) 2.80117e17 1.19868
\(471\) 0 0
\(472\) 1.04210e17 0.433796
\(473\) 1.48749e17 0.610741
\(474\) 0 0
\(475\) 4.03874e17 1.61338
\(476\) −2.08799e17 −0.822778
\(477\) 0 0
\(478\) −2.00104e17 −0.767315
\(479\) −2.24020e17 −0.847435 −0.423718 0.905794i \(-0.639275\pi\)
−0.423718 + 0.905794i \(0.639275\pi\)
\(480\) 0 0
\(481\) −4.07368e16 −0.149984
\(482\) 5.20626e16 0.189112
\(483\) 0 0
\(484\) −2.70686e16 −0.0957129
\(485\) 1.39396e17 0.486328
\(486\) 0 0
\(487\) −4.62933e17 −1.57246 −0.786230 0.617934i \(-0.787970\pi\)
−0.786230 + 0.617934i \(0.787970\pi\)
\(488\) 1.98828e17 0.666419
\(489\) 0 0
\(490\) 3.01533e17 0.984148
\(491\) −2.84047e17 −0.914873 −0.457436 0.889242i \(-0.651232\pi\)
−0.457436 + 0.889242i \(0.651232\pi\)
\(492\) 0 0
\(493\) 1.16488e17 0.365407
\(494\) −2.93988e17 −0.910132
\(495\) 0 0
\(496\) −3.95529e15 −0.0119275
\(497\) −3.13343e17 −0.932617
\(498\) 0 0
\(499\) −4.52566e17 −1.31229 −0.656143 0.754637i \(-0.727813\pi\)
−0.656143 + 0.754637i \(0.727813\pi\)
\(500\) 5.53252e16 0.158350
\(501\) 0 0
\(502\) 3.47701e17 0.969688
\(503\) −4.43954e17 −1.22221 −0.611105 0.791549i \(-0.709275\pi\)
−0.611105 + 0.791549i \(0.709275\pi\)
\(504\) 0 0
\(505\) 7.62784e17 2.04648
\(506\) −3.42264e17 −0.906530
\(507\) 0 0
\(508\) 5.31439e17 1.37195
\(509\) −3.83569e17 −0.977638 −0.488819 0.872385i \(-0.662572\pi\)
−0.488819 + 0.872385i \(0.662572\pi\)
\(510\) 0 0
\(511\) −8.01001e16 −0.199020
\(512\) 1.99557e17 0.489567
\(513\) 0 0
\(514\) 6.22146e16 0.148810
\(515\) −1.04744e18 −2.47391
\(516\) 0 0
\(517\) −7.79636e17 −1.79558
\(518\) 5.90210e16 0.134234
\(519\) 0 0
\(520\) 4.99434e17 1.10779
\(521\) 7.08020e17 1.55096 0.775479 0.631373i \(-0.217508\pi\)
0.775479 + 0.631373i \(0.217508\pi\)
\(522\) 0 0
\(523\) −1.91474e17 −0.409119 −0.204560 0.978854i \(-0.565576\pi\)
−0.204560 + 0.978854i \(0.565576\pi\)
\(524\) 2.60852e17 0.550479
\(525\) 0 0
\(526\) −3.01753e17 −0.621218
\(527\) −1.70594e16 −0.0346891
\(528\) 0 0
\(529\) 8.30180e17 1.64706
\(530\) 2.93056e17 0.574324
\(531\) 0 0
\(532\) −1.12699e18 −2.15523
\(533\) 3.04744e17 0.575715
\(534\) 0 0
\(535\) −3.99093e17 −0.735824
\(536\) 2.76002e17 0.502738
\(537\) 0 0
\(538\) −2.98962e17 −0.531534
\(539\) −8.39242e17 −1.47421
\(540\) 0 0
\(541\) −1.65933e17 −0.284544 −0.142272 0.989828i \(-0.545441\pi\)
−0.142272 + 0.989828i \(0.545441\pi\)
\(542\) 2.25489e17 0.382058
\(543\) 0 0
\(544\) 4.59674e17 0.760426
\(545\) −6.25715e17 −1.02282
\(546\) 0 0
\(547\) −1.62847e17 −0.259934 −0.129967 0.991518i \(-0.541487\pi\)
−0.129967 + 0.991518i \(0.541487\pi\)
\(548\) 3.79906e17 0.599243
\(549\) 0 0
