Properties

Label 2695.1.ck.c.1759.2
Level $2695$
Weight $1$
Character 2695.1759
Analytic conductor $1.345$
Analytic rank $0$
Dimension $24$
Projective image $D_{42}$
CM discriminant -55
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2695,1,Mod(109,2695)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2695, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([21, 40, 21])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2695.109"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2695 = 5 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2695.ck (of order \(42\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.34498020905\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(2\) over \(\Q(\zeta_{42})\)
Coefficient field: \(\Q(\zeta_{84})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} + x^{22} - x^{18} - x^{16} + x^{12} - x^{8} - x^{6} + x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{42}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{42} - \cdots)\)

Embedding invariants

Embedding label 1759.2
Root \(0.997204 + 0.0747301i\) of defining polynomial
Character \(\chi\) \(=\) 2695.1759
Dual form 2695.1.ck.c.1264.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.582926 - 0.0878620i) q^{2} +(-0.623490 + 0.192321i) q^{4} +(-0.0747301 + 0.997204i) q^{5} +(0.781831 + 0.623490i) q^{7} +(-0.877681 + 0.422669i) q^{8} +(0.365341 + 0.930874i) q^{9} +(0.0440542 + 0.587862i) q^{10} +(-0.365341 + 0.930874i) q^{11} +(-1.16078 - 1.45557i) q^{13} +(0.510531 + 0.294755i) q^{14} +(0.0646156 - 0.0440542i) q^{16} +(-0.636119 + 0.590232i) q^{17} +(0.294755 + 0.510531i) q^{18} +(-0.145190 - 0.636119i) q^{20} +(-0.131178 + 0.574730i) q^{22} +(-0.988831 - 0.149042i) q^{25} +(-0.804539 - 0.746503i) q^{26} +(-0.607374 - 0.238377i) q^{28} +(-0.500000 - 0.866025i) q^{31} +(0.747900 - 0.693950i) q^{32} +(-0.318951 + 0.399952i) q^{34} +(-0.680173 + 0.733052i) q^{35} +(-0.406813 - 0.510127i) q^{36} +(-0.355898 - 0.906813i) q^{40} +(-0.268565 - 0.129334i) q^{43} +(0.0487597 - 0.650653i) q^{44} +(-0.955573 + 0.294755i) q^{45} +(0.222521 + 0.974928i) q^{49} -0.589510 q^{50} +(1.00367 + 0.684292i) q^{52} +(-0.900969 - 0.433884i) q^{55} +(-0.949729 - 0.216769i) q^{56} +(0.0546039 + 0.728639i) q^{59} +(-0.367554 - 0.460898i) q^{62} +(-0.294755 + 0.955573i) q^{63} +(0.326239 - 0.409090i) q^{64} +(1.53825 - 1.04876i) q^{65} +(0.283099 - 0.490343i) q^{68} +(-0.332083 + 0.487076i) q^{70} +(-0.425270 + 1.86323i) q^{71} +(-0.714104 - 0.662592i) q^{72} +(1.11406 + 0.167917i) q^{73} +(-0.866025 + 0.500000i) q^{77} +(0.0391023 + 0.0677271i) q^{80} +(-0.733052 + 0.680173i) q^{81} +(1.07992 - 1.35417i) q^{83} +(-0.541044 - 0.678448i) q^{85} +(-0.167917 - 0.0517955i) q^{86} +(-0.0727985 - 0.971429i) q^{88} +(0.722521 + 1.84095i) q^{89} +(-0.531130 + 0.255779i) q^{90} -1.86175i q^{91} +(0.215372 + 0.548760i) q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{4} - 2 q^{5} + 2 q^{9} - 2 q^{11} - 6 q^{14} - 26 q^{16} + 8 q^{20} + 2 q^{25} + 6 q^{26} - 12 q^{31} - 14 q^{34} - 8 q^{36} - 18 q^{44} - 2 q^{45} + 4 q^{49} - 4 q^{55} + 14 q^{56} - 2 q^{59}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2695\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1816\) \(2157\)
\(\chi(n)\) \(-1\) \(e\left(\frac{4}{21}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.582926 0.0878620i 0.582926 0.0878620i 0.149042 0.988831i \(-0.452381\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(3\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(4\) −0.623490 + 0.192321i −0.623490 + 0.192321i
\(5\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i
\(6\) 0 0
\(7\) 0.781831 + 0.623490i 0.781831 + 0.623490i
\(8\) −0.877681 + 0.422669i −0.877681 + 0.422669i
\(9\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(10\) 0.0440542 + 0.587862i 0.0440542 + 0.587862i
\(11\) −0.365341 + 0.930874i −0.365341 + 0.930874i
\(12\) 0 0
\(13\) −1.16078 1.45557i −1.16078 1.45557i −0.866025 0.500000i \(-0.833333\pi\)
−0.294755 0.955573i \(-0.595238\pi\)
\(14\) 0.510531 + 0.294755i 0.510531 + 0.294755i
\(15\) 0 0
\(16\) 0.0646156 0.0440542i 0.0646156 0.0440542i
\(17\) −0.636119 + 0.590232i −0.636119 + 0.590232i −0.930874 0.365341i \(-0.880952\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(18\) 0.294755 + 0.510531i 0.294755 + 0.510531i
\(19\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(20\) −0.145190 0.636119i −0.145190 0.636119i
\(21\) 0 0
\(22\) −0.131178 + 0.574730i −0.131178 + 0.574730i
\(23\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(24\) 0 0
\(25\) −0.988831 0.149042i −0.988831 0.149042i
\(26\) −0.804539 0.746503i −0.804539 0.746503i
\(27\) 0 0
\(28\) −0.607374 0.238377i −0.607374 0.238377i
\(29\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(30\) 0 0
