Properties

Label 2667.1.by.b
Level $2667$
Weight $1$
Character orbit 2667.by
Analytic conductor $1.331$
Analytic rank $0$
Dimension $6$
Projective image $D_{14}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2667,1,Mod(125,2667)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(14)) chi = DirichletCharacter(H, H._module([7, 7, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2667.125"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2667 = 3 \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2667.by (of order \(14\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.33100638869\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{14}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{14} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{14}^{2} q^{3} - \zeta_{14} q^{4} - \zeta_{14}^{5} q^{7} + \zeta_{14}^{4} q^{9} + \zeta_{14}^{3} q^{12} + (\zeta_{14}^{4} + \zeta_{14}) q^{13} + \zeta_{14}^{2} q^{16} + (\zeta_{14}^{4} + \zeta_{14}^{3}) q^{19} + \cdots + ( - \zeta_{14}^{3} + 1) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{3} - q^{4} - q^{7} - q^{9} + q^{12} - q^{16} - 6 q^{21} - q^{25} + q^{27} - q^{28} - q^{36} + 2 q^{37} + q^{48} - q^{49} - q^{63} - q^{64} + 7 q^{73} - 6 q^{75} + 2 q^{79} - q^{81}+ \cdots + 5 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2667\mathbb{Z}\right)^\times\).

\(n\) \(890\) \(1144\) \(2416\)
\(\chi(n)\) \(-1\) \(-1\) \(-\zeta_{14}^{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
125.1
−0.623490 0.781831i
0.222521 0.974928i
0.900969 0.433884i
0.222521 + 0.974928i
0.900969 + 0.433884i
−0.623490 + 0.781831i
0 0.222521 0.974928i 0.623490 + 0.781831i 0 0 −0.222521 0.974928i 0 −0.900969 0.433884i 0
377.1 0 0.900969 + 0.433884i −0.222521 + 0.974928i 0 0 −0.900969 + 0.433884i 0 0.623490 + 0.781831i 0
881.1 0 −0.623490 + 0.781831i −0.900969 + 0.433884i 0 0 0.623490 + 0.781831i 0 −0.222521 0.974928i 0
1238.1 0 0.900969 0.433884i −0.222521 0.974928i 0 0 −0.900969 0.433884i 0 0.623490 0.781831i 0
1889.1 0 −0.623490 0.781831i −0.900969 0.433884i 0 0 0.623490 0.781831i 0 −0.222521 + 0.974928i 0
2603.1 0 0.222521 + 0.974928i 0.623490 0.781831i 0 0 −0.222521 + 0.974928i 0 −0.900969 + 0.433884i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 125.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
889.y even 14 1 inner
2667.by odd 14 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2667.1.by.b yes 6
3.b odd 2 1 CM 2667.1.by.b yes 6
7.b odd 2 1 2667.1.by.a 6
21.c even 2 1 2667.1.by.a 6
127.g odd 14 1 2667.1.by.a 6
381.l even 14 1 2667.1.by.a 6
889.y even 14 1 inner 2667.1.by.b yes 6
2667.by odd 14 1 inner 2667.1.by.b yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2667.1.by.a 6 7.b odd 2 1
2667.1.by.a 6 21.c even 2 1
2667.1.by.a 6 127.g odd 14 1
2667.1.by.a 6 381.l even 14 1
2667.1.by.b yes 6 1.a even 1 1 trivial
2667.1.by.b yes 6 3.b odd 2 1 CM
2667.1.by.b yes 6 889.y even 14 1 inner
2667.1.by.b yes 6 2667.by odd 14 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{13}^{6} + 7T_{13}^{2} - 14T_{13} + 7 \) acting on \(S_{1}^{\mathrm{new}}(2667, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - T^{5} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + T^{5} + T^{4} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( T^{6} + 7 T^{2} + \cdots + 7 \) Copy content Toggle raw display
$17$ \( T^{6} \) Copy content Toggle raw display
$19$ \( T^{6} + 7 T^{4} + \cdots + 7 \) Copy content Toggle raw display
$23$ \( T^{6} \) Copy content Toggle raw display
$29$ \( T^{6} \) Copy content Toggle raw display
$31$ \( T^{6} + 7 T^{2} + \cdots + 7 \) Copy content Toggle raw display
$37$ \( (T^{3} - T^{2} - 2 T + 1)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} \) Copy content Toggle raw display
$43$ \( T^{6} + 7 T^{2} + \cdots + 7 \) Copy content Toggle raw display
$47$ \( T^{6} \) Copy content Toggle raw display
$53$ \( T^{6} \) Copy content Toggle raw display
$59$ \( T^{6} \) Copy content Toggle raw display
$61$ \( T^{6} - 7 T^{3} + \cdots + 7 \) Copy content Toggle raw display
$67$ \( T^{6} \) Copy content Toggle raw display
$71$ \( T^{6} \) Copy content Toggle raw display
$73$ \( T^{6} - 7 T^{5} + \cdots + 7 \) Copy content Toggle raw display
$79$ \( T^{6} - 2 T^{5} + \cdots + 64 \) Copy content Toggle raw display
$83$ \( T^{6} \) Copy content Toggle raw display
$89$ \( T^{6} \) Copy content Toggle raw display
$97$ \( T^{6} - 5 T^{5} + \cdots + 1 \) Copy content Toggle raw display
show more
show less