\(550\) −3.03510e17 −0.467537
\(551\) 6.28745e17 0.957170
\(552\) 0 0
\(553\) 8.17613e17 1.21572
\(554\) 5.92679e17 0.870975
\(555\) 0 0
\(556\) 1.12438e17 0.161409
\(557\) −6.57534e17 −0.932953 −0.466476 0.884534i \(-0.654477\pi\)
−0.466476 + 0.884534i \(0.654477\pi\)
\(558\) 0 0
\(559\) 3.74298e17 0.518848
\(560\) 3.85828e17 0.528654
\(561\) 0 0
\(562\) −4.88551e16 −0.0654069
\(563\) −1.83396e17 −0.242708 −0.121354 0.992609i \(-0.538724\pi\)
−0.121354 + 0.992609i \(0.538724\pi\)
\(564\) 0 0
\(565\) −5.48791e17 −0.709729
\(566\) 3.60575e17 0.460988
\(567\) 0 0
\(568\) 4.36748e17 0.545716
\(569\) 9.52474e17 1.17658 0.588292 0.808648i \(-0.299800\pi\)
0.588292 + 0.808648i \(0.299800\pi\)
\(570\) 0 0
\(571\) 2.25209e17 0.271926 0.135963 0.990714i \(-0.456587\pi\)
0.135963 + 0.990714i \(0.456587\pi\)
\(572\) −5.84559e17 −0.697837
\(573\) 0 0
\(574\) −4.41524e17 −0.515260
\(575\) 1.18315e18 1.36520
\(576\) 0 0
\(577\) 7.13907e17 0.805377 0.402688 0.915337i \(-0.368076\pi\)
0.402688 + 0.915337i \(0.368076\pi\)
\(578\) −2.16535e17 −0.241545
\(579\) 0 0
\(580\) −4.49181e17 −0.489936
\(581\) 1.64067e18 1.76960
\(582\) 0 0
\(583\) −8.15648e17 −0.860315
\(584\) 1.11646e17 0.116456
\(585\) 0 0
\(586\) −5.13531e17 −0.523880
\(587\) 1.12264e17 0.113264 0.0566321 0.998395i \(-0.481964\pi\)
0.0566321 + 0.998395i \(0.481964\pi\)
\(588\) 0 0
\(589\) −9.20778e16 −0.0908669
\(590\) −3.49267e17 −0.340894
\(591\) 0 0
\(592\) 4.38646e16 0.0418816
\(593\) −9.96270e16 −0.0940852 −0.0470426 0.998893i \(-0.514980\pi\)
−0.0470426 + 0.998893i \(0.514980\pi\)
\(594\) 0 0
\(595\) 1.66409e18 1.53751
\(596\) −1.36160e18 −1.24437
\(597\) 0 0
\(598\) −8.61238e17 −0.770132
\(599\) 4.32020e17 0.382146 0.191073 0.981576i \(-0.438803\pi\)
0.191073 + 0.981576i \(0.438803\pi\)
\(600\) 0 0
\(601\) −1.10657e18 −0.957841 −0.478921 0.877858i \(-0.658972\pi\)
−0.478921 + 0.877858i \(0.658972\pi\)
\(602\) −5.42296e17 −0.464365
\(603\) 0 0
\(604\) 1.18657e18 0.994379
\(605\) 2.15732e17 0.178857
\(606\) 0 0
\(607\) 1.71192e18 1.38918 0.694588 0.719408i \(-0.255587\pi\)
0.694588 + 0.719408i \(0.255587\pi\)
\(608\) 2.48109e18 1.99191
\(609\) 0 0
\(610\) −6.66384e17 −0.523698
\(611\) −1.96180e18 −1.52541
\(612\) 0 0
\(613\) 6.48443e17 0.493604 0.246802 0.969066i \(-0.420620\pi\)
0.246802 + 0.969066i \(0.420620\pi\)
\(614\) −6.60682e17 −0.497620
\(615\) 0 0
\(616\) 2.01395e18 1.48517
\(617\) −6.76815e17 −0.493874 −0.246937 0.969032i \(-0.579424\pi\)
−0.246937 + 0.969032i \(0.579424\pi\)
\(618\) 0 0
\(619\) 1.89819e16 0.0135628 0.00678142 0.999977i \(-0.497841\pi\)
0.00678142 + 0.999977i \(0.497841\pi\)
\(620\) 6.57811e16 0.0465110
