Properties

Label 2667.1.ej.a.1052.1
Level $2667$
Weight $1$
Character 2667.1052
Analytic conductor $1.331$
Analytic rank $0$
Dimension $36$
Projective image $D_{63}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2667,1,Mod(44,2667)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(126)) chi = DirichletCharacter(H, H._module([63, 42, 86])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2667.44"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2667 = 3 \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2667.ej (of order \(126\), degree \(36\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.33100638869\)
Analytic rank: \(0\)
Dimension: \(36\)
Coefficient field: \(\Q(\zeta_{63})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{36} - x^{33} + x^{27} - x^{24} + x^{18} - x^{12} + x^{9} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{63}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{63} - \cdots)\)

Embedding invariants

Embedding label 1052.1
Root \(-0.853291 - 0.521435i\) of defining polynomial
Character \(\chi\) \(=\) 2667.1052
Dual form 2667.1.ej.a.1838.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0249307 - 0.999689i) q^{3} +(0.826239 + 0.563320i) q^{4} +(0.766044 - 0.642788i) q^{7} +(-0.998757 + 0.0498459i) q^{9} +(0.542546 - 0.840026i) q^{12} +(0.0483195 - 0.0123037i) q^{13} +(0.365341 + 0.930874i) q^{16} +1.84295 q^{19} +(-0.661686 - 0.749781i) q^{21} +(-0.988831 + 0.149042i) q^{25} +(0.0747301 + 0.997204i) q^{27} +(0.995031 - 0.0995678i) q^{28} +(0.261979 - 0.580605i) q^{31} +(-0.853291 - 0.521435i) q^{36} +(-1.48471 - 1.24582i) q^{37} +(-0.0135045 - 0.0479978i) q^{39} +(0.970100 + 1.09926i) q^{43} +(0.921476 - 0.388435i) q^{48} +(0.173648 - 0.984808i) q^{49} +(0.0468544 + 0.0170536i) q^{52} +(-0.0459461 - 1.84238i) q^{57} +(1.15445 + 0.174005i) q^{61} +(-0.733052 + 0.680173i) q^{63} +(-0.222521 + 0.974928i) q^{64} +(-1.65052 - 0.898823i) q^{67} +(-0.668852 - 0.620604i) q^{73} +(0.173648 + 0.984808i) q^{75} +(1.52272 + 1.03817i) q^{76} +(-0.0431841 + 0.344601i) q^{79} +(0.995031 - 0.0995678i) q^{81} +(-0.124344 - 0.992239i) q^{84} +(0.0291063 - 0.0404844i) q^{91} +(-0.586956 - 0.247423i) q^{93} +(0.629859 + 1.87468i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 3 q^{4} - 6 q^{13} + 3 q^{16} + 3 q^{25} + 3 q^{27} + 3 q^{31} - 6 q^{37} + 3 q^{39} + 3 q^{52} + 3 q^{57} + 3 q^{63} - 6 q^{64} + 3 q^{67} + 3 q^{79} + 3 q^{91} + 3 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2667\mathbb{Z}\right)^\times\).

\(n\) \(890\) \(1144\) \(2416\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{10}{63}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(3\) −0.0249307 0.999689i −0.0249307 0.999689i
\(4\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(5\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(6\) 0 0
\(7\) 0.766044 0.642788i 0.766044 0.642788i
\(8\) 0 0
\(9\) −0.998757 + 0.0498459i −0.998757 + 0.0498459i
\(10\) 0 0
\(11\) 0 0 −0.921476 0.388435i \(-0.873016\pi\)
0.921476 + 0.388435i \(0.126984\pi\)
\(12\) 0.542546 0.840026i 0.542546 0.840026i
\(13\) 0.0483195 0.0123037i 0.0483195 0.0123037i −0.222521 0.974928i \(-0.571429\pi\)
0.270840 + 0.962624i \(0.412698\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(17\) 0 0 −0.411287 0.911506i \(-0.634921\pi\)
0.411287 + 0.911506i \(0.365079\pi\)
\(18\) 0 0
\(19\) 1.84295 1.84295 0.921476 0.388435i \(-0.126984\pi\)
0.921476 + 0.388435i \(0.126984\pi\)
\(20\) 0 0
\(21\) −0.661686 0.749781i −0.661686 0.749781i
\(22\) 0 0
\(23\) 0 0 0.921476 0.388435i \(-0.126984\pi\)
−0.921476 + 0.388435i \(0.873016\pi\)
\(24\) 0 0
\(25\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(26\) 0 0
\(27\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(28\) 0.995031 0.0995678i 0.995031 0.0995678i
\(29\) 0 0 0.980172 0.198146i \(-0.0634921\pi\)
−0.980172 + 0.198146i \(0.936508\pi\)
\(30\) 0 0
\(31\) 0.261979 0.580605i 0.261979 0.580605i −0.733052 0.680173i \(-0.761905\pi\)
0.995031 + 0.0995678i \(0.0317460\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −0.853291 0.521435i −0.853291 0.521435i
\(37\) −1.48471 1.24582i −1.48471 1.24582i −0.900969 0.433884i \(-0.857143\pi\)
−0.583744 0.811938i \(-0.698413\pi\)
\(38\) 0 0
