Properties

Label 2695.1.ck.c.604.2
Level $2695$
Weight $1$
Character 2695.604
Analytic conductor $1.345$
Analytic rank $0$
Dimension $24$
Projective image $D_{42}$
CM discriminant -55
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2695,1,Mod(109,2695)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2695, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([21, 40, 21])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2695.109"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2695 = 5 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2695.ck (of order \(42\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34498020905\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(2\) over \(\Q(\zeta_{42})\)
Coefficient field: \(\Q(\zeta_{84})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} + x^{22} - x^{18} - x^{16} + x^{12} - x^{8} - x^{6} + x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{42}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{42} - \cdots)\)

Embedding invariants

Embedding label 604.2
Root \(0.563320 + 0.826239i\) of defining polynomial
Character \(\chi\) \(=\) 2695.604
Dual form 2695.1.ck.c.879.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.496990 + 1.26631i) q^{2} +(-0.623490 + 0.578514i) q^{4} +(-0.826239 + 0.563320i) q^{5} +(-0.781831 + 0.623490i) q^{7} +(0.183183 + 0.0882162i) q^{8} +(-0.988831 + 0.149042i) q^{9} +(-1.12397 - 0.766310i) q^{10} +(0.988831 + 0.149042i) q^{11} +(-0.185853 + 0.233052i) q^{13} +(-1.17809 - 0.680173i) q^{14} +(-0.0842299 + 1.12397i) q^{16} +(-0.829215 + 0.255779i) q^{17} +(-0.680173 - 1.17809i) q^{18} +(0.189263 - 0.829215i) q^{20} +(0.302705 + 1.32624i) q^{22} +(0.365341 - 0.930874i) q^{25} +(-0.387483 - 0.119523i) q^{26} +(0.126766 - 0.841040i) q^{28} +(-0.500000 - 0.866025i) q^{31} +(-1.27087 + 0.392012i) q^{32} +(-0.736007 - 0.922924i) q^{34} +(0.294755 - 0.955573i) q^{35} +(0.530303 - 0.664979i) q^{36} +(-0.201047 + 0.0303029i) q^{40} +(-1.67738 + 0.807782i) q^{43} +(-0.702749 + 0.479126i) q^{44} +(0.733052 - 0.680173i) q^{45} +(0.222521 - 0.974928i) q^{49} +1.36035 q^{50} +(-0.0189465 - 0.252824i) q^{52} +(-0.900969 + 0.433884i) q^{55} +(-0.198220 + 0.0452424i) q^{56} +(-1.63402 - 1.11406i) q^{59} +(0.848162 - 1.06356i) q^{62} +(0.680173 - 0.733052i) q^{63} +(-0.425270 - 0.533272i) q^{64} +(0.0222759 - 0.297251i) q^{65} +(0.369035 - 0.639188i) q^{68} +(1.35654 - 0.101659i) q^{70} +(0.326239 + 1.42935i) q^{71} +(-0.194285 - 0.0599289i) q^{72} +(-0.728639 + 1.85654i) q^{73} +(-0.866025 + 0.500000i) q^{77} +(-0.563561 - 0.976116i) q^{80} +(0.955573 - 0.294755i) q^{81} +(1.07992 + 1.35417i) q^{83} +(0.541044 - 0.678448i) q^{85} +(-1.85654 - 1.72262i) q^{86} +(0.167989 + 0.114533i) q^{88} +(0.722521 - 0.108903i) q^{89} +(1.22563 + 0.590232i) q^{90} -0.298085i q^{91} +(1.34515 - 0.202749i) q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{4} - 2 q^{5} + 2 q^{9} - 2 q^{11} - 6 q^{14} - 26 q^{16} + 8 q^{20} + 2 q^{25} + 6 q^{26} - 12 q^{31} - 14 q^{34} - 8 q^{36} - 18 q^{44} - 2 q^{45} + 4 q^{49} - 4 q^{55} + 14 q^{56} - 2 q^{59}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2695\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1816\) \(2157\)
\(\chi(n)\) \(-1\) \(e\left(\frac{10}{21}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.496990 + 1.26631i 0.496990 + 1.26631i 0.930874 + 0.365341i \(0.119048\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(3\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(4\) −0.623490 + 0.578514i −0.623490 + 0.578514i
\(5\) −0.826239 + 0.563320i −0.826239 + 0.563320i
\(6\) 0 0
\(7\) −0.781831 + 0.623490i −0.781831 + 0.623490i
\(8\) 0.183183 + 0.0882162i 0.183183 + 0.0882162i
\(9\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(10\) −1.12397 0.766310i −1.12397 0.766310i
\(11\) 0.988831 + 0.149042i 0.988831 + 0.149042i
\(12\) 0 0
\(13\) −0.185853 + 0.233052i −0.185853 + 0.233052i −0.866025 0.500000i \(-0.833333\pi\)
0.680173 + 0.733052i \(0.261905\pi\)
\(14\) −1.17809 0.680173i −1.17809 0.680173i
\(15\) 0 0
\(16\) −0.0842299 + 1.12397i −0.0842299 + 1.12397i
\(17\) −0.829215 + 0.255779i −0.829215 + 0.255779i −0.680173 0.733052i \(-0.738095\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(18\) −0.680173 1.17809i −0.680173 1.17809i
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) 0.189263 0.829215i 0.189263 0.829215i
\(21\) 0 0
\(22\) 0.302705 + 1.32624i 0.302705 + 1.32624i
\(23\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(24\) 0 0
\(25\) 0.365341 0.930874i 0.365341 0.930874i
\(26\) −0.387483 0.119523i −0.387483 0.119523i
\(27\) 0 0
\(28\) 0.126766 0.841040i 0.126766 0.841040i
\(29\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(30\) 0 0