\(31\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(32\) 0.747900 0.693950i 0.747900 0.693950i
\(33\) 0 0
\(34\) −0.318951 + 0.399952i −0.318951 + 0.399952i
\(35\) −0.680173 + 0.733052i −0.680173 + 0.733052i
\(36\) −0.406813 0.510127i −0.406813 0.510127i
\(37\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −0.355898 0.906813i −0.355898 0.906813i
\(41\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(42\) 0 0
\(43\) −0.268565 0.129334i −0.268565 0.129334i 0.294755 0.955573i \(-0.404762\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(44\) 0.0487597 0.650653i 0.0487597 0.650653i
\(45\) −0.955573 + 0.294755i −0.955573 + 0.294755i
\(46\) 0 0
\(47\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(48\) 0 0
\(49\) 0.222521 + 0.974928i 0.222521 + 0.974928i
\(50\) −0.589510 −0.589510
\(51\) 0 0
\(52\) 1.00367 + 0.684292i 1.00367 + 0.684292i
\(53\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(54\) 0 0
\(55\) −0.900969 0.433884i −0.900969 0.433884i
\(56\) −0.949729 0.216769i −0.949729 0.216769i
\(57\) 0 0
\(58\) 0 0
\(59\) 0.0546039 + 0.728639i 0.0546039 + 0.728639i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(60\) 0 0
\(61\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(62\) −0.367554 0.460898i −0.367554 0.460898i
\(63\) −0.294755 + 0.955573i −0.294755 + 0.955573i
\(64\) 0.326239 0.409090i 0.326239 0.409090i
\(65\) 1.53825 1.04876i 1.53825 1.04876i
\(66\) 0 0
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) 0.283099 0.490343i 0.283099 0.490343i
\(69\) 0 0
\(70\) −0.332083 + 0.487076i −0.332083 + 0.487076i
\(71\) −0.425270 + 1.86323i −0.425270 + 1.86323i 0.0747301 + 0.997204i \(0.476190\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(72\) −0.714104 0.662592i −0.714104 0.662592i
\(73\) 1.11406 + 0.167917i 1.11406 + 0.167917i 0.680173 0.733052i \(-0.261905\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(78\) 0 0
\(79\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(80\) 0.0391023 + 0.0677271i 0.0391023 + 0.0677271i
\(81\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(82\) 0 0
\(83\) 1.07992 1.35417i 1.07992 1.35417i 0.149042 0.988831i \(-0.452381\pi\)
0.930874 0.365341i \(-0.119048\pi\)
\(84\) 0 0
\(85\) −0.541044 0.678448i −0.541044 0.678448i
\(86\) −0.167917 0.0517955i −0.167917 0.0517955i
\(87\) 0 0
\(88\) −0.0727985 0.971429i −0.0727985 0.971429i
\(89\) 0.722521 + 1.84095i 0.722521 + 1.84095i 0.500000 + 0.866025i \(0.333333\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(90\) −0.531130 + 0.255779i −0.531130 + 0.255779i
\(91\) 1.86175i 1.86175i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0.215372 + 0.548760i 0.215372 + 0.548760i
\(99\) −1.00000 −1.00000
\(100\) 0.645190 0.0972467i 0.645190 0.0972467i
\(101\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(102\) 0 0
\(103\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(104\) 1.63402 + 0.786903i 1.63402 + 0.786903i
\(105\) 0 0
\(106\) 0 0
\(107\) 0.712362 + 1.81507i 0.712362 + 1.81507i 0.563320 + 0.826239i \(0.309524\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(108\) 0 0
\(109\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(110\) −0.563320 0.173761i −0.563320 0.173761i
\(111\) 0 0
\(112\) 0.0779858 + 0.00584423i 0.0779858 + 0.00584423i
\(113\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.930874 1.61232i 0.930874 1.61232i
\(118\) 0.0958497 + 0.419945i 0.0958497 + 0.419945i
\(119\) −0.865341 + 0.0648483i −0.865341 + 0.0648483i
\(120\) 0 0
\(121\) −0.733052 0.680173i −0.733052 0.680173i
\(122\) 0 0
\(123\) 0 0
\(124\) 0.478300 + 0.443797i 0.478300 + 0.443797i
\(125\) 0.222521 0.974928i 0.222521 0.974928i
\(126\) −0.0878620 + 0.582926i −0.0878620 + 0.582926i
\(127\) 0.433884 + 1.90097i 0.433884 + 1.90097i 0.433884 + 0.900969i \(0.357143\pi\)
1.00000i \(0.500000\pi\)
\(128\) −0.355898 + 0.616433i −0.355898 + 0.616433i
\(129\) 0 0
\(130\) 0.804539 0.746503i 0.804539 0.746503i
\(131\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.308837 0.786903i 0.308837 0.786903i
\(137\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(138\) 0 0
\(139\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(140\) 0.283099 0.587862i 0.283099 0.587862i
\(141\) 0 0
\(142\) −0.0841939 + 1.12349i −0.0841939 + 1.12349i
\(143\) 1.77904 0.548760i 1.77904 0.548760i
\(144\) 0.0646156 + 0.0440542i 0.0646156 + 0.0440542i
\(145\) 0 0
\(146\) 0.664166 0.664166
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(150\) 0 0
\(151\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(152\) 0 0
\(153\) −0.781831 0.376510i −0.781831 0.376510i
\(154\) −0.460898 + 0.367554i −0.460898 + 0.367554i
\(155\) 0.900969 0.433884i 0.900969 0.433884i
\(156\) 0 0
\(157\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0.636119 + 0.797667i 0.636119 + 0.797667i