\(39\) −0.0135045 0.0479978i −0.0135045 0.0479978i
\(40\) 0 0
\(41\) 0 0 0.583744 0.811938i \(-0.301587\pi\)
−0.583744 + 0.811938i \(0.698413\pi\)
\(42\) 0 0
\(43\) 0.970100 + 1.09926i 0.970100 + 1.09926i 0.995031 + 0.0995678i \(0.0317460\pi\)
−0.0249307 + 0.999689i \(0.507937\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(48\) 0.921476 0.388435i 0.921476 0.388435i
\(49\) 0.173648 0.984808i 0.173648 0.984808i
\(50\) 0 0
\(51\) 0 0
\(52\) 0.0468544 + 0.0170536i 0.0468544 + 0.0170536i
\(53\) 0 0 −0.542546 0.840026i \(-0.682540\pi\)
0.542546 + 0.840026i \(0.317460\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.0459461 1.84238i −0.0459461 1.84238i
\(58\) 0 0
\(59\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(60\) 0 0
\(61\) 1.15445 + 0.174005i 1.15445 + 0.174005i 0.698237 0.715867i \(-0.253968\pi\)
0.456211 + 0.889872i \(0.349206\pi\)
\(62\) 0 0
\(63\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(64\) −0.222521 + 0.974928i −0.222521 + 0.974928i
\(65\) 0 0
\(66\) 0 0
\(67\) −1.65052 0.898823i −1.65052 0.898823i −0.988831 0.149042i \(-0.952381\pi\)
−0.661686 0.749781i \(-0.730159\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.124344 0.992239i \(-0.460317\pi\)
−0.124344 + 0.992239i \(0.539683\pi\)
\(72\) 0 0
\(73\) −0.668852 0.620604i −0.668852 0.620604i 0.270840 0.962624i \(-0.412698\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(74\) 0 0
\(75\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(76\) 1.52272 + 1.03817i 1.52272 + 1.03817i
\(77\) 0 0
\(78\) 0 0
\(79\) −0.0431841 + 0.344601i −0.0431841 + 0.344601i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.998757 + 0.0498459i \(0.984127\pi\)
\(80\) 0 0
\(81\) 0.995031 0.0995678i 0.995031 0.0995678i
\(82\) 0 0
\(83\) 0 0 0.456211 0.889872i \(-0.349206\pi\)
−0.456211 + 0.889872i \(0.650794\pi\)
\(84\) −0.124344 0.992239i −0.124344 0.992239i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(90\) 0 0
\(91\) 0.0291063 0.0404844i 0.0291063 0.0404844i
\(92\) 0 0
\(93\) −0.586956 0.247423i −0.586956 0.247423i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.629859 + 1.87468i 0.629859 + 1.87468i 0.456211 + 0.889872i \(0.349206\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −0.900969 0.433884i −0.900969 0.433884i
\(101\) 0 0 0.542546 0.840026i \(-0.317460\pi\)
−0.542546 + 0.840026i \(0.682540\pi\)
\(102\) 0 0
\(103\) −1.79589 0.653650i −1.79589 0.653650i −0.998757 0.0498459i \(-0.984127\pi\)
−0.797133 0.603804i \(-0.793651\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(108\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(109\) −1.35329 0.344590i −1.35329 0.344590i −0.500000 0.866025i \(-0.666667\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(110\) 0 0
\(111\) −1.20842 + 1.51531i −1.20842 + 1.51531i
\(112\) 0.878222 + 0.478254i 0.878222 + 0.478254i
\(113\) 0 0 0.542546 0.840026i \(-0.317460\pi\)
−0.542546 + 0.840026i \(0.682540\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.0476462 + 0.0146969i −0.0476462 + 0.0146969i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.698237 + 0.715867i 0.698237 + 0.715867i
\(122\) 0 0
\(123\) 0 0
\(124\) 0.543524 0.332140i 0.543524 0.332140i
\(125\) 0 0
\(126\) 0 0
\(127\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(128\) 0 0
\(129\) 1.07473 0.997204i 1.07473 0.997204i
\(130\) 0 0
\(131\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(132\) 0 0
\(133\) 1.41178 1.18463i 1.41178 1.18463i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(138\) 0 0
\(139\) 1.16604 + 0.0581944i 1.16604 + 0.0581944i 0.623490 0.781831i \(-0.285714\pi\)
0.542546 + 0.840026i \(0.317460\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −0.411287 0.911506i −0.411287 0.911506i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.988831 0.149042i −0.988831 0.149042i
\(148\) −0.524931 1.86571i −0.524931 1.86571i
\(149\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(150\) 0 0
\(151\) 0.559735 0.469673i 0.559735 0.469673i −0.318487 0.947927i \(-0.603175\pi\)
0.878222 + 0.478254i \(0.158730\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0.0158802 0.0472650i 0.0158802 0.0472650i
\(157\) −0.229801 + 0.260396i −0.229801 + 0.260396i −0.853291 0.521435i \(-0.825397\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1.28756 + 0.701170i −1.28756 + 0.701170i −0.969077 0.246757i \(-0.920635\pi\)
