gp: [N,k,chi] = [2695,1,Mod(274,2695)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2695, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([7, 6, 7]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2695.274");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = [12,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 2695 Z ) × \left(\mathbb{Z}/2695\mathbb{Z}\right)^\times ( Z / 2 6 9 5 Z ) × .
n n n
981 981 9 8 1
1816 1816 1 8 1 6
2157 2157 2 1 5 7
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
ζ 28 12 \zeta_{28}^{12} ζ 2 8 1 2
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 2 12 + 14 T 2 8 − 14 T 2 6 + 49 T 2 4 + 98 T 2 2 + 49 T_{2}^{12} + 14T_{2}^{8} - 14T_{2}^{6} + 49T_{2}^{4} + 98T_{2}^{2} + 49 T 2 1 2 + 1 4 T 2 8 − 1 4 T 2 6 + 4 9 T 2 4 + 9 8 T 2 2 + 4 9
T2^12 + 14*T2^8 - 14*T2^6 + 49*T2^4 + 98*T2^2 + 49
acting on S 1 n e w ( 2695 , [ χ ] ) S_{1}^{\mathrm{new}}(2695, [\chi]) S 1 n e w ( 2 6 9 5 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 12 + 14 T 8 + ⋯ + 49 T^{12} + 14 T^{8} + \cdots + 49 T 1 2 + 1 4 T 8 + ⋯ + 4 9
T^12 + 14*T^8 - 14*T^6 + 49*T^4 + 98*T^2 + 49
3 3 3
T 12 T^{12} T 1 2
T^12
5 5 5
( T 6 − T 5 + T 4 + ⋯ + 1 ) 2 (T^{6} - T^{5} + T^{4} + \cdots + 1)^{2} ( T 6 − T 5 + T 4 + ⋯ + 1 ) 2
(T^6 - T^5 + T^4 - T^3 + T^2 - T + 1)^2
7 7 7
T 12 − T 10 + ⋯ + 1 T^{12} - T^{10} + \cdots + 1 T 1 2 − T 1 0 + ⋯ + 1
T^12 - T^10 + T^8 - T^6 + T^4 - T^2 + 1
11 11 1 1
( T 6 − T 5 + T 4 + ⋯ + 1 ) 2 (T^{6} - T^{5} + T^{4} + \cdots + 1)^{2} ( T 6 − T 5 + T 4 + ⋯ + 1 ) 2
(T^6 - T^5 + T^4 - T^3 + T^2 - T + 1)^2
13 13 1 3
T 12 + 7 T 10 + ⋯ + 49 T^{12} + 7 T^{10} + \cdots + 49 T 1 2 + 7 T 1 0 + ⋯ + 4 9
T^12 + 7*T^10 + 21*T^8 + 35*T^6 + 49*T^4 - 49*T^2 + 49
17 17 1 7
T 12 + 14 T 8 + ⋯ + 49 T^{12} + 14 T^{8} + \cdots + 49 T 1 2 + 1 4 T 8 + ⋯ + 4 9
T^12 + 14*T^8 - 14*T^6 + 49*T^4 + 98*T^2 + 49
19 19 1 9
T 12 T^{12} T 1 2
T^12
23 23 2 3
T 12 T^{12} T 1 2
T^12
29 29 2 9
T 12 T^{12} T 1 2
T^12
31 31 3 1
( T + 2 ) 12 (T + 2)^{12} ( T + 2 ) 1 2
(T + 2)^12
37 37 3 7
T 12 T^{12} T 1 2
T^12
41 41 4 1
T 12 T^{12} T 1 2
T^12
43 43 4 3
T 12 + 14 T 8 + ⋯ + 49 T^{12} + 14 T^{8} + \cdots + 49 T 1 2 + 1 4 T 8 + ⋯ + 4 9
T^12 + 14*T^8 - 14*T^6 + 49*T^4 + 98*T^2 + 49
47 47 4 7
T 12 T^{12} T 1 2
T^12
53 53 5 3
T 12 T^{12} T 1 2
T^12
59 59 5 9
( T 6 + 2 T 5 + 4 T 4 + ⋯ + 1 ) 2 (T^{6} + 2 T^{5} + 4 T^{4} + \cdots + 1)^{2} ( T 6 + 2 T 5 + 4 T 4 + ⋯ + 1 ) 2
(T^6 + 2*T^5 + 4*T^4 + 8*T^3 + 9*T^2 + 4*T + 1)^2
61 61 6 1
T 12 T^{12} T 1 2
T^12
67 67 6 7
T 12 T^{12} T 1 2
T^12
71 71 7 1
( T 6 − 5 T 5 + 11 T 4 + ⋯ + 1 ) 2 (T^{6} - 5 T^{5} + 11 T^{4} + \cdots + 1)^{2} ( T 6 − 5 T 5 + 1 1 T 4 + ⋯ + 1 ) 2
(T^6 - 5*T^5 + 11*T^4 - 13*T^3 + 9*T^2 - 3*T + 1)^2
73 73 7 3
T 12 + 35 T 6 + ⋯ + 49 T^{12} + 35 T^{6} + \cdots + 49 T 1 2 + 3 5 T 6 + ⋯ + 4 9
T^12 + 35*T^6 + 98*T^4 + 49*T^2 + 49
79 79 7 9
T 12 T^{12} T 1 2
T^12
83 83 8 3
T 12 T^{12} T 1 2
T^12
89 89 8 9
( T 6 + 5 T 5 + 11 T 4 + ⋯ + 1 ) 2 (T^{6} + 5 T^{5} + 11 T^{4} + \cdots + 1)^{2} ( T 6 + 5 T 5 + 1 1 T 4 + ⋯ + 1 ) 2
(T^6 + 5*T^5 + 11*T^4 + 13*T^3 + 9*T^2 + 3*T + 1)^2
97 97 9 7
T 12 T^{12} T 1 2
T^12
show more
show less