\(621\) 0 0
\(622\) −5.24097e17 −0.362889
\(623\) −6.27615e17 −0.430052
\(624\) 0 0
\(625\) −1.69129e18 −1.13501
\(626\) 8.61872e17 0.572413
\(627\) 0 0
\(628\) 1.01596e17 0.0660906
\(629\) 1.89190e17 0.121806
\(630\) 0 0
\(631\) −2.82684e15 −0.00178283 −0.000891415 1.00000i \(-0.500284\pi\)
−0.000891415 1.00000i \(0.500284\pi\)
\(632\) −1.13962e18 −0.711374
\(633\) 0 0
\(634\) 5.20174e17 0.318104
\(635\) −4.23549e18 −2.56374
\(636\) 0 0
\(637\) −2.11179e18 −1.25240
\(638\) −4.72501e17 −0.277375
\(639\) 0 0
\(640\) −2.08414e18 −1.19883
\(641\) 2.48831e18 1.41686 0.708431 0.705780i \(-0.249403\pi\)
0.708431 + 0.705780i \(0.249403\pi\)
\(642\) 0 0
\(643\) −3.13945e18 −1.75179 −0.875895 0.482501i \(-0.839728\pi\)
−0.875895 + 0.482501i \(0.839728\pi\)
\(644\) −3.30151e18 −1.82371
\(645\) 0 0
\(646\) 1.36534e18 0.739145
\(647\) −3.01794e18 −1.61745 −0.808727 0.588184i \(-0.799843\pi\)
−0.808727 + 0.588184i \(0.799843\pi\)
\(648\) 0 0
\(649\) 9.72097e17 0.510645
\(650\) −7.63722e17 −0.397190
\(651\) 0 0
\(652\) 4.99659e17 0.254721
\(653\) 1.86528e18 0.941475 0.470738 0.882273i \(-0.343988\pi\)
0.470738 + 0.882273i \(0.343988\pi\)
\(654\) 0 0
\(655\) −2.07895e18 −1.02867
\(656\) −3.28142e17 −0.160763
\(657\) 0 0
\(658\) 2.84233e18 1.36523
\(659\) −1.62853e18 −0.774533 −0.387267 0.921968i \(-0.626581\pi\)
−0.387267 + 0.921968i \(0.626581\pi\)
\(660\) 0 0
\(661\) 1.66052e18 0.774347 0.387173 0.922007i \(-0.373451\pi\)
0.387173 + 0.922007i \(0.373451\pi\)
\(662\) −1.01579e18 −0.469060
\(663\) 0 0
\(664\) −2.28682e18 −1.03547
\(665\) 8.98194e18 4.02744
\(666\) 0 0
\(667\) 1.84191e18 0.809935
\(668\) 8.08864e17 0.352232
\(669\) 0 0
\(670\) −9.25041e17 −0.395071
\(671\) 1.85472e18 0.784478
\(672\) 0 0
\(673\) 3.52806e18 1.46365 0.731826 0.681491i \(-0.238668\pi\)
0.731826 + 0.681491i \(0.238668\pi\)
\(674\) −7.00545e17 −0.287837
\(675\) 0 0
\(676\) 3.29692e17 0.132879
\(677\) 1.75400e18 0.700169 0.350084 0.936718i \(-0.386153\pi\)
0.350084 + 0.936718i \(0.386153\pi\)
\(678\) 0 0
\(679\) 1.41444e18 0.553899
\(680\) −2.31947e18 −0.899665
\(681\) 0 0
\(682\) 6.91963e16 0.0263320
\(683\) −7.47953e17 −0.281929 −0.140964 0.990015i \(-0.545020\pi\)
−0.140964 + 0.990015i \(0.545020\pi\)
\(684\) 0 0
\(685\) −3.02780e18 −1.11979
\(686\) 8.51574e17 0.311972
\(687\) 0 0
\(688\) −4.03036e17 −0.144884
\(689\) −2.05242e18 −0.730870
\(690\) 0 0
\(691\) 3.09486e18 1.08152 0.540760 0.841177i \(-0.318137\pi\)
0.540760 + 0.841177i \(0.318137\pi\)
\(692\) −2.73722e18 −0.947588
\(693\) 0 0
\(694\) −2.83990e17 −0.0964867
\(695\) −8.96116e17 −0.301622
\(696\) 0 0
\(697\) −1.41529e18 −0.467555