−0.318487 + 0.947927i \(0.603175\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(168\) 0 0
\(169\) −0.876038 + 0.477065i −0.876038 + 0.477065i
\(170\) 0 0
\(171\) −1.84066 + 0.0918636i −1.84066 + 0.0918636i
\(172\) 0.182301 + 1.45473i 0.182301 + 1.45473i
\(173\) 0 0 −0.583744 0.811938i \(-0.698413\pi\)
0.583744 + 0.811938i \(0.301587\pi\)
\(174\) 0 0
\(175\) −0.661686 + 0.749781i −0.661686 + 0.749781i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(180\) 0 0
\(181\) 1.46402 0.451591i 1.46402 0.451591i 0.542546 0.840026i \(-0.317460\pi\)
0.921476 + 0.388435i \(0.126984\pi\)
\(182\) 0 0
\(183\) 0.145170 1.15843i 0.145170 1.15843i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0.698237 + 0.715867i 0.698237 + 0.715867i
\(190\) 0 0
\(191\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(192\) 0.980172 + 0.198146i 0.980172 + 0.198146i
\(193\) 1.22226 1.53266i 1.22226 1.53266i 0.456211 0.889872i \(-0.349206\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.698237 0.715867i 0.698237 0.715867i
\(197\) 0 0 −0.0249307 0.999689i \(-0.507937\pi\)
0.0249307 + 0.999689i \(0.492063\pi\)
\(198\) 0 0
\(199\) −0.806265 + 0.162990i −0.806265 + 0.162990i −0.583744 0.811938i \(-0.698413\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(200\) 0 0
\(201\) −0.857396 + 1.67241i −0.857396 + 1.67241i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0.0291063 + 0.0404844i 0.0291063 + 0.0404844i
\(209\) 0 0
\(210\) 0 0
\(211\) −0.717990 0.813582i −0.717990 0.813582i 0.270840 0.962624i \(-0.412698\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −0.172518 0.613166i −0.172518 0.613166i
\(218\) 0 0
\(219\) −0.603736 + 0.684116i −0.603736 + 0.684116i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −0.316203 0.439811i −0.316203 0.439811i 0.623490 0.781831i \(-0.285714\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(224\) 0 0
\(225\) 0.980172 0.198146i 0.980172 0.198146i
\(226\) 0 0
\(227\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(228\) 0.999887 1.54813i 0.999887 1.54813i
\(229\) 0.568885 + 0.713360i 0.568885 + 0.713360i 0.980172 0.198146i \(-0.0634921\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.969077 0.246757i \(-0.920635\pi\)
0.969077 + 0.246757i \(0.0793651\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0.345571 + 0.0345796i 0.345571 + 0.0345796i
\(238\) 0 0
\(239\) 0 0 0.995031 0.0995678i \(-0.0317460\pi\)
−0.995031 + 0.0995678i \(0.968254\pi\)
\(240\) 0 0
\(241\) −0.173643 0.178027i −0.173643 0.178027i 0.623490 0.781831i \(-0.285714\pi\)
−0.797133 + 0.603804i \(0.793651\pi\)
\(242\) 0 0
\(243\) −0.124344 0.992239i −0.124344 0.992239i
\(244\) 0.855829 + 0.794093i 0.855829 + 0.794093i
\(245\) 0 0
\(246\) 0 0
\(247\) 0.0890506 0.0226751i 0.0890506 0.0226751i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.878222 0.478254i \(-0.841270\pi\)
0.878222 + 0.478254i \(0.158730\pi\)
\(252\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(257\) 0 0 0.853291 0.521435i \(-0.174603\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(258\) 0 0
\(259\) −1.93815 −1.93815
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.456211 0.889872i \(-0.349206\pi\)
−0.456211 + 0.889872i \(0.650794\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −0.857396 1.67241i −0.857396 1.67241i
\(269\) 0 0 −0.583744 0.811938i \(-0.698413\pi\)
0.583744 + 0.811938i \(0.301587\pi\)
\(270\) 0 0
\(271\) −0.894347 + 1.24396i −0.894347 + 1.24396i 0.0747301 + 0.997204i \(0.476190\pi\)
−0.969077 + 0.246757i \(0.920635\pi\)
\(272\) 0 0
\(273\) −0.0411974 0.0280879i −0.0411974 0.0280879i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −0.247452 + 1.97462i −0.247452 + 1.97462i −0.0249307 + 0.999689i \(0.507937\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(278\) 0 0
\(279\) −0.232712 + 0.592942i −0.232712 + 0.592942i
\(280\) 0 0
\(281\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(282\) 0 0
\(283\) 0.294478 + 0.333684i 0.294478 + 0.333684i 0.878222 0.478254i \(-0.158730\pi\)
−0.583744 + 0.811938i \(0.698413\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −0.661686 + 0.749781i −0.661686 + 0.749781i
\(290\) 0 0