\(31\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(32\) −1.27087 + 0.392012i −1.27087 + 0.392012i
\(33\) 0 0
\(34\) −0.736007 0.922924i −0.736007 0.922924i
\(35\) 0.294755 0.955573i 0.294755 0.955573i
\(36\) 0.530303 0.664979i 0.530303 0.664979i
\(37\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −0.201047 + 0.0303029i −0.201047 + 0.0303029i
\(41\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(42\) 0 0
\(43\) −1.67738 + 0.807782i −1.67738 + 0.807782i −0.680173 + 0.733052i \(0.738095\pi\)
−0.997204 + 0.0747301i \(0.976190\pi\)
\(44\) −0.702749 + 0.479126i −0.702749 + 0.479126i
\(45\) 0.733052 0.680173i 0.733052 0.680173i
\(46\) 0 0
\(47\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(48\) 0 0
\(49\) 0.222521 0.974928i 0.222521 0.974928i
\(50\) 1.36035 1.36035
\(51\) 0 0
\(52\) −0.0189465 0.252824i −0.0189465 0.252824i
\(53\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(54\) 0 0
\(55\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(56\) −0.198220 + 0.0452424i −0.198220 + 0.0452424i
\(57\) 0 0
\(58\) 0 0
\(59\) −1.63402 1.11406i −1.63402 1.11406i −0.900969 0.433884i \(-0.857143\pi\)
−0.733052 0.680173i \(-0.761905\pi\)
\(60\) 0 0
\(61\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(62\) 0.848162 1.06356i 0.848162 1.06356i
\(63\) 0.680173 0.733052i 0.680173 0.733052i
\(64\) −0.425270 0.533272i −0.425270 0.533272i
\(65\) 0.0222759 0.297251i 0.0222759 0.297251i
\(66\) 0 0
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) 0.369035 0.639188i 0.369035 0.639188i
\(69\) 0 0
\(70\) 1.35654 0.101659i 1.35654 0.101659i
\(71\) 0.326239 + 1.42935i 0.326239 + 1.42935i 0.826239 + 0.563320i \(0.190476\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(72\) −0.194285 0.0599289i −0.194285 0.0599289i
\(73\) −0.728639 + 1.85654i −0.728639 + 1.85654i −0.294755 + 0.955573i \(0.595238\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(78\) 0 0
\(79\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(80\) −0.563561 0.976116i −0.563561 0.976116i
\(81\) 0.955573 0.294755i 0.955573 0.294755i
\(82\) 0 0
\(83\) 1.07992 + 1.35417i 1.07992 + 1.35417i 0.930874 + 0.365341i \(0.119048\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(84\) 0 0
\(85\) 0.541044 0.678448i 0.541044 0.678448i
\(86\) −1.85654 1.72262i −1.85654 1.72262i
\(87\) 0 0
\(88\) 0.167989 + 0.114533i 0.167989 + 0.114533i
\(89\) 0.722521 0.108903i 0.722521 0.108903i 0.222521 0.974928i \(-0.428571\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(90\) 1.22563 + 0.590232i 1.22563 + 0.590232i
\(91\) 0.298085i 0.298085i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 1.34515 0.202749i 1.34515 0.202749i
\(99\) −1.00000 −1.00000
\(100\) 0.310737 + 0.791745i 0.310737 + 0.791745i
\(101\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(102\) 0 0
\(103\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(104\) −0.0546039 + 0.0262959i −0.0546039 + 0.0262959i
\(105\) 0 0
\(106\) 0 0
\(107\) 1.92808 0.290611i 1.92808 0.290611i 0.930874 0.365341i \(-0.119048\pi\)
0.997204 + 0.0747301i \(0.0238095\pi\)
\(108\) 0 0
\(109\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(110\) −0.997204 0.925270i −0.997204 0.925270i
\(111\) 0 0
\(112\) −0.634930 0.931272i −0.634930 0.931272i
\(113\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.149042 0.258149i 0.149042 0.258149i
\(118\) 0.598649 2.62285i 0.598649 2.62285i
\(119\) 0.488831 0.716983i 0.488831 0.716983i
\(120\) 0 0
\(121\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(122\) 0 0
\(123\) 0 0
\(124\) 0.812753 + 0.250701i 0.812753 + 0.250701i
\(125\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(126\) 1.26631 + 0.496990i 1.26631 + 0.496990i
\(127\) −0.433884 + 1.90097i −0.433884 + 1.90097i 1.00000i \(0.5\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(128\) −0.201047 + 0.348223i −0.201047 + 0.348223i
\(129\) 0 0
\(130\) 0.387483 0.119523i 0.387483 0.119523i
\(131\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −0.174462 0.0262959i −0.174462 0.0262959i
\(137\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(138\) 0 0
\(139\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(140\) 0.369035 + 0.766310i 0.369035 + 0.766310i
\(141\) 0 0
\(142\) −1.64786 + 1.12349i −1.64786 + 1.12349i
\(143\) −0.218511 + 0.202749i −0.218511 + 0.202749i
\(144\) −0.0842299 1.12397i −0.0842299 1.12397i
\(145\) 0 0
\(146\) −2.71308 −2.71308
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(150\) 0 0
\(151\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(152\) 0 0
\(153\) 0.781831 0.376510i 0.781831 0.376510i
\(154\) −1.06356 0.848162i −1.06356 0.848162i
\(155\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(156\) 0 0