\(161\) 0 0
\(162\) −0.367554 + 0.460898i −0.367554 + 0.460898i
\(163\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0.510531 0.884266i 0.510531 0.884266i
\(167\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(168\) 0 0
\(169\) −0.548760 + 2.40427i −0.548760 + 2.40427i
\(170\) −0.374998 0.347948i −0.374998 0.347948i
\(171\) 0 0
\(172\) 0.192321 + 0.0289877i 0.192321 + 0.0289877i
\(173\) 0.997204 + 0.925270i 0.997204 + 0.925270i 0.997204 0.0747301i \(-0.0238095\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) −0.680173 0.733052i −0.680173 0.733052i
\(176\) 0.0174021 + 0.0762438i 0.0174021 + 0.0762438i
\(177\) 0 0
\(178\) 0.582926 + 1.00966i 0.582926 + 1.00966i
\(179\) 1.40097 1.29991i 1.40097 1.29991i 0.500000 0.866025i \(-0.333333\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(180\) 0.539102 0.367554i 0.539102 0.367554i
\(181\) −1.03030 + 1.29196i −1.03030 + 1.29196i −0.0747301 + 0.997204i \(0.523810\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(182\) −0.163577 1.08526i −0.163577 1.08526i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.317031 0.807782i −0.317031 0.807782i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0.0747301 0.997204i 0.0747301 0.997204i −0.826239 0.563320i \(-0.809524\pi\)
0.900969 0.433884i \(-0.142857\pi\)
\(192\) 0 0
\(193\) 0.716983 + 0.488831i 0.716983 + 0.488831i 0.866025 0.500000i \(-0.166667\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.326239 0.565062i −0.326239 0.565062i
\(197\) −1.36035 −1.36035 −0.680173 0.733052i \(-0.738095\pi\)
−0.680173 + 0.733052i \(0.738095\pi\)
\(198\) −0.582926 + 0.0878620i −0.582926 + 0.0878620i
\(199\) −1.21135 0.825886i −1.21135 0.825886i −0.222521 0.974928i \(-0.571429\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(200\) 0.930874 0.287137i 0.930874 0.287137i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −0.139129 0.0429155i −0.139129 0.0429155i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0.574730 + 0.995462i 0.574730 + 0.995462i
\(215\) 0.149042 0.258149i 0.149042 0.258149i
\(216\) 0 0
\(217\) 0.149042 0.988831i 0.149042 0.988831i
\(218\) 0 0
\(219\) 0 0
\(220\) 0.645190 + 0.0972467i 0.645190 + 0.0972467i
\(221\) 1.59752 + 0.240787i 1.59752 + 0.240787i
\(222\) 0 0
\(223\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(224\) 1.01740 0.0762438i 1.01740 0.0762438i
\(225\) −0.222521 0.974928i −0.222521 0.974928i
\(226\) 0 0
\(227\) −0.997204 1.72721i −0.997204 1.72721i −0.563320 0.826239i \(-0.690476\pi\)
−0.433884 0.900969i \(-0.642857\pi\)
\(228\) 0 0
\(229\) 1.57906 1.07659i 1.57906 1.07659i 0.623490 0.781831i \(-0.285714\pi\)
0.955573 0.294755i \(-0.0952381\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.294755 0.955573i \(-0.404762\pi\)
−0.294755 + 0.955573i \(0.595238\pi\)
\(234\) 0.400969 1.02165i 0.400969 1.02165i
\(235\) 0 0
\(236\) −0.174178 0.443797i −0.174178 0.443797i
\(237\) 0 0
\(238\) −0.498732 + 0.113832i −0.498732 + 0.113832i
\(239\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(240\) 0 0
\(241\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(242\) −0.487076 0.332083i −0.487076 0.332083i
\(243\) 0 0
\(244\) 0 0
\(245\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(246\) 0 0
\(247\) 0 0
\(248\) 0.804883 + 0.548760i 0.804883 + 0.548760i
\(249\) 0 0
\(250\) 0.0440542 0.587862i 0.0440542 0.587862i
\(251\) 0.400969 + 0.193096i 0.400969 + 0.193096i 0.623490 0.781831i \(-0.285714\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(252\) 0.652478i 0.652478i
\(253\) 0 0
\(254\) 0.419945 + 1.07000i 0.419945 + 1.07000i
\(255\) 0 0
\(256\) −0.344464 + 0.877681i −0.344464 + 0.877681i
\(257\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −0.757383 + 0.949729i −0.757383 + 0.949729i
\(261\) 0 0
\(262\) 0 0
\(263\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.78181 + 0.268565i 1.78181 + 0.268565i 0.955573 0.294755i \(-0.0952381\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(270\) 0 0
\(271\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(272\) −0.0151010 + 0.0661618i −0.0151010 + 0.0661618i
\(273\) 0 0
\(274\) 0 0
\(275\) 0.500000 0.866025i 0.500000 0.866025i
\(276\) 0 0
\(277\) 0.825886 0.766310i 0.825886 0.766310i −0.149042 0.988831i \(-0.547619\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(278\) 0 0
\(279\) 0.623490 0.781831i 0.623490 0.781831i
\(280\) 0.287137 0.930874i 0.287137 0.930874i
\(281\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(282\) 0 0
\(283\) 0.571270 1.45557i 0.571270 1.45557i −0.294755 0.955573i \(-0.595238\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(284\) −0.0931869 1.24349i −0.0931869 1.24349i
\(285\) 0 0
\(286\) 0.988831 0.476196i 0.988831 0.476196i
\(287\) 0 0
\(288\) 0.919218 + 0.442672i 0.919218 + 0.442672i