\(698\) 2.56631e18 0.839940
\(699\) 0 0
\(700\) −2.92769e18 −0.940564
\(701\) 3.92104e18 1.24805 0.624027 0.781402i \(-0.285495\pi\)
0.624027 + 0.781402i \(0.285495\pi\)
\(702\) 0 0
\(703\) 1.02115e18 0.319066
\(704\) −9.97195e17 −0.308715
\(705\) 0 0
\(706\) 5.80723e17 0.176498
\(707\) 7.73991e18 2.33082
\(708\) 0 0
\(709\) 9.54184e17 0.282119 0.141059 0.990001i \(-0.454949\pi\)
0.141059 + 0.990001i \(0.454949\pi\)
\(710\) −1.46379e18 −0.428844
\(711\) 0 0
\(712\) 8.74791e17 0.251643
\(713\) −2.69742e17 −0.0768894
\(714\) 0 0
\(715\) 4.65885e18 1.30404
\(716\) 2.74030e17 0.0760087
\(717\) 0 0
\(718\) 1.35235e18 0.368366
\(719\) −1.29564e18 −0.349740 −0.174870 0.984592i \(-0.555950\pi\)
−0.174870 + 0.984592i \(0.555950\pi\)
\(720\) 0 0
\(721\) −1.06283e19 −2.81764
\(722\) 5.37603e18 1.41244
\(723\) 0 0
\(724\) −1.26262e17 −0.0325816
\(725\) 1.63335e18 0.417718
\(726\) 0 0
\(727\) −2.40973e18 −0.605334 −0.302667 0.953096i \(-0.597877\pi\)
−0.302667 + 0.953096i \(0.597877\pi\)
\(728\) 5.06771e18 1.26171
\(729\) 0 0
\(730\) −3.74190e17 −0.0915153
\(731\) −1.73831e18 −0.421371
\(732\) 0 0
\(733\) −4.02839e18 −0.959303 −0.479651 0.877459i \(-0.659237\pi\)
−0.479651 + 0.877459i \(0.659237\pi\)
\(734\) −1.43309e18 −0.338259
\(735\) 0 0
\(736\) 7.26834e18 1.68550
\(737\) 2.57462e18 0.591800
\(738\) 0 0
\(739\) −4.93863e18 −1.11537 −0.557683 0.830054i \(-0.688310\pi\)
−0.557683 + 0.830054i \(0.688310\pi\)
\(740\) −7.29520e17 −0.163317
\(741\) 0 0
\(742\) 2.97361e18 0.654123
\(743\) −2.94560e18 −0.642312 −0.321156 0.947026i \(-0.604071\pi\)
−0.321156 + 0.947026i \(0.604071\pi\)
\(744\) 0 0
\(745\) 1.08518e19 2.32533
\(746\) −3.05933e18 −0.649866
\(747\) 0 0
\(748\) 2.71481e18 0.566734
\(749\) −4.04956e18 −0.838062
\(750\) 0 0
\(751\) −5.55685e17 −0.113024 −0.0565118 0.998402i \(-0.517998\pi\)
−0.0565118 + 0.998402i \(0.517998\pi\)
\(752\) 2.11243e18 0.425957
\(753\) 0 0
\(754\) −1.18895e18 −0.235641
\(755\) −9.45676e18 −1.85818
\(756\) 0 0
\(757\) 1.46981e18 0.283882 0.141941 0.989875i \(-0.454666\pi\)
0.141941 + 0.989875i \(0.454666\pi\)
\(758\) 1.46459e18 0.280457
\(759\) 0 0
\(760\) −1.25193e19 −2.35664
\(761\) 4.18599e17 0.0781265 0.0390632 0.999237i \(-0.487563\pi\)
0.0390632 + 0.999237i \(0.487563\pi\)
\(762\) 0 0
\(763\) −6.34908e18 −1.16493
\(764\) −4.31728e18 −0.785423
\(765\) 0 0
\(766\) −3.71694e18 −0.664812
\(767\) 2.44609e18 0.433813
\(768\) 0 0
\(769\) −3.05614e17 −0.0532907 −0.0266454 0.999645i \(-0.508482\pi\)
−0.0266454 + 0.999645i \(0.508482\pi\)
\(770\) −6.74991e18 −1.16710
\(771\) 0 0
\(772\) 4.92090e18 0.836627
