Properties

Label 2695.1.bi.c
Level 26952695
Weight 11
Character orbit 2695.bi
Analytic conductor 1.3451.345
Analytic rank 00
Dimension 1212
Projective image D14D_{14}
CM discriminant -55
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2695,1,Mod(274,2695)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2695, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([7, 6, 7])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2695.274"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 2695=57211 2695 = 5 \cdot 7^{2} \cdot 11
Weight: k k == 1 1
Character orbit: [χ][\chi] == 2695.bi (of order 1414, degree 66, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.344980209051.34498020905
Analytic rank: 00
Dimension: 1212
Relative dimension: 22 over Q(ζ14)\Q(\zeta_{14})
Coefficient field: Q(ζ28)\Q(\zeta_{28})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x12x10+x8x6+x4x2+1 x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D14D_{14}
Projective field: Galois closure of Q[x]/(x14)\mathbb{Q}[x]/(x^{14} - \cdots)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+(ζ2813+ζ285)q2+(ζ2812++ζ284)q4+ζ286q5+ζ285q7+(ζ2811+ζ28)q8+q99+O(q100) q + ( - \zeta_{28}^{13} + \zeta_{28}^{5}) q^{2} + ( - \zeta_{28}^{12} + \cdots + \zeta_{28}^{4}) q^{4} + \zeta_{28}^{6} q^{5} + \zeta_{28}^{5} q^{7} + ( - \zeta_{28}^{11} + \cdots - \zeta_{28}) q^{8}+ \cdots - q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+2q4+2q52q9+2q1116q162q202q2524q31+14q34+2q36+12q44+2q45+2q492q5514q564q59+16q64+10q71+12q99+O(q100) 12 q + 2 q^{4} + 2 q^{5} - 2 q^{9} + 2 q^{11} - 16 q^{16} - 2 q^{20} - 2 q^{25} - 24 q^{31} + 14 q^{34} + 2 q^{36} + 12 q^{44} + 2 q^{45} + 2 q^{49} - 2 q^{55} - 14 q^{56} - 4 q^{59} + 16 q^{64} + 10 q^{71}+ \cdots - 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2695Z)×\left(\mathbb{Z}/2695\mathbb{Z}\right)^\times.

nn 981981 18161816 21572157
χ(n)\chi(n) 1-1 ζ2812\zeta_{28}^{12} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
274.1
−0.974928 0.222521i
0.974928 + 0.222521i
−0.974928 + 0.222521i
0.974928 0.222521i
0.781831 0.623490i
−0.781831 + 0.623490i
−0.433884 + 0.900969i
0.433884 0.900969i
−0.433884 0.900969i
0.433884 + 0.900969i
0.781831 + 0.623490i
−0.781831 0.623490i
−1.40881 0.678448i 0 0.900969 + 1.12978i 0.222521 + 0.974928i 0 −0.433884 0.900969i −0.154851 0.678448i −0.900969 + 0.433884i 0.347948 1.52446i
274.2 1.40881 + 0.678448i 0 0.900969 + 1.12978i 0.222521 + 0.974928i 0 0.433884 + 0.900969i 0.154851 + 0.678448i −0.900969 + 0.433884i −0.347948 + 1.52446i
659.1 −1.40881 + 0.678448i 0 0.900969 1.12978i 0.222521 0.974928i 0 −0.433884 + 0.900969i −0.154851 + 0.678448i −0.900969 0.433884i 0.347948 + 1.52446i
659.2 1.40881 0.678448i 0 0.900969 1.12978i 0.222521 0.974928i 0 0.433884 0.900969i 0.154851 0.678448i −0.900969 0.433884i −0.347948 1.52446i
1044.1 −0.193096 + 0.846011i 0 0.222521 + 0.107160i −0.623490 + 0.781831i 0 −0.974928 + 0.222521i −0.674671 + 0.846011i −0.222521 0.974928i −0.541044 0.678448i
1044.2 0.193096 0.846011i 0 0.222521 + 0.107160i −0.623490 + 0.781831i 0 0.974928 0.222521i 0.674671 0.846011i −0.222521 0.974928i 0.541044 + 0.678448i
1429.1 −1.21572 1.52446i 0 −0.623490 + 2.73169i 0.900969 0.433884i 0 −0.781831 0.623490i 3.16557 1.52446i 0.623490 0.781831i −1.75676 0.846011i
1429.2 1.21572 + 1.52446i 0 −0.623490 + 2.73169i 0.900969 0.433884i 0 0.781831 + 0.623490i −3.16557 + 1.52446i 0.623490 0.781831i 1.75676 + 0.846011i