\(291\) 1.85839 0.676400i 1.85839 0.676400i
\(292\) −0.203033 0.889545i −0.203033 0.889545i
\(293\) 0 0 −0.969077 0.246757i \(-0.920635\pi\)
0.969077 + 0.246757i \(0.0793651\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −0.411287 + 0.911506i −0.411287 + 0.911506i
\(301\) 1.44973 + 0.218511i 1.44973 + 0.218511i
\(302\) 0 0
\(303\) 0 0
\(304\) 0.673306 + 1.71556i 0.673306 + 1.71556i
\(305\) 0 0
\(306\) 0 0
\(307\) −1.84066 + 0.0918636i −1.84066 + 0.0918636i −0.939693 0.342020i \(-0.888889\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(308\) 0 0
\(309\) −0.608674 + 1.81163i −0.608674 + 1.81163i
\(310\) 0 0
\(311\) 0 0 0.853291 0.521435i \(-0.174603\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(312\) 0 0
\(313\) −0.00865834 + 0.0491039i −0.00865834 + 0.0491039i −0.988831 0.149042i \(-0.952381\pi\)
0.980172 + 0.198146i \(0.0634921\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −0.229801 + 0.260396i −0.229801 + 0.260396i
\(317\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.878222 + 0.478254i 0.878222 + 0.478254i
\(325\) −0.0459461 + 0.0193679i −0.0459461 + 0.0193679i
\(326\) 0 0
\(327\) −0.310745 + 1.36146i −0.310745 + 1.36146i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.06404 + 1.33426i −1.06404 + 1.33426i −0.124344 + 0.992239i \(0.539683\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(332\) 0 0
\(333\) 1.54497 + 1.17027i 1.54497 + 1.17027i
\(334\) 0 0
\(335\) 0 0
\(336\) 0.456211 0.889872i 0.456211 0.889872i
\(337\) −0.902230 + 1.75987i −0.902230 + 1.75987i −0.318487 + 0.947927i \(0.603175\pi\)
−0.583744 + 0.811938i \(0.698413\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −0.500000 0.866025i −0.500000 0.866025i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.797133 0.603804i \(-0.206349\pi\)
−0.797133 + 0.603804i \(0.793651\pi\)
\(348\) 0 0
\(349\) −1.12349 0.541044i −1.12349 0.541044i −0.222521 0.974928i \(-0.571429\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(350\) 0 0
\(351\) 0.0158802 + 0.0472650i 0.0158802 + 0.0472650i
\(352\) 0 0
\(353\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(360\) 0 0
\(361\) 2.39647 2.39647
\(362\) 0 0
\(363\) 0.698237 0.715867i 0.698237 0.715867i
\(364\) 0.0468544 0.0170536i 0.0468544 0.0170536i
\(365\) 0 0
\(366\) 0 0
\(367\) 1.93575 + 0.0966090i 1.93575 + 0.0966090i 0.980172 0.198146i \(-0.0634921\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −0.345587 0.535074i −0.345587 0.535074i
\(373\) −1.73683 + 0.261784i −1.73683 + 0.261784i −0.939693 0.342020i \(-0.888889\pi\)
−0.797133 + 0.603804i \(0.793651\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0.354757 + 1.55429i 0.354757 + 1.55429i 0.766044 + 0.642788i \(0.222222\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(380\) 0 0
\(381\) 0.878222 + 0.478254i 0.878222 + 0.478254i
\(382\) 0 0
\(383\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.02369 1.04954i −1.02369 1.04954i
\(388\) −0.535631 + 1.90375i −0.535631 + 1.90375i
\(389\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −0.483482 1.23189i −0.483482 1.23189i −0.939693 0.342020i \(-0.888889\pi\)
0.456211 0.889872i \(-0.349206\pi\)
\(398\) 0 0
\(399\) −1.21946 1.38181i −1.21946 1.38181i
\(400\) −0.500000 0.866025i −0.500000 0.866025i
\(401\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(402\) 0 0
\(403\) 0.00551513 0.0312779i 0.00551513 0.0312779i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0.345571 + 1.95983i 0.345571 + 1.95983i 0.270840 + 0.962624i \(0.412698\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −1.11562 1.55173i −1.11562 1.55173i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0.0291063 1.16712i 0.0291063 1.16712i
\(418\) 0 0
\(419\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(420\) 0 0
\(421\) −0.425270 0.131178i −0.425270 0.131178i 0.0747301 0.997204i \(-0.476190\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0.996206 0.608769i 0.996206 0.608769i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(432\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(433\) 0.955242 0.801543i 0.955242 0.801543i −0.0249307 0.999689i \(-0.507937\pi\)
0.980172 + 0.198146i \(0.0634921\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.924027 1.04705i −0.924027 1.04705i