\(289\) −0.0184568 + 0.246289i −0.0184568 + 0.246289i
\(290\) 0 0
\(291\) 0 0
\(292\) −0.726897 + 0.109562i −0.726897 + 0.109562i
\(293\) −1.99441 −1.99441 −0.997204 0.0747301i \(-0.976190\pi\)
−0.997204 + 0.0747301i \(0.976190\pi\)
\(294\) 0 0
\(295\) −0.730682 −0.730682
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −0.129334 0.268565i −0.129334 0.268565i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) −0.488831 0.150784i −0.488831 0.150784i
\(307\) −0.367554 0.460898i −0.367554 0.460898i 0.563320 0.826239i \(-0.309524\pi\)
−0.930874 + 0.365341i \(0.880952\pi\)
\(308\) 0.443797 0.478300i 0.443797 0.478300i
\(309\) 0 0
\(310\) 0.487076 0.332083i 0.487076 0.332083i
\(311\) −0.109562 + 0.101659i −0.109562 + 0.101659i −0.733052 0.680173i \(-0.761905\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(312\) 0 0
\(313\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 0 0
\(315\) −0.930874 0.365341i −0.930874 0.365341i
\(316\) 0 0
\(317\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.383567 + 0.355898i 0.383567 + 0.355898i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.326239 0.565062i 0.326239 0.565062i
\(325\) 0.930874 + 1.61232i 0.930874 + 1.61232i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 1.88980 + 0.582926i 1.88980 + 0.582926i 0.988831 + 0.149042i \(0.0476190\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(332\) −0.412881 + 1.05200i −0.412881 + 1.05200i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 1.67738 + 0.807782i 1.67738 + 0.807782i 0.997204 + 0.0747301i \(0.0238095\pi\)
0.680173 + 0.733052i \(0.261905\pi\)
\(338\) −0.108642 + 1.44973i −0.108642 + 1.44973i
\(339\) 0 0
\(340\) 0.467815 + 0.318951i 0.467815 + 0.318951i
\(341\) 0.988831 0.149042i 0.988831 0.149042i
\(342\) 0 0
\(343\) −0.433884 + 0.900969i −0.433884 + 0.900969i
\(344\) 0.290380 0.290380
\(345\) 0 0
\(346\) 0.662592 + 0.451748i 0.662592 + 0.451748i
\(347\) 1.29991 0.400969i 1.29991 0.400969i 0.433884 0.900969i \(-0.357143\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(348\) 0 0
\(349\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(350\) −0.460898 0.367554i −0.460898 0.367554i
\(351\) 0 0
\(352\) 0.372741 + 0.949729i 0.372741 + 0.949729i
\(353\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(354\) 0 0
\(355\) −1.82624 0.563320i −1.82624 0.563320i
\(356\) −0.804539 1.00886i −0.804539 1.00886i
\(357\) 0 0
\(358\) 0.702449 0.880843i 0.702449 0.880843i
\(359\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(360\) 0.714104 0.662592i 0.714104 0.662592i
\(361\) −0.500000 0.866025i −0.500000 0.866025i
\(362\) −0.487076 + 0.843641i −0.487076 + 0.843641i
\(363\) 0 0
\(364\) 0.358053 + 1.16078i 0.358053 + 1.16078i
\(365\) −0.250701 + 1.09839i −0.250701 + 1.09839i
\(366\) 0 0
\(367\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −0.997204 + 1.72721i −0.997204 + 1.72721i −0.433884 + 0.900969i \(0.642857\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(374\) −0.255779 0.443022i −0.255779 0.443022i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0.0931869 + 0.116853i 0.0931869 + 0.116853i 0.826239 0.563320i \(-0.190476\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −0.0440542 0.587862i −0.0440542 0.587862i
\(383\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(384\) 0 0
\(385\) −0.433884 0.900969i −0.433884 0.900969i
\(386\) 0.460898 + 0.221957i 0.460898 + 0.221957i
\(387\) 0.0222759 0.297251i 0.0222759 0.297251i
\(388\) 0 0
\(389\) 0.123490 + 0.0841939i 0.123490 + 0.0841939i 0.623490 0.781831i \(-0.285714\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.607374 0.761623i −0.607374 0.761623i
\(393\) 0 0
\(394\) −0.792981 + 0.119523i −0.792981 + 0.119523i
\(395\) 0 0
\(396\) 0.623490 0.192321i 0.623490 0.192321i
\(397\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(398\) −0.778692 0.374998i −0.778692 0.374998i
\(399\) 0 0
\(400\) −0.0704598 + 0.0339317i −0.0704598 + 0.0339317i
\(401\) 0.722521 + 1.84095i 0.722521 + 1.84095i 0.500000 + 0.866025i \(0.333333\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(402\) 0 0
\(403\) −0.680173 + 1.73305i −0.680173 + 1.73305i
\(404\) 0 0
\(405\) −0.623490 0.781831i −0.623490 0.781831i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.411608 + 0.603718i −0.411608 + 0.603718i
\(414\) 0 0
\(415\) 1.26968 + 1.17809i 1.26968 + 1.17809i
\(416\) −1.87824 0.283099i −1.87824 0.283099i
\(417\) 0 0
\(418\) 0 0
\(419\) 0.162592 0.712362i 0.162592 0.712362i −0.826239 0.563320i \(-0.809524\pi\)
0.988831 0.149042i \(-0.0476190\pi\)
\(420\) 0 0
\(421\) −0.400969 1.75676i −0.400969 1.75676i −0.623490 0.781831i \(-0.714286\pi\)
0.222521 0.974928i \(-0.428571\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.716983 0.488831i 0.716983 0.488831i