2199.1 −1.21572 + 1.52446i 0 −0.623490 2.73169i 0.900969 + 0.433884i 0 −0.781831 + 0.623490i 3.16557 + 1.52446i 0.623490 + 0.781831i −1.75676 + 0.846011i
2199.2 1.21572 1.52446i 0 −0.623490 2.73169i 0.900969 + 0.433884i 0 0.781831 0.623490i −3.16557 1.52446i 0.623490 + 0.781831i 1.75676 0.846011i
2584.1 −0.193096 0.846011i 0 0.222521 0.107160i −0.623490 0.781831i 0 −0.974928 0.222521i −0.674671 0.846011i −0.222521 + 0.974928i −0.541044 + 0.678448i
2584.2 0.193096 + 0.846011i 0 0.222521 0.107160i −0.623490 0.781831i 0 0.974928 + 0.222521i 0.674671 + 0.846011i −0.222521 + 0.974928i 0.541044 0.678448i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 274.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
55.d odd 2 1 CM by Q(55)\Q(\sqrt{-55})
5.b even 2 1 inner
11.b odd 2 1 inner
49.e even 7 1 inner
245.p even 14 1 inner
539.o odd 14 1 inner
2695.bi odd 14 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2695.1.bi.c 12
5.b even 2 1 inner 2695.1.bi.c 12
11.b odd 2 1 inner 2695.1.bi.c 12
49.e even 7 1 inner 2695.1.bi.c 12
55.d odd 2 1 CM 2695.1.bi.c 12
245.p even 14 1 inner 2695.1.bi.c 12
539.o odd 14 1 inner 2695.1.bi.c 12
2695.bi odd 14 1 inner 2695.1.bi.c 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2695.1.bi.c 12 1.a even 1 1 trivial
2695.1.bi.c 12 5.b even 2 1 inner
2695.1.bi.c 12 11.b odd 2 1 inner
2695.1.bi.c 12 49.e even 7 1 inner
2695.1.bi.c 12 55.d odd 2 1 CM
2695.1.bi.c 12 245.p even 14 1 inner
2695.1.bi.c 12 539.o odd 14 1 inner
2695.1.bi.c 12 2695.bi odd 14 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T212+14T2814T26+49T24+98T22+49 T_{2}^{12} + 14T_{2}^{8} - 14T_{2}^{6} + 49T_{2}^{4} + 98T_{2}^{2} + 49 acting on S1new(2695,[χ])S_{1}^{\mathrm{new}}(2695, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12+14T8++49 T^{12} + 14 T^{8} + \cdots + 49 Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 (T6T5+T4++1)2 (T^{6} - T^{5} + T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
77 T12T10++1 T^{12} - T^{10} + \cdots + 1 Copy content Toggle raw display
1111 (T6T5+T4++1)2 (T^{6} - T^{5} + T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
1313 T12+7T10++49 T^{12} + 7 T^{10} + \cdots + 49 Copy content Toggle raw display
1717 T12+14T8++49 T^{12} + 14 T^{8} + \cdots + 49 Copy content Toggle raw display
1919 T12 T^{12} Copy content Toggle raw display
2323 T12 T^{12} Copy content Toggle raw display
2929 T12 T^{12} Copy content Toggle raw display
3131 (T+2)12 (T + 2)^{12} Copy content Toggle raw display
3737 T12 T^{12} Copy content Toggle raw display
4141 T12 T^{12} Copy content Toggle raw display
4343 T12+14T8++49 T^{12} + 14 T^{8} + \cdots + 49 Copy content Toggle raw display
4747 T12 T^{12} Copy content Toggle raw display
5353 T12 T^{12} Copy content Toggle raw display
5959 (T6+2T5+4T4++1)2 (T^{6} + 2 T^{5} + 4 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
6161 T12 T^{12} Copy content Toggle raw display
6767 T12 T^{12} Copy content Toggle raw display
7171 (T65T5+11T4++1)2 (T^{6} - 5 T^{5} + 11 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
7373 T12+35T6++49 T^{12} + 35 T^{6} + \cdots + 49 Copy content Toggle raw display
7979 T12 T^{12} Copy content Toggle raw display
8383 T12 T^{12} Copy content Toggle raw display
8989 (T6+5T5+11T4++1)2 (T^{6} + 5 T^{5} + 11 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
9797 T12 T^{12} Copy content Toggle raw display
show more
show less