Properties

Label 268.2.a
Level 268
Weight 2
Character orbit a
Rep. character \(\chi_{268}(1,\cdot)\)
Character field \(\Q\)
Dimension 5
Newform subspaces 3
Sturm bound 68
Trace bound 3

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 268 = 2^{2} \cdot 67 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 268.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(68\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(268))\).

Total New Old
Modular forms 37 5 32
Cusp forms 32 5 27
Eisenstein series 5 0 5

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(67\)FrickeDim.
\(-\)\(+\)\(-\)\(3\)
\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(2\)
Minus space\(-\)\(3\)

Trace form

\( 5q - 2q^{7} + 7q^{9} + O(q^{10}) \) \( 5q - 2q^{7} + 7q^{9} + 2q^{11} - 6q^{13} - 2q^{15} + 3q^{17} - 5q^{19} + 4q^{21} - 5q^{23} - 9q^{25} + 6q^{27} + 3q^{29} - 4q^{31} - 2q^{33} - 2q^{35} - 19q^{37} + 12q^{39} + 2q^{41} + 20q^{43} + 12q^{45} + 7q^{47} - 5q^{49} + 2q^{51} - 8q^{55} + 6q^{57} + 15q^{59} - 2q^{61} - 16q^{63} - 30q^{65} - q^{67} - 8q^{69} - 16q^{71} + 17q^{73} - 6q^{75} + 2q^{77} + 14q^{79} - 19q^{81} + 14q^{83} - 10q^{85} - 12q^{87} - 17q^{89} - 6q^{91} - 34q^{93} - 12q^{95} - 22q^{97} + 34q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(268))\) into newform subspaces

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 67
268.2.a.a \(1\) \(2.140\) \(\Q\) None \(0\) \(2\) \(2\) \(2\) \(-\) \(+\) \(q+2q^{3}+2q^{5}+2q^{7}+q^{9}-4q^{11}+\cdots\)
268.2.a.b \(2\) \(2.140\) \(\Q(\sqrt{5}) \) None \(0\) \(-3\) \(0\) \(-5\) \(-\) \(-\) \(q+(-1-\beta )q^{3}+(-1+2\beta )q^{5}+(-2+\cdots)q^{7}+\cdots\)
268.2.a.c \(2\) \(2.140\) \(\Q(\sqrt{21}) \) None \(0\) \(1\) \(-2\) \(1\) \(-\) \(+\) \(q+\beta q^{3}-q^{5}+(1-\beta )q^{7}+(2+\beta )q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(268))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(268)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(67))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(134))\)\(^{\oplus 2}\)