\(157\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0.829215 1.03980i 0.829215 1.03980i
\(161\) 0 0
\(162\) 0.848162 + 1.06356i 0.848162 + 1.06356i
\(163\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −1.17809 + 2.04052i −1.17809 + 2.04052i
\(167\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(168\) 0 0
\(169\) 0.202749 + 0.888301i 0.202749 + 0.888301i
\(170\) 1.12802 + 0.347948i 1.12802 + 0.347948i
\(171\) 0 0
\(172\) 0.578514 1.47403i 0.578514 1.47403i
\(173\) 0.563320 + 0.173761i 0.563320 + 0.173761i 0.563320 0.826239i \(-0.309524\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0.294755 + 0.955573i 0.294755 + 0.955573i
\(176\) −0.250808 + 1.09886i −0.250808 + 1.09886i
\(177\) 0 0
\(178\) 0.496990 + 0.860812i 0.496990 + 0.860812i
\(179\) 1.40097 0.432142i 1.40097 0.432142i 0.500000 0.866025i \(-0.333333\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(180\) −0.0635609 + 0.848162i −0.0635609 + 0.848162i
\(181\) −0.0931869 0.116853i −0.0931869 0.116853i 0.733052 0.680173i \(-0.238095\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(182\) 0.377467 0.148145i 0.377467 0.148145i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.858075 + 0.129334i −0.858075 + 0.129334i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.826239 0.563320i 0.826239 0.563320i −0.0747301 0.997204i \(-0.523810\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(192\) 0 0
\(193\) −0.0648483 0.865341i −0.0648483 0.865341i −0.930874 0.365341i \(-0.880952\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.425270 + 0.736589i 0.425270 + 0.736589i
\(197\) 0.589510 0.589510 0.294755 0.955573i \(-0.404762\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(198\) −0.496990 1.26631i −0.496990 1.26631i
\(199\) 0.142820 + 1.90580i 0.142820 + 1.90580i 0.365341 + 0.930874i \(0.380952\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(200\) 0.149042 0.138291i 0.149042 0.138291i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −0.246289 0.228523i −0.246289 0.228523i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 1.32624 + 2.29711i 1.32624 + 2.29711i
\(215\) 0.930874 1.61232i 0.930874 1.61232i
\(216\) 0 0
\(217\) 0.930874 + 0.365341i 0.930874 + 0.365341i
\(218\) 0 0
\(219\) 0 0
\(220\) 0.310737 0.791745i 0.310737 0.791745i
\(221\) 0.0945021 0.240787i 0.0945021 0.240787i
\(222\) 0 0
\(223\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(224\) 0.749192 1.09886i 0.749192 1.09886i
\(225\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(226\) 0 0
\(227\) −0.563320 0.975699i −0.563320 0.975699i −0.997204 0.0747301i \(-0.976190\pi\)
0.433884 0.900969i \(-0.357143\pi\)
\(228\) 0 0
\(229\) −0.109562 + 1.46200i −0.109562 + 1.46200i 0.623490 + 0.781831i \(0.285714\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.680173 0.733052i \(-0.261905\pi\)
−0.680173 + 0.733052i \(0.738095\pi\)
\(234\) 0.400969 + 0.0604363i 0.400969 + 0.0604363i
\(235\) 0 0
\(236\) 1.66329 0.250701i 1.66329 0.250701i
\(237\) 0 0
\(238\) 1.15087 + 0.262678i 1.15087 + 0.262678i
\(239\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(240\) 0 0
\(241\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(242\) 0.101659 + 1.35654i 0.101659 + 1.35654i
\(243\) 0 0
\(244\) 0 0
\(245\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(246\) 0 0
\(247\) 0 0
\(248\) −0.0151939 0.202749i −0.0151939 0.202749i
\(249\) 0 0
\(250\) −1.12397 + 0.766310i −1.12397 + 0.766310i
\(251\) 0.400969 0.193096i 0.400969 0.193096i −0.222521 0.974928i \(-0.571429\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(252\) 0.850540i 0.850540i
\(253\) 0 0
\(254\) −2.62285 + 0.395331i −2.62285 + 0.395331i
\(255\) 0 0
\(256\) −1.21534 0.183183i −1.21534 0.183183i
\(257\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.158075 + 0.198220i 0.158075 + 0.198220i
\(261\) 0 0
\(262\) 0 0
\(263\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.658322 + 1.67738i −0.658322 + 1.67738i 0.0747301 + 0.997204i \(0.476190\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(270\) 0 0
\(271\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(272\) −0.217643 0.953557i −0.217643 0.953557i
\(273\) 0 0
\(274\) 0 0
\(275\) 0.500000 0.866025i 0.500000 0.866025i
\(276\) 0 0
\(277\) −1.90580 + 0.587862i −1.90580 + 0.587862i −0.930874 + 0.365341i \(0.880952\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(278\) 0 0
\(279\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(280\) 0.138291 0.149042i 0.138291 0.149042i
\(281\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(282\) 0 0
\(283\) 1.54620 + 0.233052i 1.54620 + 0.233052i 0.866025 0.500000i \(-0.166667\pi\)
0.680173 + 0.733052i \(0.261905\pi\)
\(284\) −1.03030 0.702449i −1.03030 0.702449i
\(285\) 0 0
\(286\) −0.365341 0.175939i −0.365341 0.175939i