\(773\) −1.24126e17 −0.0209264 −0.0104632 0.999945i \(-0.503331\pi\)
−0.0104632 + 0.999945i \(0.503331\pi\)
\(774\) 0 0
\(775\) −2.39200e17 −0.0396552
\(776\) −1.97149e18 −0.324111
\(777\) 0 0
\(778\) −1.39512e18 −0.225551
\(779\) −7.63903e18 −1.22474
\(780\) 0 0
\(781\) 4.07410e18 0.642392
\(782\) 3.99976e18 0.625447
\(783\) 0 0
\(784\) 2.27393e18 0.349722
\(785\) −8.09706e17 −0.123502
\(786\) 0 0
\(787\) 1.31170e18 0.196788 0.0983941 0.995148i \(-0.468629\pi\)
0.0983941 + 0.995148i \(0.468629\pi\)
\(788\) 1.23371e18 0.183566
\(789\) 0 0
\(790\) 3.81951e18 0.559025
\(791\) −5.56854e18 −0.808340
\(792\) 0 0
\(793\) 4.66702e18 0.666444
\(794\) −1.87183e18 −0.265114
\(795\) 0 0
\(796\) −6.83038e18 −0.951721
\(797\) 2.90092e18 0.400920 0.200460 0.979702i \(-0.435756\pi\)
0.200460 + 0.979702i \(0.435756\pi\)
\(798\) 0 0
\(799\) 9.11099e18 1.23883
\(800\) 6.44537e18 0.869287
\(801\) 0 0
\(802\) 1.28754e18 0.170855
\(803\) 1.04147e18 0.137086
\(804\) 0 0
\(805\) 2.63126e19 3.40793
\(806\) 1.74119e17 0.0223701
\(807\) 0 0
\(808\) −1.07881e19 −1.36387
\(809\) −1.28697e19 −1.61400 −0.807001 0.590550i \(-0.798911\pi\)
−0.807001 + 0.590550i \(0.798911\pi\)
\(810\) 0 0
\(811\) −1.15282e19 −1.42275 −0.711373 0.702814i \(-0.751926\pi\)
−0.711373 + 0.702814i \(0.751926\pi\)
\(812\) −4.55780e18 −0.558009
\(813\) 0 0
\(814\) −7.67394e17 −0.0924613
\(815\) −3.98221e18 −0.475992
\(816\) 0 0
\(817\) −9.38254e18 −1.10377
\(818\) 3.25338e18 0.379698
\(819\) 0 0
\(820\) 5.45738e18 0.626894
\(821\) 1.62326e18 0.184994 0.0924969 0.995713i \(-0.470515\pi\)
0.0924969 + 0.995713i \(0.470515\pi\)
\(822\) 0 0
\(823\) 2.78739e18 0.312679 0.156339 0.987703i \(-0.450031\pi\)
0.156339 + 0.987703i \(0.450031\pi\)
\(824\) 1.48141e19 1.64873
\(825\) 0 0
\(826\) −3.54398e18 −0.388258
\(827\) 5.09011e18 0.553276 0.276638 0.960974i \(-0.410780\pi\)
0.276638 + 0.960974i \(0.410780\pi\)
\(828\) 0 0
\(829\) −1.26916e19 −1.35804 −0.679021 0.734119i \(-0.737595\pi\)
−0.679021 + 0.734119i \(0.737595\pi\)
\(830\) 7.66443e18 0.813715
\(831\) 0 0
\(832\) −2.50924e18 −0.262265
\(833\) 9.80756e18 1.01711
\(834\) 0 0
\(835\) −6.44652e18 −0.658208
\(836\) 1.46532e19 1.48454
\(837\) 0 0
\(838\) 5.70432e18 0.569008
\(839\) −6.85426e18 −0.678434 −0.339217 0.940708i \(-0.610162\pi\)
−0.339217 + 0.940708i \(0.610162\pi\)
\(840\) 0 0
\(841\) −7.71784e18 −0.752180
\(842\) −9.22098e18 −0.891761
\(843\) 0 0
\(844\) −5.91305e18 −0.563100
\(845\) −2.62760e18 −0.248308
\(846\) 0 0
\(847\) 2.18902e18 0.203708
\(848\) 2.21000e18 0.204089
\(849\) 0 0
\(850\) 3.54688e18 0.322570
\(851\) 2.99147e18 0.269986
\(852\) 0 0