\(437\) 0 0
\(438\) 0 0
\(439\) 1.95060 + 0.195187i 1.95060 + 0.195187i 0.995031 0.0995678i \(-0.0317460\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(440\) 0 0
\(441\) −0.124344 + 0.992239i −0.124344 + 0.992239i
\(442\) 0 0
\(443\) 0 0 −0.318487 0.947927i \(-0.603175\pi\)
0.318487 + 0.947927i \(0.396825\pi\)
\(444\) −1.85205 + 0.571281i −1.85205 + 0.571281i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0.456211 + 0.889872i 0.456211 + 0.889872i
\(449\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −0.483482 0.547852i −0.483482 0.547852i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.573893 0.276372i 0.573893 0.276372i −0.124344 0.992239i \(-0.539683\pi\)
0.698237 + 0.715867i \(0.253968\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(462\) 0 0
\(463\) 1.80641 + 0.761466i 1.80641 + 0.761466i 0.980172 + 0.198146i \(0.0634921\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.411287 0.911506i \(-0.634921\pi\)
0.411287 + 0.911506i \(0.365079\pi\)
\(468\) −0.0476462 0.0146969i −0.0476462 0.0146969i
\(469\) −1.84212 + 0.372393i −1.84212 + 0.372393i
\(470\) 0 0
\(471\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −1.82237 + 0.274678i −1.82237 + 0.274678i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.661686 0.749781i \(-0.730159\pi\)
0.661686 + 0.749781i \(0.269841\pi\)
\(480\) 0 0
\(481\) −0.0870688 0.0419301i −0.0870688 0.0419301i
\(482\) 0 0
\(483\) 0 0
\(484\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(485\) 0 0
\(486\) 0 0
\(487\) −1.39474 + 1.42995i −1.39474 + 1.42995i −0.661686 + 0.749781i \(0.730159\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(488\) 0 0
\(489\) 0.733052 + 1.26968i 0.733052 + 1.26968i
\(490\) 0 0
\(491\) 0 0 −0.995031 0.0995678i \(-0.968254\pi\)
0.995031 + 0.0995678i \(0.0317460\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.636181 + 0.0317505i 0.636181 + 0.0317505i
\(497\) 0 0
\(498\) 0 0
\(499\) −1.24543 + 0.0621568i −1.24543 + 0.0621568i −0.661686 0.749781i \(-0.730159\pi\)
−0.583744 + 0.811938i \(0.698413\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.498757 + 0.863872i 0.498757 + 0.863872i
\(508\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(509\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(510\) 0 0
\(511\) −0.911287 0.0454804i −0.911287 0.0454804i
\(512\) 0 0
\(513\) 0.137724 + 1.83780i 0.137724 + 1.83780i
\(514\) 0 0
\(515\) 0 0
\(516\) 1.44973 0.218511i 1.44973 0.218511i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.698237 0.715867i \(-0.746032\pi\)
0.698237 + 0.715867i \(0.253968\pi\)
\(522\) 0 0
\(523\) −0.446285 + 0.989068i −0.446285 + 0.989068i 0.542546 + 0.840026i \(0.317460\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(524\) 0 0
\(525\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 0.698237 0.715867i 0.698237 0.715867i
\(530\) 0 0
\(531\) 0 0
\(532\) 1.83379 0.183499i 1.83379 0.183499i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0.197898 0.504237i 0.197898 0.504237i −0.797133 0.603804i \(-0.793651\pi\)
0.995031 + 0.0995678i \(0.0317460\pi\)
\(542\) 0 0
\(543\) −0.487950 1.45231i −0.487950 1.45231i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.87822 + 0.478254i 1.87822 + 0.478254i 1.00000 \(0\)
0.878222 + 0.478254i \(0.158730\pi\)
\(548\) 0 0
\(549\) −1.16169 0.116244i −1.16169 0.116244i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0.188424 + 0.291738i 0.188424 + 0.291738i
\(554\) 0 0
\(555\) 0 0
\(556\) 0.930642 + 0.704934i 0.930642 + 0.704934i
\(557\) 0 0 0.878222 0.478254i \(-0.158730\pi\)
−0.878222 + 0.478254i \(0.841270\pi\)
\(558\) 0 0
\(559\) 0.0603997 + 0.0411798i 0.0603997 + 0.0411798i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.980172 0.198146i \(-0.0634921\pi\)
−0.980172 + 0.198146i \(0.936508\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.698237 0.715867i 0.698237 0.715867i
\(568\) 0 0
\(569\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(570\) 0 0
\(571\) −1.26458 + 0.390071i −1.26458 + 0.390071i −0.853291 0.521435i \(-0.825397\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.173648 0.984808i 0.173648 0.984808i
\(577\) 1.05187 1.46306i 1.05187 1.46306i 0.173648 0.984808i \(-0.444444\pi\)
0.878222 0.478254i \(-0.158730\pi\)