\(287\) 0 0
\(288\) 1.19825 0.577047i 1.19825 0.577047i
\(289\) −0.204064 + 0.139129i −0.204064 + 0.139129i
\(290\) 0 0
\(291\) 0 0
\(292\) −0.619736 1.57906i −0.619736 1.57906i
\(293\) −1.12664 −1.12664 −0.563320 0.826239i \(-0.690476\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(294\) 0 0
\(295\) 1.97766 1.97766
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0.807782 1.67738i 0.807782 1.67738i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0.865341 + 0.802919i 0.865341 + 0.802919i
\(307\) 0.848162 1.06356i 0.848162 1.06356i −0.149042 0.988831i \(-0.547619\pi\)
0.997204 0.0747301i \(-0.0238095\pi\)
\(308\) 0.250701 0.812753i 0.250701 0.812753i
\(309\) 0 0
\(310\) −0.101659 + 1.35654i −0.101659 + 1.35654i
\(311\) 1.57906 0.487076i 1.57906 0.487076i 0.623490 0.781831i \(-0.285714\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(312\) 0 0
\(313\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 0 0
\(315\) −0.149042 + 0.988831i −0.149042 + 0.988831i
\(316\) 0 0
\(317\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.651777 + 0.201047i 0.651777 + 0.201047i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −0.425270 + 0.736589i −0.425270 + 0.736589i
\(325\) 0.149042 + 0.258149i 0.149042 + 0.258149i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.535628 + 0.496990i 0.535628 + 0.496990i 0.900969 0.433884i \(-0.142857\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(332\) −1.45672 0.219566i −1.45672 0.219566i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0.268565 0.129334i 0.268565 0.129334i −0.294755 0.955573i \(-0.595238\pi\)
0.563320 + 0.826239i \(0.309524\pi\)
\(338\) −1.02410 + 0.698220i −1.02410 + 0.698220i
\(339\) 0 0
\(340\) 0.0551561 + 0.736007i 0.0551561 + 0.736007i
\(341\) −0.365341 0.930874i −0.365341 0.930874i
\(342\) 0 0
\(343\) 0.433884 + 0.900969i 0.433884 + 0.900969i
\(344\) −0.378526 −0.378526
\(345\) 0 0
\(346\) 0.0599289 + 0.799695i 0.0599289 + 0.799695i
\(347\) 0.432142 0.400969i 0.432142 0.400969i −0.433884 0.900969i \(-0.642857\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(348\) 0 0
\(349\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(350\) −1.06356 + 0.848162i −1.06356 + 0.848162i
\(351\) 0 0
\(352\) −1.31510 + 0.198220i −1.31510 + 0.198220i
\(353\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(354\) 0 0
\(355\) −1.07473 0.997204i −1.07473 0.997204i
\(356\) −0.387483 + 0.485888i −0.387483 + 0.485888i
\(357\) 0 0
\(358\) 1.24349 + 1.55929i 1.24349 + 1.55929i
\(359\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(360\) 0.194285 0.0599289i 0.194285 0.0599289i
\(361\) −0.500000 0.866025i −0.500000 0.866025i
\(362\) 0.101659 0.176078i 0.101659 0.176078i
\(363\) 0 0
\(364\) 0.172446 + 0.185853i 0.172446 + 0.185853i
\(365\) −0.443797 1.94440i −0.443797 1.94440i
\(366\) 0 0
\(367\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −0.563320 + 0.975699i −0.563320 + 0.975699i 0.433884 + 0.900969i \(0.357143\pi\)
−0.997204 + 0.0747301i \(0.976190\pi\)
\(374\) −0.590232 1.02231i −0.590232 1.02231i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.03030 1.29196i 1.03030 1.29196i 0.0747301 0.997204i \(-0.476190\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 1.12397 + 0.766310i 1.12397 + 0.766310i
\(383\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(384\) 0 0
\(385\) 0.433884 0.900969i 0.433884 0.900969i
\(386\) 1.06356 0.512184i 1.06356 0.512184i
\(387\) 1.53825 1.04876i 1.53825 1.04876i
\(388\) 0 0
\(389\) 0.123490 + 1.64786i 0.123490 + 1.64786i 0.623490 + 0.781831i \(0.285714\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.126766 0.158960i 0.126766 0.158960i
\(393\) 0 0
\(394\) 0.292981 + 0.746503i 0.292981 + 0.746503i
\(395\) 0 0
\(396\) 0.623490 0.578514i 0.623490 0.578514i
\(397\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(398\) −2.34236 + 1.12802i −2.34236 + 1.12802i
\(399\) 0 0
\(400\) 1.01550 + 0.489040i 1.01550 + 0.489040i
\(401\) 0.722521 0.108903i 0.722521 0.108903i 0.222521 0.974928i \(-0.428571\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(402\) 0 0
\(403\) 0.294755 + 0.0444272i 0.294755 + 0.0444272i
\(404\) 0 0
\(405\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.97213 0.147791i 1.97213 0.147791i
\(414\) 0 0
\(415\) −1.65510 0.510531i −1.65510 0.510531i
\(416\) 0.144836 0.369035i 0.144836 0.369035i
\(417\) 0 0
\(418\) 0 0
\(419\) −0.440071 1.92808i −0.440071 1.92808i −0.365341 0.930874i \(-0.619048\pi\)
−0.0747301 0.997204i \(-0.523810\pi\)
\(420\) 0 0
\(421\) −0.400969 + 1.75676i −0.400969 + 1.75676i 0.222521 + 0.974928i \(0.428571\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.0648483 + 0.865341i −0.0648483 + 0.865341i
\(426\) 0 0