\(426\) 0 0
\(427\) 0 0
\(428\) −0.793227 0.994675i −0.793227 0.994675i
\(429\) 0 0
\(430\) 0.0641992 0.163577i 0.0641992 0.163577i
\(431\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(432\) 0 0
\(433\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(434\) 0.589510i 0.589510i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(440\) 0.974153 0.974153
\(441\) −0.826239 + 0.563320i −0.826239 + 0.563320i
\(442\) 0.952392 0.952392
\(443\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(444\) 0 0
\(445\) −1.88980 + 0.582926i −1.88980 + 0.582926i
\(446\) 0 0
\(447\) 0 0
\(448\) 0.510127 0.116433i 0.510127 0.116433i
\(449\) 0.658322 0.317031i 0.658322 0.317031i −0.0747301 0.997204i \(-0.523810\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(450\) −0.215372 0.548760i −0.215372 0.548760i
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) −0.733052 0.919218i −0.733052 0.919218i
\(455\) 1.85654 + 0.139129i 1.85654 + 0.139129i
\(456\) 0 0
\(457\) −1.43109 + 0.975699i −1.43109 + 0.975699i −0.433884 + 0.900969i \(0.642857\pi\)
−0.997204 + 0.0747301i \(0.976190\pi\)
\(458\) 0.825886 0.766310i 0.825886 0.766310i
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(462\) 0 0
\(463\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(468\) −0.270307 + 1.18429i −0.270307 + 1.18429i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −0.355898 0.616433i −0.355898 0.616433i
\(473\) 0.218511 0.202749i 0.218511 0.202749i
\(474\) 0 0
\(475\) 0 0
\(476\) 0.527060 0.206856i 0.527060 0.206856i
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0.587862 + 0.283099i 0.587862 + 0.283099i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −0.563320 + 0.173761i −0.563320 + 0.173761i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0.0747301 0.997204i 0.0747301 0.997204i
\(496\) −0.0704598 0.0339317i −0.0704598 0.0339317i
\(497\) −1.49419 + 1.19158i −1.49419 + 1.19158i
\(498\) 0 0
\(499\) −0.722521 1.84095i −0.722521 1.84095i −0.500000 0.866025i \(-0.666667\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(500\) 0.0487597 + 0.650653i 0.0487597 + 0.650653i
\(501\) 0 0
\(502\) 0.250701 + 0.0773310i 0.250701 + 0.0773310i
\(503\) −1.07992 1.35417i −1.07992 1.35417i −0.930874 0.365341i \(-0.880952\pi\)
−0.149042 0.988831i \(-0.547619\pi\)
\(504\) −0.145190 0.963272i −0.145190 0.963272i
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −0.636119 1.10179i −0.636119 1.10179i
\(509\) −0.0747301 + 0.129436i −0.0747301 + 0.129436i −0.900969 0.433884i \(-0.857143\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(510\) 0 0
\(511\) 0.766310 + 0.825886i 0.766310 + 0.825886i
\(512\) 0.0347070 0.152061i 0.0347070 0.152061i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −0.906813 + 1.57065i −0.906813 + 1.57065i
\(521\) 0.955573 + 1.65510i 0.955573 + 1.65510i 0.733052 + 0.680173i \(0.238095\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(522\) 0 0
\(523\) 0.246289 0.167917i 0.246289 0.167917i −0.433884 0.900969i \(-0.642857\pi\)
0.680173 + 0.733052i \(0.261905\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −0.636622 0.798298i −0.636622 0.798298i
\(527\) 0.829215 + 0.255779i 0.829215 + 0.255779i
\(528\) 0 0
\(529\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(530\) 0 0
\(531\) −0.658322 + 0.317031i −0.658322 + 0.317031i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −1.86323 + 0.574730i −1.86323 + 0.574730i
\(536\) 0 0
\(537\) 0 0
\(538\) 1.06226 1.06226
\(539\) −0.988831 0.149042i −0.988831 0.149042i
\(540\) 0 0
\(541\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −0.0661618 + 0.882868i −0.0661618 + 0.882868i
\(545\) 0 0
\(546\) 0 0
\(547\) −1.01507 + 0.488831i −1.01507 + 0.488831i −0.866025 0.500000i \(-0.833333\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0.215372 0.548760i 0.215372 0.548760i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0.414101 0.519266i 0.414101 0.519266i
\(555\) 0 0
\(556\) 0 0
\(557\) 0.781831 + 1.35417i 0.781831 + 1.35417i 0.930874 + 0.365341i \(0.119048\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(558\) 0.294755 0.510531i 0.294755 0.510531i
\(559\) 0.123490 + 0.541044i 0.123490 + 0.541044i
\(560\) −0.0116558 + 0.0773310i −0.0116558 + 0.0773310i
\(561\) 0 0
\(562\) 0 0
\(563\) −1.34515 0.202749i −1.34515 0.202749i −0.563320 0.826239i \(-0.690476\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0.205119 0.898684i 0.205119 0.898684i
\(567\) −0.997204 + 0.0747301i −0.997204 + 0.0747301i
\(568\) −0.414278 1.81507i −0.414278 1.81507i
\(569\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(572\) −1.00367 + 0.684292i −1.00367 + 0.684292i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.500000 + 0.154230i 0.500000 + 0.154230i