\(578\) 0 0
\(579\) −1.56265 1.18366i −1.56265 1.18366i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.921476 0.388435i \(-0.126984\pi\)
−0.921476 + 0.388435i \(0.873016\pi\)
\(588\) −0.733052 0.680173i −0.733052 0.680173i
\(589\) 0.482815 1.07003i 0.482815 1.07003i
\(590\) 0 0
\(591\) 0 0
\(592\) 0.617276 1.83723i 0.617276 1.83723i
\(593\) 0 0 0.0249307 0.999689i \(-0.492063\pi\)
−0.0249307 + 0.999689i \(0.507937\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.183040 + 0.801951i 0.183040 + 0.801951i
\(598\) 0 0
\(599\) 0 0 0.0249307 0.999689i \(-0.492063\pi\)
−0.0249307 + 0.999689i \(0.507937\pi\)
\(600\) 0 0
\(601\) −0.218403 1.74281i −0.218403 1.74281i −0.583744 0.811938i \(-0.698413\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(602\) 0 0
\(603\) 1.69327 + 0.815435i 1.69327 + 0.815435i
\(604\) 0.727051 0.0727524i 0.727051 0.0727524i
\(605\) 0 0
\(606\) 0 0
\(607\) 1.26587 1.06219i 1.26587 1.06219i 0.270840 0.962624i \(-0.412698\pi\)
0.995031 0.0995678i \(-0.0317460\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0.188424 1.06861i 0.188424 1.06861i −0.733052 0.680173i \(-0.761905\pi\)
0.921476 0.388435i \(-0.126984\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.698237 0.715867i \(-0.253968\pi\)
−0.698237 + 0.715867i \(0.746032\pi\)
\(618\) 0 0
\(619\) −1.88980 0.284841i −1.88980 0.284841i −0.900969 0.433884i \(-0.857143\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0.0397461 0.0301065i 0.0397461 0.0301065i
\(625\) 0.955573 0.294755i 0.955573 0.294755i
\(626\) 0 0
\(627\) 0 0
\(628\) −0.336557 + 0.0856979i −0.336557 + 0.0856979i
\(629\) 0 0
\(630\) 0 0
\(631\) 0.224060 0.107901i 0.224060 0.107901i −0.318487 0.947927i \(-0.603175\pi\)
0.542546 + 0.840026i \(0.317460\pi\)
\(632\) 0 0
\(633\) −0.795429 + 0.738050i −0.795429 + 0.738050i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −0.00372615 0.0497220i −0.00372615 0.0497220i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 0.969077 0.246757i \(-0.0793651\pi\)
−0.969077 + 0.246757i \(0.920635\pi\)
\(642\) 0 0
\(643\) 0.0931869 + 0.116853i 0.0931869 + 0.116853i 0.826239 0.563320i \(-0.190476\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.456211 0.889872i \(-0.650794\pi\)
0.456211 + 0.889872i \(0.349206\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −0.608674 + 0.187751i −0.608674 + 0.187751i
\(652\) −1.45882 0.145977i −1.45882 0.145977i
\(653\) 0 0 −0.270840 0.962624i \(-0.587302\pi\)
0.270840 + 0.962624i \(0.412698\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0.698955 + 0.586493i 0.698955 + 0.586493i
\(658\) 0 0
\(659\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(660\) 0 0
\(661\) −0.134924 + 0.208904i −0.134924 + 0.208904i −0.900969 0.433884i \(-0.857143\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −0.431791 + 0.327069i −0.431791 + 0.327069i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.914101 + 0.848162i −0.914101 + 0.848162i −0.988831 0.149042i \(-0.952381\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(674\) 0 0
\(675\) −0.222521 0.974928i −0.222521 0.974928i
\(676\) −0.992557 0.0993203i −0.992557 0.0993203i
\(677\) 0 0 0.0249307 0.999689i \(-0.492063\pi\)
−0.0249307 + 0.999689i \(0.507937\pi\)
\(678\) 0 0
\(679\) 1.68752 + 1.03122i 1.68752 + 1.03122i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.797133 0.603804i \(-0.793651\pi\)
0.797133 + 0.603804i \(0.206349\pi\)
\(684\) −1.57257 0.960980i −1.57257 0.960980i
\(685\) 0 0
\(686\) 0 0
\(687\) 0.698955 0.586493i 0.698955 0.586493i
\(688\) −0.668852 + 1.30464i −0.668852 + 1.30464i
\(689\) 0 0
\(690\) 0 0
\(691\) 0.507752 + 0.384607i 0.507752 + 0.384607i 0.826239 0.563320i \(-0.190476\pi\)
−0.318487 + 0.947927i \(0.603175\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −0.969077 + 0.246757i −0.969077 + 0.246757i
\(701\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(702\) 0 0
\(703\) −2.73625 2.29599i −2.73625 2.29599i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0.907887 1.77090i 0.907887 1.77090i 0.365341 0.930874i \(-0.380952\pi\)
0.542546 0.840026i \(-0.317460\pi\)
\(710\) 0 0
\(711\) 0.0259535 0.346325i 0.0259535 0.346325i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.980172 0.198146i \(-0.0634921\pi\)