\(427\) 0 0
\(428\) −1.03401 + 1.29661i −1.03401 + 1.29661i
\(429\) 0 0
\(430\) 2.50433 + 0.377467i 2.50433 + 0.377467i
\(431\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(432\) 0 0
\(433\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(434\) 1.36035i 1.36035i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(440\) −0.203317 −0.203317
\(441\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i
\(442\) 0.351878 0.351878
\(443\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(444\) 0 0
\(445\) −0.535628 + 0.496990i −0.535628 + 0.496990i
\(446\) 0 0
\(447\) 0 0
\(448\) 0.664979 + 0.151777i 0.664979 + 0.151777i
\(449\) −1.78181 0.858075i −1.78181 0.858075i −0.955573 0.294755i \(-0.904762\pi\)
−0.826239 0.563320i \(-0.809524\pi\)
\(450\) −1.34515 + 0.202749i −1.34515 + 0.202749i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0.955573 1.19825i 0.955573 1.19825i
\(455\) 0.167917 + 0.246289i 0.167917 + 0.246289i
\(456\) 0 0
\(457\) −0.129436 + 1.72721i −0.129436 + 1.72721i 0.433884 + 0.900969i \(0.357143\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(458\) −1.90580 + 0.587862i −1.90580 + 0.587862i
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(462\) 0 0
\(463\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(468\) 0.0564163 + 0.247176i 0.0564163 + 0.247176i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −0.201047 0.348223i −0.201047 0.348223i
\(473\) −1.77904 + 0.548760i −1.77904 + 0.548760i
\(474\) 0 0
\(475\) 0 0
\(476\) 0.110004 + 0.729827i 0.110004 + 0.729827i
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −0.766310 + 0.369035i −0.766310 + 0.369035i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −0.997204 + 0.925270i −0.997204 + 0.925270i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0.826239 0.563320i 0.826239 0.563320i
\(496\) 1.01550 0.489040i 1.01550 0.489040i
\(497\) −1.14625 0.914101i −1.14625 0.914101i
\(498\) 0 0
\(499\) −0.722521 + 0.108903i −0.722521 + 0.108903i −0.500000 0.866025i \(-0.666667\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(500\) −0.702749 0.479126i −0.702749 0.479126i
\(501\) 0 0
\(502\) 0.443797 + 0.411784i 0.443797 + 0.411784i
\(503\) −1.07992 + 1.35417i −1.07992 + 1.35417i −0.149042 + 0.988831i \(0.547619\pi\)
−0.930874 + 0.365341i \(0.880952\pi\)
\(504\) 0.189263 0.0742802i 0.189263 0.0742802i
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −0.829215 1.43624i −0.829215 1.43624i
\(509\) −0.826239 + 1.43109i −0.826239 + 1.43109i 0.0747301 + 0.997204i \(0.476190\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(510\) 0 0
\(511\) −0.587862 1.90580i −0.587862 1.90580i
\(512\) −0.282571 1.23802i −0.282571 1.23802i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0.0303029 0.0524862i 0.0303029 0.0524862i
\(521\) −0.733052 1.26968i −0.733052 1.26968i −0.955573 0.294755i \(-0.904762\pi\)
0.222521 0.974928i \(-0.428571\pi\)
\(522\) 0 0
\(523\) 0.139129 1.85654i 0.139129 1.85654i −0.294755 0.955573i \(-0.595238\pi\)
0.433884 0.900969i \(-0.357143\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 1.46906 1.84214i 1.46906 1.84214i
\(527\) 0.636119 + 0.590232i 0.636119 + 0.590232i
\(528\) 0 0
\(529\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(530\) 0 0
\(531\) 1.78181 + 0.858075i 1.78181 + 0.858075i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −1.42935 + 1.32624i −1.42935 + 1.32624i
\(536\) 0 0
\(537\) 0 0
\(538\) −2.45126 −2.45126
\(539\) 0.365341 0.930874i 0.365341 0.930874i
\(540\) 0 0
\(541\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0.953557 0.650124i 0.953557 0.650124i
\(545\) 0 0
\(546\) 0 0
\(547\) −1.79690 0.865341i −1.79690 0.865341i −0.930874 0.365341i \(-0.880952\pi\)
−0.866025 0.500000i \(-0.833333\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 1.34515 + 0.202749i 1.34515 + 0.202749i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −1.69158 2.12117i −1.69158 2.12117i
\(555\) 0 0
\(556\) 0 0
\(557\) −0.781831 1.35417i −0.781831 1.35417i −0.930874 0.365341i \(-0.880952\pi\)
0.149042 0.988831i \(-0.452381\pi\)
\(558\) −0.680173 + 1.17809i −0.680173 + 1.17809i
\(559\) 0.123490 0.541044i 0.123490 0.541044i
\(560\) 1.04921 + 0.411784i 1.04921 + 0.411784i
\(561\) 0 0
\(562\) 0 0
\(563\) −0.215372 + 0.548760i −0.215372 + 0.548760i −0.997204 0.0747301i \(-0.976190\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0.473329 + 2.07379i 0.473329 + 2.07379i
\(567\) −0.563320 + 0.826239i −0.563320 + 0.826239i
\(568\) −0.0663300 + 0.290611i −0.0663300 + 0.290611i
\(569\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(572\) 0.0189465 0.252824i 0.0189465 0.252824i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.500000 + 0.463932i 0.500000 + 0.463932i