\(577\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(578\) 0.0108805 + 0.145190i 0.0108805 + 0.145190i
\(579\) 0 0
\(580\) 0 0
\(581\) 1.68862 0.385418i 1.68862 0.385418i
\(582\) 0 0
\(583\) 0 0
\(584\) −1.04876 + 0.323500i −1.04876 + 0.323500i
\(585\) 1.53825 + 1.04876i 1.53825 + 1.04876i
\(586\) −1.16259 + 0.175233i −1.16259 + 0.175233i
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −0.425934 + 0.0641992i −0.425934 + 0.0641992i
\(591\) 0 0
\(592\) 0 0
\(593\) 0.0222759 0.297251i 0.0222759 0.297251i −0.974928 0.222521i \(-0.928571\pi\)
0.997204 0.0747301i \(-0.0238095\pi\)
\(594\) 0 0
\(595\) 0.867767i 0.867767i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −0.0546039 + 0.139129i −0.0546039 + 0.139129i −0.955573 0.294755i \(-0.904762\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(600\) 0 0
\(601\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(602\) −0.0989888 0.145190i −0.0989888 0.145190i
\(603\) 0 0
\(604\) 0 0
\(605\) 0.733052 0.680173i 0.733052 0.680173i
\(606\) 0 0
\(607\) 0.997204 1.72721i 0.997204 1.72721i 0.433884 0.900969i \(-0.357143\pi\)
0.563320 0.826239i \(-0.309524\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0.559875 + 0.0843876i 0.559875 + 0.0843876i
\(613\) −1.34515 0.202749i −1.34515 0.202749i −0.563320 0.826239i \(-0.690476\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(614\) −0.254752 0.236375i −0.254752 0.236375i
\(615\) 0 0
\(616\) 0.548760 0.804883i 0.548760 0.804883i
\(617\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(618\) 0 0
\(619\) 0.623490 + 1.07992i 0.623490 + 1.07992i 0.988831 + 0.149042i \(0.0476190\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(620\) −0.478300 + 0.443797i −0.478300 + 0.443797i
\(621\) 0 0
\(622\) −0.0549346 + 0.0688859i −0.0549346 + 0.0688859i
\(623\) −0.582926 + 1.88980i −0.582926 + 1.88980i
\(624\) 0 0
\(625\) 0.955573 + 0.294755i 0.955573 + 0.294755i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) −0.574730 0.131178i −0.574730 0.131178i
\(631\) 1.32091 + 0.636119i 1.32091 + 0.636119i 0.955573 0.294755i \(-0.0952381\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1.92808 + 0.290611i −1.92808 + 0.290611i
\(636\) 0 0
\(637\) 1.16078 1.45557i 1.16078 1.45557i
\(638\) 0 0
\(639\) −1.88980 + 0.284841i −1.88980 + 0.284841i
\(640\) −0.588113 0.400969i −0.588113 0.400969i
\(641\) 0.425270 0.131178i 0.425270 0.131178i −0.0747301 0.997204i \(-0.523810\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(642\) 0 0
\(643\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(648\) 0.355898 0.906813i 0.355898 0.906813i
\(649\) −0.698220 0.215372i −0.698220 0.215372i
\(650\) 0.684292 + 0.858075i 0.684292 + 0.858075i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0.250701 + 1.09839i 0.250701 + 1.09839i
\(658\) 0 0
\(659\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(660\) 0 0
\(661\) 0.440071 + 0.0663300i 0.440071 + 0.0663300i 0.365341 0.930874i \(-0.380952\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(662\) 1.15283 + 0.173761i 1.15283 + 0.173761i
\(663\) 0 0
\(664\) −0.375456 + 1.64498i −0.375456 + 1.64498i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.07992 + 1.35417i 1.07992 + 1.35417i 0.930874 + 0.365341i \(0.119048\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(674\) 1.04876 + 0.323500i 1.04876 + 0.323500i
\(675\) 0 0
\(676\) −0.120246 1.60458i −0.120246 1.60458i
\(677\) 0.571270 + 1.45557i 0.571270 + 1.45557i 0.866025 + 0.500000i \(0.166667\pi\)
−0.294755 + 0.955573i \(0.595238\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0.761623 + 0.366778i 0.761623 + 0.366778i
\(681\) 0 0
\(682\) 0.563320 0.173761i 0.563320 0.173761i
\(683\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.173761 + 0.563320i −0.173761 + 0.563320i
\(687\) 0 0
\(688\) −0.0230512 + 0.00347441i −0.0230512 + 0.00347441i
\(689\) 0 0
\(690\) 0 0
\(691\) −0.134659 + 1.79690i −0.134659 + 1.79690i 0.365341 + 0.930874i \(0.380952\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(692\) −0.799695 0.385113i −0.799695 0.385113i
\(693\) −0.781831 0.623490i −0.781831 0.623490i
\(694\) 0.722521 0.347948i 0.722521 0.347948i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0.565062 + 0.326239i 0.565062 + 0.326239i
\(701\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0.261623 + 0.453145i 0.261623 + 0.453145i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.733052 0.680173i −0.733052 0.680173i 0.222521 0.974928i \(-0.428571\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(710\) −1.11406 0.167917i −1.11406 0.167917i
\(711\) 0 0
\(712\) −1.41226 1.31038i −1.41226 1.31038i
\(713\) 0 0
\(714\) 0 0
\(715\) 0.414278 + 1.81507i 0.414278 + 1.81507i
\(716\) −0.623490 + 1.07992i −0.623490 + 1.07992i
\(717\) 0 0
\(718\) 0 0
\(719\) 1.48883 1.01507i 1.48883 1.01507i 0.500000 0.866025i \(-0.333333\pi\)