\(853\) 2.01942e18 0.179497 0.0897485 0.995964i \(-0.471394\pi\)
0.0897485 + 0.995964i \(0.471394\pi\)
\(854\) −6.76175e18 −0.596462
\(855\) 0 0
\(856\) 5.64441e18 0.490388
\(857\) −1.04505e19 −0.901078 −0.450539 0.892757i \(-0.648768\pi\)
−0.450539 + 0.892757i \(0.648768\pi\)
\(858\) 0 0
\(859\) −1.15457e19 −0.980538 −0.490269 0.871571i \(-0.663102\pi\)
−0.490269 + 0.871571i \(0.663102\pi\)
\(860\) 6.70296e18 0.564972
\(861\) 0 0
\(862\) −6.92699e18 −0.575105
\(863\) 2.27301e19 1.87297 0.936485 0.350707i \(-0.114059\pi\)
0.936485 + 0.350707i \(0.114059\pi\)
\(864\) 0 0
\(865\) 2.18152e19 1.77074
\(866\) 1.14986e19 0.926356
\(867\) 0 0
\(868\) 6.67475e17 0.0529733
\(869\) −1.06306e19 −0.837397
\(870\) 0 0
\(871\) 6.47852e18 0.502757
\(872\) 8.84956e18 0.681655
\(873\) 0 0
\(874\) 2.15887e19 1.63833
\(875\) −4.47411e18 −0.337019
\(876\) 0 0
\(877\) 8.07848e18 0.599560 0.299780 0.954008i \(-0.403087\pi\)
0.299780 + 0.954008i \(0.403087\pi\)
\(878\) 5.86283e18 0.431910
\(879\) 0 0
\(880\) −5.01656e18 −0.364140
\(881\) 3.87936e18 0.279523 0.139761 0.990185i \(-0.455366\pi\)
0.139761 + 0.990185i \(0.455366\pi\)
\(882\) 0 0
\(883\) −7.80475e18 −0.554133 −0.277067 0.960851i \(-0.589362\pi\)
−0.277067 + 0.960851i \(0.589362\pi\)
\(884\) 6.83128e18 0.481462
\(885\) 0 0
\(886\) −6.42945e17 −0.0446534
\(887\) −1.49223e19 −1.02880 −0.514401 0.857550i \(-0.671986\pi\)
−0.514401 + 0.857550i \(0.671986\pi\)
\(888\) 0 0
\(889\) −4.29771e19 −2.91995
\(890\) −2.93192e18 −0.197750
\(891\) 0 0
\(892\) 1.43441e19 0.953456
\(893\) 4.91765e19 3.24507
\(894\) 0 0
\(895\) −2.18398e18 −0.142036
\(896\) −2.11476e19 −1.36539
\(897\) 0 0
\(898\) 4.17491e17 0.0265675
\(899\) −3.72383e17 −0.0235262
\(900\) 0 0
\(901\) 9.53183e18 0.593561
\(902\) 5.74071e18 0.354914
\(903\) 0 0
\(904\) 7.76162e18 0.472996
\(905\) 1.00629e18 0.0608846
\(906\) 0 0
\(907\) 2.75513e19 1.64322 0.821608 0.570053i \(-0.193077\pi\)
0.821608 + 0.570053i \(0.193077\pi\)
\(908\) −1.81934e19 −1.07735
\(909\) 0 0
\(910\) −1.69848e19 −0.991496
\(911\) −3.30596e19 −1.91614 −0.958071 0.286530i \(-0.907498\pi\)
−0.958071 + 0.286530i \(0.907498\pi\)
\(912\) 0 0
\(913\) −2.13320e19 −1.21891
\(914\) −4.89640e18 −0.277796
\(915\) 0 0
\(916\) 1.92530e18 0.107691
\(917\) −2.10949e19 −1.17160
\(918\) 0 0
\(919\) −1.99555e19 −1.09273 −0.546365 0.837547i \(-0.683989\pi\)
−0.546365 + 0.837547i \(0.683989\pi\)
\(920\) −3.66754e19 −1.99413
\(921\) 0 0
\(922\) 9.46950e18 0.507664
\(923\) 1.02517e19 0.545736
\(924\) 0 0
\(925\) 2.65275e18 0.139244
\(926\) −4.44051e18 −0.231452
\(927\) 0 0
\(928\) 1.00341e19 0.515722
\(929\) −2.23597e19 −1.14120 −0.570602 0.821227i \(-0.693290\pi\)