\(577\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(578\) −0.277598 0.189263i −0.277598 0.189263i
\(579\) 0 0
\(580\) 0 0
\(581\) −1.68862 0.385418i −1.68862 0.385418i
\(582\) 0 0
\(583\) 0 0
\(584\) −0.297251 + 0.275809i −0.297251 + 0.275809i
\(585\) 0.0222759 + 0.297251i 0.0222759 + 0.297251i
\(586\) −0.559929 1.42668i −0.559929 1.42668i
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0.982878 + 2.50433i 0.982878 + 2.50433i
\(591\) 0 0
\(592\) 0 0
\(593\) 1.53825 1.04876i 1.53825 1.04876i 0.563320 0.826239i \(-0.309524\pi\)
0.974928 0.222521i \(-0.0714286\pi\)
\(594\) 0 0
\(595\) 0.867767i 0.867767i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.63402 + 0.246289i 1.63402 + 0.246289i 0.900969 0.433884i \(-0.142857\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(600\) 0 0
\(601\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(602\) 2.52554 + 0.189263i 2.52554 + 0.189263i
\(603\) 0 0
\(604\) 0 0
\(605\) −0.955573 + 0.294755i −0.955573 + 0.294755i
\(606\) 0 0
\(607\) 0.563320 0.975699i 0.563320 0.975699i −0.433884 0.900969i \(-0.642857\pi\)
0.997204 0.0747301i \(-0.0238095\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −0.269648 + 0.687051i −0.269648 + 0.687051i
\(613\) −0.215372 + 0.548760i −0.215372 + 0.548760i −0.997204 0.0747301i \(-0.976190\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(614\) 1.76833 + 0.545456i 1.76833 + 0.545456i
\(615\) 0 0
\(616\) −0.202749 + 0.0151939i −0.202749 + 0.0151939i
\(617\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(618\) 0 0
\(619\) 0.623490 + 1.07992i 0.623490 + 1.07992i 0.988831 + 0.149042i \(0.0476190\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(620\) −0.812753 + 0.250701i −0.812753 + 0.250701i
\(621\) 0 0
\(622\) 1.40157 + 1.75751i 1.40157 + 1.75751i
\(623\) −0.496990 + 0.535628i −0.496990 + 0.535628i
\(624\) 0 0
\(625\) −0.733052 0.680173i −0.733052 0.680173i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) −1.32624 + 0.302705i −1.32624 + 0.302705i
\(631\) −1.72188 + 0.829215i −1.72188 + 0.829215i −0.733052 + 0.680173i \(0.761905\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.712362 1.81507i −0.712362 1.81507i
\(636\) 0 0
\(637\) 0.185853 + 0.233052i 0.185853 + 0.233052i
\(638\) 0 0
\(639\) −0.535628 1.36476i −0.535628 1.36476i
\(640\) −0.0300485 0.400969i −0.0300485 0.400969i
\(641\) −0.326239 + 0.302705i −0.326239 + 0.302705i −0.826239 0.563320i \(-0.809524\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(642\) 0 0
\(643\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(648\) 0.201047 + 0.0303029i 0.201047 + 0.0303029i
\(649\) −1.44973 1.34515i −1.44973 1.34515i
\(650\) −0.252824 + 0.317031i −0.252824 + 0.317031i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0.443797 1.94440i 0.443797 1.94440i
\(658\) 0 0
\(659\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(660\) 0 0
\(661\) −0.162592 + 0.414278i −0.162592 + 0.414278i −0.988831 0.149042i \(-0.952381\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(662\) −0.363142 + 0.925270i −0.363142 + 0.925270i
\(663\) 0 0
\(664\) 0.0783621 + 0.343327i 0.0783621 + 0.343327i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.07992 1.35417i 1.07992 1.35417i 0.149042 0.988831i \(-0.452381\pi\)
0.930874 0.365341i \(-0.119048\pi\)
\(674\) 0.297251 + 0.275809i 0.297251 + 0.275809i
\(675\) 0 0
\(676\) −0.640307 0.436554i −0.640307 0.436554i
\(677\) 1.54620 0.233052i 1.54620 0.233052i 0.680173 0.733052i \(-0.261905\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0.158960 0.0765511i 0.158960 0.0765511i
\(681\) 0 0
\(682\) 0.997204 0.925270i 0.997204 0.925270i
\(683\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.925270 + 0.997204i −0.925270 + 0.997204i
\(687\) 0 0
\(688\) −0.766638 1.95336i −0.766638 1.95336i
\(689\) 0 0
\(690\) 0 0
\(691\) −1.48883 + 1.01507i −1.48883 + 1.01507i −0.500000 + 0.866025i \(0.666667\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(692\) −0.451748 + 0.217550i −0.451748 + 0.217550i
\(693\) 0.781831 0.623490i 0.781831 0.623490i
\(694\) 0.722521 + 0.347948i 0.722521 + 0.347948i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −0.736589 0.425270i −0.736589 0.425270i
\(701\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −0.341040 0.590699i −0.341040 0.590699i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0.955573 + 0.294755i 0.955573 + 0.294755i 0.733052 0.680173i \(-0.238095\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(710\) 0.728639 1.85654i 0.728639 1.85654i
\(711\) 0 0
\(712\) 0.141960 + 0.0437890i 0.141960 + 0.0437890i
\(713\) 0 0
\(714\) 0 0
\(715\) 0.0663300 0.290611i 0.0663300 0.290611i
\(716\) −0.623490 + 1.07992i −0.623490 + 1.07992i
\(717\) 0 0
\(718\) 0 0