0.988831 0.149042i \(-0.0476190\pi\)
\(720\) −0.0487597 + 0.0611427i −0.0487597 + 0.0611427i
\(721\) 0 0
\(722\) −0.367554 0.460898i −0.367554 0.460898i
\(723\) 0 0
\(724\) 0.393912 1.00367i 0.393912 1.00367i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(728\) 0.786903 + 1.63402i 0.786903 + 1.63402i
\(729\) −0.900969 0.433884i −0.900969 0.433884i
\(730\) −0.0496332 + 0.662309i −0.0496332 + 0.662309i
\(731\) 0.247176 0.0762438i 0.247176 0.0762438i
\(732\) 0 0
\(733\) 1.92808 0.290611i 1.92808 0.290611i 0.930874 0.365341i \(-0.119048\pi\)
0.997204 + 0.0747301i \(0.0238095\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.67738 0.807782i 1.67738 0.807782i 0.680173 0.733052i \(-0.261905\pi\)
0.997204 0.0747301i \(-0.0238095\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −0.429540 + 1.09445i −0.429540 + 1.09445i
\(747\) 1.65510 + 0.510531i 1.65510 + 0.510531i
\(748\) 0.353019 + 0.442672i 0.353019 + 0.442672i
\(749\) −0.574730 + 1.86323i −0.574730 + 1.86323i
\(750\) 0 0
\(751\) 1.36534 0.930874i 1.36534 0.930874i 0.365341 0.930874i \(-0.380952\pi\)
1.00000 \(0\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(758\) 0.0645880 + 0.0599289i 0.0645880 + 0.0599289i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0.145190 + 0.636119i 0.145190 + 0.636119i
\(765\) 0.433884 0.751509i 0.433884 0.751509i
\(766\) 0 0
\(767\) 0.997204 0.925270i 0.997204 0.925270i
\(768\) 0 0
\(769\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(770\) −0.332083 0.487076i −0.332083 0.487076i
\(771\) 0 0
\(772\) −0.541044 0.166890i −0.541044 0.166890i
\(773\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(774\) −0.0131319 0.175233i −0.0131319 0.175233i
\(775\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(776\) 0 0
\(777\) 0 0
\(778\) 0.0793829 + 0.0382288i 0.0793829 + 0.0382288i
\(779\) 0 0
\(780\) 0 0
\(781\) −1.57906 1.07659i −1.57906 1.07659i
\(782\) 0 0
\(783\) 0 0
\(784\) 0.0573280 + 0.0531926i 0.0573280 + 0.0531926i
\(785\) 0 0
\(786\) 0 0
\(787\) −1.12397 0.766310i −1.12397 0.766310i −0.149042 0.988831i \(-0.547619\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(788\) 0.848162 0.261623i 0.848162 0.261623i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0.877681 0.422669i 0.877681 0.422669i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0.914101 + 0.281963i 0.914101 + 0.281963i
\(797\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.842974 + 0.574730i −0.842974 + 0.574730i
\(801\) −1.44973 + 1.34515i −1.44973 + 1.34515i
\(802\) 0.582926 + 1.00966i 0.582926 + 1.00966i
\(803\) −0.563320 + 0.975699i −0.563320 + 0.975699i
\(804\) 0 0
\(805\) 0 0
\(806\) −0.244221 + 1.07000i −0.244221 + 1.07000i
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(810\) −0.432142 0.400969i −0.432142 0.400969i
\(811\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 1.73305 0.680173i 1.73305 0.680173i
\(820\) 0 0
\(821\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(822\) 0 0
\(823\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −0.186893 + 0.388088i −0.186893 + 0.388088i
\(827\) −0.781831 0.376510i −0.781831 0.376510i 1.00000i \(-0.5\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(828\) 0 0
\(829\) −0.698220 + 0.215372i −0.698220 + 0.215372i −0.623490 0.781831i \(-0.714286\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(830\) 0.843641 + 0.575185i 0.843641 + 0.575185i
\(831\) 0 0
\(832\) −0.974153 −0.974153
\(833\) −0.716983 0.488831i −0.716983 0.488831i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0.0321896 0.429540i 0.0321896 0.429540i
\(839\) 1.62349 + 0.781831i 1.62349 + 0.781831i 1.00000 \(0\)
0.623490 + 0.781831i \(0.285714\pi\)
\(840\) 0 0
\(841\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(842\) −0.388088 0.988831i −0.388088 0.988831i
\(843\) 0 0
\(844\) 0 0
\(845\) −2.35654 0.726897i −2.35654 0.726897i
\(846\) 0 0
\(847\) −0.149042 0.988831i −0.149042 0.988831i
\(848\) 0 0
\(849\) 0 0
\(850\) 0.374998 0.347948i 0.374998 0.347948i
\(851\) 0 0
\(852\) 0 0
\(853\) −0.433884 1.90097i −0.433884 1.90097i −0.433884 0.900969i \(-0.642857\pi\)
1.00000i \(-0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1.39240 1.29196i −1.39240 1.29196i
\(857\) 0.582926 + 0.0878620i 0.582926 + 0.0878620i 0.433884 0.900969i \(-0.357143\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(858\) 0 0
\(859\) −1.32091 1.22563i −1.32091 1.22563i −0.955573 0.294755i \(-0.904762\pi\)
−0.365341 0.930874i \(-0.619048\pi\)
\(860\) −0.0432789 + 0.189617i −0.0432789 + 0.189617i
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(864\) 0 0
\(865\) −0.997204 + 0.925270i −0.997204 + 0.925270i
\(866\) 0 0
\(867\) 0 0
\(868\) 0.0972467 + 0.645190i 0.0972467 + 0.645190i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.781831 0.623490i 0.781831 0.623490i