−0.570602 + 0.821227i \(0.693290\pi\)
\(930\) 0 0
\(931\) 5.29363e19 2.66428
\(932\) 8.46792e18 0.423227
\(933\) 0 0
\(934\) 1.18457e19 0.583854
\(935\) −2.16366e19 −1.05904
\(936\) 0 0
\(937\) −1.36964e19 −0.661149 −0.330574 0.943780i \(-0.607242\pi\)
−0.330574 + 0.943780i \(0.607242\pi\)
\(938\) −9.38632e18 −0.449963
\(939\) 0 0
\(940\) −3.51321e19 −1.66101
\(941\) 2.10985e19 0.990649 0.495325 0.868708i \(-0.335049\pi\)
0.495325 + 0.868708i \(0.335049\pi\)
\(942\) 0 0
\(943\) −2.23785e19 −1.03635
\(944\) −2.63390e18 −0.121138
\(945\) 0 0
\(946\) 7.05096e18 0.319857
\(947\) 1.78205e19 0.802868 0.401434 0.915888i \(-0.368512\pi\)
0.401434 + 0.915888i \(0.368512\pi\)
\(948\) 0 0
\(949\) 2.62064e18 0.116460
\(950\) 1.91443e19 0.844959
\(951\) 0 0
\(952\) −2.35355e19 −1.02467
\(953\) 1.66045e19 0.717996 0.358998 0.933338i \(-0.383119\pi\)
0.358998 + 0.933338i \(0.383119\pi\)
\(954\) 0 0
\(955\) 3.44081e19 1.46771
\(956\) 2.50969e19 1.06327
\(957\) 0 0
\(958\) −1.06189e19 −0.443818
\(959\) −3.07228e19 −1.27538
\(960\) 0 0
\(961\) −2.43630e19 −0.997767
\(962\) −1.93099e18 −0.0785494
\(963\) 0 0
\(964\) −6.52966e18 −0.262053
\(965\) −3.92188e19 −1.56339
\(966\) 0 0
\(967\) 7.37484e18 0.290055 0.145028 0.989428i \(-0.453673\pi\)
0.145028 + 0.989428i \(0.453673\pi\)
\(968\) −3.05113e18 −0.119199
\(969\) 0 0
\(970\) 6.60760e18 0.254699
\(971\) 3.63645e19 1.39236 0.696182 0.717865i \(-0.254881\pi\)
0.696182 + 0.717865i \(0.254881\pi\)
\(972\) 0 0
\(973\) −9.09282e18 −0.343530
\(974\) −2.19438e19 −0.823528
\(975\) 0 0
\(976\) −5.02536e18 −0.186099
\(977\) 4.29777e18 0.158099 0.0790493 0.996871i \(-0.474812\pi\)
0.0790493 + 0.996871i \(0.474812\pi\)
\(978\) 0 0
\(979\) 8.16028e18 0.296222
\(980\) −3.78181e19 −1.36373
\(981\) 0 0
\(982\) −1.34643e19 −0.479136
\(983\) 4.43027e19 1.56615 0.783074 0.621929i \(-0.213651\pi\)
0.783074 + 0.621929i \(0.213651\pi\)
\(984\) 0 0
\(985\) −9.83248e18 −0.343026
\(986\) 5.52174e18 0.191371
\(987\) 0 0
\(988\) 3.68718e19 1.26117
\(989\) −2.74861e19 −0.933981
\(990\) 0 0
\(991\) −4.66719e19 −1.56523 −0.782613 0.622509i \(-0.786113\pi\)
−0.782613 + 0.622509i \(0.786113\pi\)
\(992\) −1.46946e18 −0.0489589
\(993\) 0 0
\(994\) −1.48530e19 −0.488429
\(995\) 5.44371e19 1.77846
\(996\) 0 0
\(997\) 5.52570e19 1.78184 0.890920 0.454159i \(-0.150060\pi\)
0.890920 + 0.454159i \(0.150060\pi\)
\(998\) −2.14524e19 −0.687269
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.14.a.e.1.3 yes 4
3.2 odd 2 27.14.a.b.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.14.a.b.1.2 4 3.2 odd 2
27.14.a.e.1.3 yes 4 1.1 even 1 trivial