\(719\) 0.134659 1.79690i 0.134659 1.79690i −0.365341 0.930874i \(-0.619048\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(720\) 0.702749 + 0.881219i 0.702749 + 0.881219i
\(721\) 0 0
\(722\) 0.848162 1.06356i 0.848162 1.06356i
\(723\) 0 0
\(724\) 0.125702 + 0.0189465i 0.125702 + 0.0189465i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(728\) 0.0262959 0.0546039i 0.0262959 0.0546039i
\(729\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(730\) 2.24165 1.52833i 2.24165 1.52833i
\(731\) 1.18429 1.09886i 1.18429 1.09886i
\(732\) 0 0
\(733\) 0.712362 + 1.81507i 0.712362 + 1.81507i 0.563320 + 0.826239i \(0.309524\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.268565 + 0.129334i 0.268565 + 0.129334i 0.563320 0.826239i \(-0.309524\pi\)
−0.294755 + 0.955573i \(0.595238\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −1.51550 0.228425i −1.51550 0.228425i
\(747\) −1.26968 1.17809i −1.26968 1.17809i
\(748\) 0.460180 0.577047i 0.460180 0.577047i
\(749\) −1.32624 + 1.42935i −1.32624 + 1.42935i
\(750\) 0 0
\(751\) 0.0111692 0.149042i 0.0111692 0.149042i −0.988831 0.149042i \(-0.952381\pi\)
1.00000 \(0\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(758\) 2.14807 + 0.662592i 2.14807 + 0.662592i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −0.189263 + 0.829215i −0.189263 + 0.829215i
\(765\) −0.433884 + 0.751509i −0.433884 + 0.751509i
\(766\) 0 0
\(767\) 0.563320 0.173761i 0.563320 0.173761i
\(768\) 0 0
\(769\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(770\) 1.35654 + 0.101659i 1.35654 + 0.101659i
\(771\) 0 0
\(772\) 0.541044 + 0.502016i 0.541044 + 0.502016i
\(773\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(774\) 2.09255 + 1.42668i 2.09255 + 1.42668i
\(775\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(776\) 0 0
\(777\) 0 0
\(778\) −2.02532 + 0.975345i −2.02532 + 0.975345i
\(779\) 0 0
\(780\) 0 0
\(781\) 0.109562 + 1.46200i 0.109562 + 1.46200i
\(782\) 0 0
\(783\) 0 0
\(784\) 1.07705 + 0.332225i 1.07705 + 0.332225i
\(785\) 0 0
\(786\) 0 0
\(787\) 0.0440542 + 0.587862i 0.0440542 + 0.587862i 0.974928 + 0.222521i \(0.0714286\pi\)
−0.930874 + 0.365341i \(0.880952\pi\)
\(788\) −0.367554 + 0.341040i −0.367554 + 0.341040i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −0.183183 0.0882162i −0.183183 0.0882162i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −1.19158 1.10562i −1.19158 1.10562i
\(797\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.0993879 + 1.32624i −0.0993879 + 1.32624i
\(801\) −0.698220 + 0.215372i −0.698220 + 0.215372i
\(802\) 0.496990 + 0.860812i 0.496990 + 0.860812i
\(803\) −0.997204 + 1.72721i −0.997204 + 1.72721i
\(804\) 0 0
\(805\) 0 0
\(806\) 0.0902318 + 0.395331i 0.0902318 + 0.395331i
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(810\) −1.29991 0.400969i −1.29991 0.400969i
\(811\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0.0444272 + 0.294755i 0.0444272 + 0.294755i
\(820\) 0 0
\(821\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(822\) 0 0
\(823\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 1.16728 + 2.42388i 1.16728 + 2.42388i
\(827\) 0.781831 0.376510i 0.781831 0.376510i 1.00000i \(-0.5\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(828\) 0 0
\(829\) −1.44973 + 1.34515i −1.44973 + 1.34515i −0.623490 + 0.781831i \(0.714286\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(830\) −0.176078 2.34960i −0.176078 2.34960i
\(831\) 0 0
\(832\) 0.203317 0.203317
\(833\) 0.0648483 + 0.865341i 0.0648483 + 0.865341i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 2.22283 1.51550i 2.22283 1.51550i
\(839\) 1.62349 0.781831i 1.62349 0.781831i 0.623490 0.781831i \(-0.285714\pi\)
1.00000 \(0\)
\(840\) 0 0
\(841\) −0.900969 0.433884i −0.900969 0.433884i
\(842\) −2.42388 + 0.365341i −2.42388 + 0.365341i
\(843\) 0 0
\(844\) 0 0
\(845\) −0.667917 0.619736i −0.667917 0.619736i
\(846\) 0 0
\(847\) −0.930874 + 0.365341i −0.930874 + 0.365341i
\(848\) 0 0
\(849\) 0 0
\(850\) −1.12802 + 0.347948i −1.12802 + 0.347948i
\(851\) 0 0
\(852\) 0 0
\(853\) 0.433884 1.90097i 0.433884 1.90097i 1.00000i \(-0.5\pi\)
0.433884 0.900969i \(-0.357143\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0.378827 + 0.116853i 0.378827 + 0.116853i
\(857\) 0.496990 1.26631i 0.496990 1.26631i −0.433884 0.900969i \(-0.642857\pi\)
0.930874 0.365341i \(-0.119048\pi\)
\(858\) 0 0
\(859\) 1.72188 + 0.531130i 1.72188 + 0.531130i 0.988831 0.149042i \(-0.0476190\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(860\) 0.352360 + 1.54379i 0.352360 + 1.54379i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(864\) 0 0
\(865\) −0.563320 + 0.173761i −0.563320 + 0.173761i
\(866\) 0 0
\(867\) 0 0