\(876\) 0 0
\(877\) 0.129436 1.72721i 0.129436 1.72721i −0.433884 0.900969i \(-0.642857\pi\)
0.563320 0.826239i \(-0.309524\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −0.0773310 + 0.0116558i −0.0773310 + 0.0116558i
\(881\) −1.46610 −1.46610 −0.733052 0.680173i \(-0.761905\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(882\) −0.432142 + 0.400969i −0.432142 + 0.400969i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) −1.04235 + 0.157108i −1.04235 + 0.157108i
\(885\) 0 0
\(886\) 0 0
\(887\) 0.0841939 1.12349i 0.0841939 1.12349i −0.781831 0.623490i \(-0.785714\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(888\) 0 0
\(889\) −0.846011 + 1.75676i −0.846011 + 1.75676i
\(890\) −1.05040 + 0.505844i −1.05040 + 0.505844i
\(891\) −0.365341 0.930874i −0.365341 0.930874i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 1.19158 + 1.49419i 1.19158 + 1.49419i
\(896\) −0.662592 + 0.260048i −0.662592 + 0.260048i
\(897\) 0 0
\(898\) 0.355898 0.242647i 0.355898 0.242647i
\(899\) 0 0
\(900\) 0.326239 + 0.565062i 0.326239 + 0.565062i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.21135 1.12397i −1.21135 1.12397i
\(906\) 0 0
\(907\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(908\) 0.953925 + 0.885113i 0.953925 + 0.885113i
\(909\) 0 0
\(910\) 1.09445 0.0820177i 1.09445 0.0820177i
\(911\) −0.326239 1.42935i −0.326239 1.42935i −0.826239 0.563320i \(-0.809524\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(912\) 0 0
\(913\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(914\) −0.748491 + 0.694498i −0.748491 + 0.694498i
\(915\) 0 0
\(916\) −0.777479 + 0.974928i −0.777479 + 0.974928i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.20571 1.54379i 3.20571 1.54379i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0.440071 0.0663300i 0.440071 0.0663300i 0.0747301 0.997204i \(-0.476190\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.829215 0.255779i 0.829215 0.255779i
\(936\) −0.135532 + 1.80855i −0.135532 + 1.80855i
\(937\) −1.67738 0.807782i −1.67738 0.807782i −0.997204 0.0747301i \(-0.976190\pi\)
−0.680173 0.733052i \(-0.738095\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0.0356278 + 0.0446759i 0.0356278 + 0.0446759i
\(945\) 0 0
\(946\) 0.109562 0.137386i 0.109562 0.137386i
\(947\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(948\) 0 0
\(949\) −1.04876 1.81651i −1.04876 1.81651i
\(950\) 0 0
\(951\) 0 0
\(952\) 0.732084 0.422669i 0.732084 0.422669i
\(953\) 0.347948 1.52446i 0.347948 1.52446i −0.433884 0.900969i \(-0.642857\pi\)
0.781831 0.623490i \(-0.214286\pi\)
\(954\) 0 0
\(955\) 0.988831 + 0.149042i 0.988831 + 0.149042i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0 0
\(962\) 0 0
\(963\) −1.42935 + 1.32624i −1.42935 + 1.32624i
\(964\) 0 0
\(965\) −0.541044 + 0.678448i −0.541044 + 0.678448i
\(966\) 0 0
\(967\) 0.702449 + 0.880843i 0.702449 + 0.880843i 0.997204 0.0747301i \(-0.0238095\pi\)
−0.294755 + 0.955573i \(0.595238\pi\)
\(968\) 0.930874 + 0.287137i 0.930874 + 0.287137i
\(969\) 0 0
\(970\) 0 0
\(971\) 0.535628 + 1.36476i 0.535628 + 1.36476i 0.900969 + 0.433884i \(0.142857\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(978\) 0 0
\(979\) −1.97766 −1.97766
\(980\) 0.587862 0.283099i 0.587862 0.283099i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(984\) 0 0
\(985\) 0.101659 1.35654i 0.101659 1.35654i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −0.0440542 0.587862i −0.0440542 0.587862i
\(991\) 0.658322 1.67738i 0.658322 1.67738i −0.0747301 0.997204i \(-0.523810\pi\)
0.733052 0.680173i \(-0.238095\pi\)
\(992\) −0.974928 0.300725i −0.974928 0.300725i
\(993\) 0 0
\(994\) −0.766310 + 0.825886i −0.766310 + 0.825886i
\(995\) 0.914101 1.14625i 0.914101 1.14625i
\(996\) 0 0
\(997\) −0.218511 + 0.202749i −0.218511 + 0.202749i −0.781831 0.623490i \(-0.785714\pi\)
0.563320 + 0.826239i \(0.309524\pi\)
\(998\) −0.582926 1.00966i −0.582926 1.00966i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2695.1.ck.c.1759.2 yes 24
5.4 even 2 inner 2695.1.ck.c.1759.1 yes 24
11.10 odd 2 inner 2695.1.ck.c.1759.1 yes 24
49.39 even 21 inner 2695.1.ck.c.1264.2 yes 24
55.54 odd 2 CM 2695.1.ck.c.1759.2 yes 24
245.39 even 42 inner 2695.1.ck.c.1264.1 24
539.186 odd 42 inner 2695.1.ck.c.1264.1 24
2695.1264 odd 42 inner 2695.1.ck.c.1264.2 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2695.1.ck.c.1264.1 24 245.39 even 42 inner
2695.1.ck.c.1264.1 24 539.186 odd 42 inner
2695.1.ck.c.1264.2 yes 24 49.39 even 21 inner
2695.1.ck.c.1264.2 yes 24 2695.1264 odd 42 inner
2695.1.ck.c.1759.1 yes 24 5.4 even 2 inner
2695.1.ck.c.1759.1 yes 24 11.10 odd 2 inner
2695.1.ck.c.1759.2 yes 24 1.1 even 1 trivial
2695.1.ck.c.1759.2 yes 24 55.54 odd 2 CM