−0.980172 + 0.198146i \(0.936508\pi\)
\(720\) 0 0
\(721\) −1.79589 + 0.653650i −1.79589 + 0.653650i
\(722\) 0 0
\(723\) −0.173643 + 0.178027i −0.173643 + 0.178027i
\(724\) 1.46402 + 0.451591i 1.46402 + 0.451591i
\(725\) 0 0
\(726\) 0 0
\(727\) −1.67274 0.338153i −1.67274 0.338153i −0.733052 0.680173i \(-0.761905\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(728\) 0 0
\(729\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(730\) 0 0
\(731\) 0 0
\(732\) 0.772510 0.875360i 0.772510 0.875360i
\(733\) 0.636181 1.89350i 0.636181 1.89350i 0.270840 0.962624i \(-0.412698\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0.224060 1.78795i 0.224060 1.78795i −0.318487 0.947927i \(-0.603175\pi\)
0.542546 0.840026i \(-0.317460\pi\)
\(740\) 0 0
\(741\) −0.0248881 0.0884576i −0.0248881 0.0884576i
\(742\) 0 0
\(743\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −0.190506 1.52020i −0.190506 1.52020i −0.733052 0.680173i \(-0.761905\pi\)
0.542546 0.840026i \(-0.317460\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(757\) −0.367711 + 0.250701i −0.367711 + 0.250701i −0.733052 0.680173i \(-0.761905\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(762\) 0 0
\(763\) −1.25818 + 0.605907i −1.25818 + 0.605907i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0.698237 + 0.715867i 0.698237 + 0.715867i
\(769\) −1.31226 1.34539i −1.31226 1.34539i −0.900969 0.433884i \(-0.857143\pi\)
−0.411287 0.911506i \(-0.634921\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.87325 0.577822i 1.87325 0.577822i
\(773\) 0 0 −0.921476 0.388435i \(-0.873016\pi\)
0.921476 + 0.388435i \(0.126984\pi\)
\(774\) 0 0
\(775\) −0.172518 + 0.613166i −0.172518 + 0.613166i
\(776\) 0 0
\(777\) 0.0483195 + 1.93755i 0.0483195 + 1.93755i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.980172 0.198146i 0.980172 0.198146i
\(785\) 0 0
\(786\) 0 0
\(787\) −1.96783 + 0.296603i −1.96783 + 0.296603i −0.969077 + 0.246757i \(0.920635\pi\)
−0.998757 + 0.0498459i \(0.984127\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0.0579233 0.00579610i 0.0579233 0.00579610i
\(794\) 0 0
\(795\) 0 0
\(796\) −0.757983 0.319516i −0.757983 0.319516i
\(797\) 0 0 −0.980172 0.198146i \(-0.936508\pi\)
0.980172 + 0.198146i \(0.0634921\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −1.65052 + 0.898823i −1.65052 + 0.898823i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(810\) 0 0
\(811\) 0.0497994 1.99689i 0.0497994 1.99689i −0.0249307 0.999689i \(-0.507937\pi\)
0.0747301 0.997204i \(-0.476190\pi\)
\(812\) 0 0
\(813\) 1.26587 + 0.863056i 1.26587 + 0.863056i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1.78785 + 2.02588i 1.78785 + 2.02588i
\(818\) 0 0
\(819\) −0.0270521 + 0.0418849i −0.0270521 + 0.0418849i
\(820\) 0 0
\(821\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(822\) 0 0
\(823\) 1.14906 1.44088i 1.14906 1.44088i 0.270840 0.962624i \(-0.412698\pi\)
0.878222 0.478254i \(-0.158730\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.661686 0.749781i \(-0.269841\pi\)
−0.661686 + 0.749781i \(0.730159\pi\)
\(828\) 0 0
\(829\) −1.40012 0.762464i −1.40012 0.762464i −0.411287 0.911506i \(-0.634921\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(830\) 0 0
\(831\) 1.98017 + 0.198146i 1.98017 + 0.198146i
\(832\) 0.00124308 + 0.0498459i 0.00124308 + 0.0498459i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0.598559 + 0.217858i 0.598559 + 0.217858i
\(838\) 0 0
\(839\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(840\) 0 0
\(841\) 0.921476 0.388435i 0.921476 0.388435i
\(842\) 0 0
\(843\) 0 0
\(844\) −0.134924 1.07667i −0.134924 1.07667i
\(845\) 0 0
\(846\) 0 0
\(847\) 0.995031 + 0.0995678i 0.995031 + 0.0995678i
\(848\) 0 0
\(849\) 0.326239 0.302705i 0.326239 0.302705i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 1.45621 + 0.889872i 1.45621 + 0.889872i 1.00000 \(0\)
0.456211 + 0.889872i \(0.349206\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(858\) 0 0
\(859\) −1.56265 0.315897i −1.56265 0.315897i −0.661686 0.749781i \(-0.730159\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.998757 0.0498459i \(-0.984127\pi\)
0.998757 + 0.0498459i \(0.0158730\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(868\) 0.202867 0.603804i 0.202867 0.603804i