\(868\) −0.791745 + 0.310737i −0.791745 + 0.310737i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.781831 0.623490i −0.781831 0.623490i
\(876\) 0 0
\(877\) 1.43109 0.975699i 1.43109 0.975699i 0.433884 0.900969i \(-0.357143\pi\)
0.997204 0.0747301i \(-0.0238095\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −0.411784 1.04921i −0.411784 1.04921i
\(881\) 1.91115 1.91115 0.955573 0.294755i \(-0.0952381\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(882\) −1.29991 + 0.400969i −1.29991 + 0.400969i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0.0803778 + 0.204799i 0.0803778 + 0.204799i
\(885\) 0 0
\(886\) 0 0
\(887\) 1.64786 1.12349i 1.64786 1.12349i 0.781831 0.623490i \(-0.214286\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(888\) 0 0
\(889\) −0.846011 1.75676i −0.846011 1.75676i
\(890\) −0.895545 0.431272i −0.895545 0.431272i
\(891\) 0.988831 0.149042i 0.988831 0.149042i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −0.914101 + 1.14625i −0.914101 + 1.14625i
\(896\) −0.0599289 0.397602i −0.0599289 0.397602i
\(897\) 0 0
\(898\) 0.201047 2.68278i 0.201047 2.68278i
\(899\) 0 0
\(900\) −0.425270 0.736589i −0.425270 0.736589i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.142820 + 0.0440542i 0.142820 + 0.0440542i
\(906\) 0 0
\(907\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(908\) 0.915680 + 0.282450i 0.915680 + 0.282450i
\(909\) 0 0
\(910\) −0.228425 + 0.335038i −0.228425 + 0.335038i
\(911\) 0.425270 1.86323i 0.425270 1.86323i −0.0747301 0.997204i \(-0.523810\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(912\) 0 0
\(913\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(914\) −2.25151 + 0.694498i −2.25151 + 0.694498i
\(915\) 0 0
\(916\) −0.777479 0.974928i −0.777479 0.974928i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −0.393744 0.189617i −0.393744 0.189617i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −0.162592 0.414278i −0.162592 0.414278i 0.826239 0.563320i \(-0.190476\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.636119 0.590232i 0.636119 0.590232i
\(936\) 0.0500749 0.0341405i 0.0500749 0.0341405i
\(937\) −0.268565 + 0.129334i −0.268565 + 0.129334i −0.563320 0.826239i \(-0.690476\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 1.38980 1.74275i 1.38980 1.74275i
\(945\) 0 0
\(946\) −1.57906 1.98008i −1.57906 1.98008i
\(947\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(948\) 0 0
\(949\) −0.297251 0.514854i −0.297251 0.514854i
\(950\) 0 0
\(951\) 0 0
\(952\) 0.152795 0.0882162i 0.152795 0.0882162i
\(953\) −0.347948 1.52446i −0.347948 1.52446i −0.781831 0.623490i \(-0.785714\pi\)
0.433884 0.900969i \(-0.357143\pi\)
\(954\) 0 0
\(955\) −0.365341 + 0.930874i −0.365341 + 0.930874i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0 0
\(962\) 0 0
\(963\) −1.86323 + 0.574730i −1.86323 + 0.574730i
\(964\) 0 0
\(965\) 0.541044 + 0.678448i 0.541044 + 0.678448i
\(966\) 0 0
\(967\) 1.24349 1.55929i 1.24349 1.55929i 0.563320 0.826239i \(-0.309524\pi\)
0.680173 0.733052i \(-0.261905\pi\)
\(968\) 0.149042 + 0.138291i 0.149042 + 0.138291i
\(969\) 0 0
\(970\) 0 0
\(971\) 1.88980 0.284841i 1.88980 0.284841i 0.900969 0.433884i \(-0.142857\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(978\) 0 0
\(979\) 0.730682 0.730682
\(980\) −0.766310 0.369035i −0.766310 0.369035i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(984\) 0 0
\(985\) −0.487076 + 0.332083i −0.487076 + 0.332083i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 1.12397 + 0.766310i 1.12397 + 0.766310i
\(991\) −1.78181 0.268565i −1.78181 0.268565i −0.826239 0.563320i \(-0.809524\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(992\) 0.974928 + 0.904601i 0.974928 + 0.904601i
\(993\) 0 0
\(994\) 0.587862 1.90580i 0.587862 1.90580i
\(995\) −1.19158 1.49419i −1.19158 1.49419i
\(996\) 0 0
\(997\) 1.77904 0.548760i 1.77904 0.548760i 0.781831 0.623490i \(-0.214286\pi\)
0.997204 + 0.0747301i \(0.0238095\pi\)
\(998\) −0.496990 0.860812i −0.496990 0.860812i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2695.1.ck.c.604.2 yes 24
5.4 even 2 inner 2695.1.ck.c.604.1 24
11.10 odd 2 inner 2695.1.ck.c.604.1 24
49.46 even 21 inner 2695.1.ck.c.879.2 yes 24
55.54 odd 2 CM 2695.1.ck.c.604.2 yes 24
245.144 even 42 inner 2695.1.ck.c.879.1 yes 24
539.340 odd 42 inner 2695.1.ck.c.879.1 yes 24
2695.879 odd 42 inner 2695.1.ck.c.879.2 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2695.1.ck.c.604.1 24 5.4 even 2 inner
2695.1.ck.c.604.1 24 11.10 odd 2 inner
2695.1.ck.c.604.2 yes 24 1.1 even 1 trivial
2695.1.ck.c.604.2 yes 24 55.54 odd 2 CM
2695.1.ck.c.879.1 yes 24 245.144 even 42 inner
2695.1.ck.c.879.1 yes 24 539.340 odd 42 inner
2695.1.ck.c.879.2 yes 24 49.46 even 21 inner
2695.1.ck.c.879.2 yes 24 2695.879 odd 42 inner