\(869\) 0 0
\(870\) 0 0
\(871\) −0.0908110 0.0231233i −0.0908110 0.0231233i
\(872\) 0 0
\(873\) −0.722521 1.84095i −0.722521 1.84095i
\(874\) 0 0
\(875\) 0 0
\(876\) −0.884207 + 0.225147i −0.884207 + 0.225147i
\(877\) 0.896546 1.38812i 0.896546 1.38812i −0.0249307 0.999689i \(-0.507937\pi\)
0.921476 0.388435i \(-0.126984\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(882\) 0 0
\(883\) 0.538989 1.91568i 0.538989 1.91568i 0.173648 0.984808i \(-0.444444\pi\)
0.365341 0.930874i \(-0.380952\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(888\) 0 0
\(889\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(890\) 0 0
\(891\) 0 0
\(892\) −0.0135045 0.541513i −0.0135045 0.541513i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0.921476 + 0.388435i 0.921476 + 0.388435i
\(901\) 0 0
\(902\) 0 0
\(903\) 0.182301 1.45473i 0.182301 1.45473i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −0.524931 0.133664i −0.524931 0.133664i −0.0249307 0.999689i \(-0.507937\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(912\) 1.69824 0.715867i 1.69824 0.715867i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0.0681853 + 0.909870i 0.0681853 + 0.909870i
\(917\) 0 0
\(918\) 0 0
\(919\) 0.894330 + 0.180793i 0.894330 + 0.180793i 0.623490 0.781831i \(-0.285714\pi\)
0.270840 + 0.962624i \(0.412698\pi\)
\(920\) 0 0
\(921\) 0.137724 + 1.83780i 0.137724 + 1.83780i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 1.65381 + 1.01062i 1.65381 + 1.01062i
\(926\) 0 0
\(927\) 1.82624 + 0.563320i 1.82624 + 0.563320i
\(928\) 0 0
\(929\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(930\) 0 0
\(931\) 0.320025 1.81495i 0.320025 1.81495i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0.999887 0.421488i 0.999887 0.421488i 0.173648 0.984808i \(-0.444444\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(938\) 0 0
\(939\) 0.0493045 + 0.00743145i 0.0493045 + 0.00743145i
\(940\) 0 0
\(941\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.995031 0.0995678i \(-0.968254\pi\)
0.995031 + 0.0995678i \(0.0317460\pi\)
\(948\) 0.266044 + 0.223238i 0.266044 + 0.223238i
\(949\) −0.0399543 0.0217580i −0.0399543 0.0217580i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 0.393217 + 0.445569i 0.393217 + 0.445569i
\(962\) 0 0
\(963\) 0 0
\(964\) −0.0431841 0.244909i −0.0431841 0.244909i
\(965\) 0 0
\(966\) 0 0
\(967\) −0.0270521 + 1.08476i −0.0270521 + 1.08476i 0.826239 + 0.563320i \(0.190476\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.797133 0.603804i \(-0.206349\pi\)
−0.797133 + 0.603804i \(0.793651\pi\)
\(972\) 0.456211 0.889872i 0.456211 0.889872i
\(973\) 0.930642 0.704934i 0.930642 0.704934i
\(974\) 0 0
\(975\) 0.0205073 + 0.0454489i 0.0205073 + 0.0454489i
\(976\) 0.259790 + 1.13822i 0.259790 + 1.13822i
\(977\) 0 0 −0.270840 0.962624i \(-0.587302\pi\)
0.270840 + 0.962624i \(0.412698\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 1.36879 + 0.276706i 1.36879 + 0.276706i
\(982\) 0 0
\(983\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0.0863504 + 0.0314290i 0.0863504 + 0.0314290i
\(989\) 0 0
\(990\) 0 0
\(991\) 0.245910 0.0370649i 0.245910 0.0370649i −0.0249307 0.999689i \(-0.507937\pi\)
0.270840 + 0.962624i \(0.412698\pi\)
\(992\) 0 0
\(993\) 1.36037 + 1.03044i 1.36037 + 1.03044i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0.797133 1.38067i 0.797133 1.38067i −0.124344 0.992239i \(-0.539683\pi\)
0.921476 0.388435i \(-0.126984\pi\)
\(998\) 0 0
\(999\) 1.13139 1.57366i 1.13139 1.57366i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2667.1.ej.a.1052.1 36
3.2 odd 2 CM 2667.1.ej.a.1052.1 36
7.4 even 3 2667.1.em.a.2195.1 yes 36
21.11 odd 6 2667.1.em.a.2195.1 yes 36
127.60 even 63 2667.1.em.a.695.1 yes 36
381.314 odd 126 2667.1.em.a.695.1 yes 36
889.60 even 63 inner 2667.1.ej.a.1838.1 yes 36
2667.1838 odd 126 inner 2667.1.ej.a.1838.1 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2667.1.ej.a.1052.1 36 1.1 even 1 trivial
2667.1.ej.a.1052.1 36 3.2 odd 2 CM
2667.1.ej.a.1838.1 yes 36 889.60 even 63 inner
2667.1.ej.a.1838.1 yes 36 2667.1838 odd 126 inner
2667.1.em.a.695.1 yes 36 127.60 even 63
2667.1.em.a.695.1 yes 36 381.314 odd 126
2667.1.em.a.2195.1 yes 36 7.4 even 3
2667.1.em.a.2195.1 yes 36 21.11 odd 6